1
|
Sharaky M, Dokla EME, Abdel-Aziz AK. Anticancer activity of EMD37 against human head and neck cancer: Impact on apoptotic and inflammatory machineries. Toxicol In Vitro 2025; 102:105967. [PMID: 39510359 DOI: 10.1016/j.tiv.2024.105967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Accumulating evidence emphasizes the tumorigenic role of epidermal growth factor receptor (EGFR) in head and neck cancer (HNC). Although cetuximab is the sole anti-EGFR approved by the Food and Drug Administration for treating HNC patients.its response rates are modest. Thus, novel effective and tolerable therapeutic strategies are urged. We previously reported the capability of oxadiazole derivatives to degrade tyrosine kinase receptors including EGFR and exhibit potent anticancer activities against NCI-60 panel which does not include HNC. The aim of this study was to investigate the potential anticancer activity of EMD37, a novel 1,2,4-oxadiazole derivative, against human HNC cells and if effective, to examine the effect of EMD37 on apoptotic and inflammation mediators. Indeed, EMD37 exhibited potent cytotoxicity against patient-derived HNC cell lines (HNO-97, HN-9 and FaDu). Delving deeper, EMD37 triggered intrinsic and extrinsic apoptosis in HNC cells as evidenced by increased levels of caspase-8, caspase-9, caspase-3, caspase-7, caspase-6, TP53BP1 tumor suppressor and Bax, and downregulated anti-apoptotic Bcl-2 protein. EMD37 also significantly abrogated the levels of pro-inflammatory interleukin-1β, interleukin-6, cyclooxygenase-2 and matrix metalloproteinases (MMP-2 and MMP-9) which are heightened in HNC. Bioinformatic analysis revealed that BCL2low, IL6low and MMP9low HNC biospecimens are enriched with epithelial cell differentiation gene set, and CASP8high cohort is enriched with extrinsic apoptosis. Altogether, this study emphasizes the therapeutic potential of targeting the apoptotic and inflammatory machineries in HNC using EMD37.
Collapse
Affiliation(s)
- Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
2
|
Reina BD, Malheiros SS, Vieira SM, Ferreira de Andrade P, Dovigo LN. Unlocking the therapeutic potential of Pelargonium sidoides natural extract: A scoping review. Heliyon 2024; 10:e40554. [PMID: 39654721 PMCID: PMC11625261 DOI: 10.1016/j.heliyon.2024.e40554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Pelargonium sidoides DC. (Geraniaceae) is a widely recognized medicinal plant whose natural extract exhibits therapeutic effects through a multi-target approach. Existing literature encompasses investigations of antimicrobial and cellular effects, including clinical trials. A comprehensive review is required to summary the substantial number of published investigations and to grasp the potentialities of this extract. The aim of this scoping review was to provide an overview of the antimicrobial, antiadhesive, immunomodulatory, and respiratory effects of the P. sidoides extract, along with a discussion of its mechanism of action, clinical safety, potential repurposing uses, and areas requiring further investigation. A systematic search of Medline (PubMED) and Scopus databases was conducted using the terms: EPs7630, Pelargonium, Pelargonium sidoides. The search process was finished on 5th, June 2024. Two researchers screened titles and abstracts according to the eligibility criteria, which included in vitro, in vivo, randomized, and non-randomized clinical trials. Out of 4367 publications identified, 134 studies were included in this review. A structured form was applied for data extraction. PRISMA-ScR was used to guide reporting of this review. Most of the studies were conducted in vitro, followed by human studies and animal models. The findings demonstrated a strong and broad-spectrum antimicrobial and antiadhesive effect against various bacterial, fungi, and virus species. Additionally, a strong immunomodulatory effect was observed, including the induction of pro-inflammatory cytokines during infection, and modulation of other immune response components. The effects on the respiratory system have been extensively examined, showing remarkable clinical efficacy against both bacterial and viral infections with no significant cytotoxicity or adverse effects. Furthermore, recent research showed an anti-COVID effect by direct antiviral and immunomodulation mechanisms. Nonetheless, the establishment of a concentration protocol to further studies is still challenging due to variations in extract origin, composition and extraction methods. In this sense, the use of a commercial extract such as EPs® 7630 is of great value to facilitate the standardization of the tested protocols. The noteworthy anti-infective potential of P. sidoides extract lies in its multifaceted mechanism of action, which encompasses direct microbicidal effects and modulation of the immune response. These unique properties establish P. sidoides extract as a promising alternative in the war against a wide range of infectious diseases.
Collapse
Affiliation(s)
- Bárbara Donadon Reina
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), R. Humaitá, 1680, Araraquara, SP, 14801-385, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901 - Areião, Piracicaba, SP, 13414-903, Brazil
| | - Sâmmea Martins Vieira
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), R. Humaitá, 1680, Araraquara, SP, 14801-385, Brazil
| | - Paula Ferreira de Andrade
- Department of Dentistry, Central Institute, Clinical Hospital of Medical School of the University of São Paulo (HCFMUSP), R. Dr. Ovídio Pires de Campos, 225, Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), R. Humaitá, 1680, Araraquara, SP, 14801-385, Brazil
| |
Collapse
|
3
|
Cinatl J, Wass MN, Michaelis M. Multiple mechanisms enable broad-spectrum activity of the Pelargonium sidoides root extract EPs 7630 against acute respiratory tract infections. Front Pharmacol 2024; 15:1455870. [PMID: 39469622 PMCID: PMC11513585 DOI: 10.3389/fphar.2024.1455870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
There is clinical evidence showing that the Pelargonium sidoides root extract EPs 7630 is a safe and effective treatment for a range of acute infectious respiratory illnesses. Moreover, EPs 7630 has been shown to reduce the use of antibiotics, which is important in the context of rising antibiotic resistance levels. A wide range of mechanisms appears to contribute to the beneficial effects of EPs 7630, e.g. antibacterial, antiviral, immunomodulatory, and epithelial barrier effects. This broad spectrum of pharmacological activities seems to enable the clinical activity of EPs 7630 against multiple respiratory infections. In particular, the combination of antiviral and immunomodulatory effects may enable EPs 7630 to tackle acute viral respiratory infections both in early stages of the disease process, which are driven by virus replication, as well as in later stages, which are caused by an overshooting immune response. Hence, EPs 7630 is a prime example of a plant extract with evidence-based clinical efficacy, including a solid understanding of the underlying mechanisms of action. The example of EPs 7630 demonstrates that plant extracts have a potential role as evidence-based clinical treatments and that they deserve pre-clinical and clinical testing and investigation in the same way as any other drug class.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Interdisciplinary Laboratory for Tumour and Virus Research, Dr Petra Joh Research Institute, Frankfurt am Main, Germany
| | - Mark N. Wass
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Martin Michaelis
- Interdisciplinary Laboratory for Tumour and Virus Research, Dr Petra Joh Research Institute, Frankfurt am Main, Germany
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
4
|
Liu Y, Zhang N, Wen Y, Wen J. Head and neck cancer: pathogenesis and targeted therapy. MedComm (Beijing) 2024; 5:e702. [PMID: 39170944 PMCID: PMC11338281 DOI: 10.1002/mco2.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Head and neck cancer (HNC) is a highly aggressive type of tumor characterized by delayed diagnosis, recurrence, metastasis, relapse, and drug resistance. The occurrence of HNC were associated with smoking, alcohol abuse (or both), human papillomavirus infection, and complex genetic and epigenetic predisposition. Currently, surgery and radiotherapy are the standard treatments for most patients with early-stage HNC. For recurrent or metastatic (R/M) HNC, the first-line treatment is platinum-based chemotherapy combined with the antiepidermal growth factor receptor drug cetuximab, when resurgery and radiation therapy are not an option. However, curing HNC remains challenging, especially in cases with metastasis. In this review, we summarize the pathogenesis of HNC, including genetic and epigenetic changes, abnormal signaling pathways, and immune regulation mechanisms, along with all potential therapeutic strategies such as molecular targeted therapy, immunotherapy, gene therapy, epigenetic modifications, and combination therapies. Recent preclinical and clinical studies that may offer therapeutic strategies for future research on HNC are also discussed. Additionally, new targets and treatment methods, including antibody-drug conjugates, photodynamic therapy, radionuclide therapy, and mRNA vaccines, have shown promising results in clinical trials, offering new prospects for the treatment of HNC.
Collapse
Affiliation(s)
- Yan Liu
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
- National Facility for Translational Medicine (Sichuan)West China Hospital of Sichuan UniversityChengduChina
| | - Nannan Zhang
- National Center for Birth Defect MonitoringKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second University HospitalSichuan UniversityChengduChina
| | - Yi Wen
- State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduChina
| | - Jiaolin Wen
- Frontiers Medical CenterTianfu Jincheng LaboratoryChengduChina
| |
Collapse
|
5
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
6
|
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222011027. [PMID: 34681685 PMCID: PMC8540903 DOI: 10.3390/ijms222011027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.
Collapse
|
7
|
Kötting C, Hofmann L, Lotfi R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki MN. Immune-Stimulatory Effects of Curcumin on the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061335. [PMID: 33809574 PMCID: PMC8001767 DOI: 10.3390/cancers13061335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma has been shown to downregulate the host’s antitumor immune response as well as inherent anticancer immunity, inter alia, via increased activation of nuclear factor kappa of activated B-cells (NF-κB). The aim of this study is to examine curcumin’s effects on certain pro- and antitumoral chemokines via NF-κB, as well as the combined effects of curcumin and toll-like receptor 3 agonist Poly I:C on NF-κB and regulatory T-cell attraction. Furthermore, we compare curcumin with established NF-κB inhibitors caffeic acid phenethyl ester and BAY 11-7082. We demonstrate that curcumin has immune-modulating effects, with potent inhibition of the regulatory T-cell-attracting effects of Poly I:C. Therefore, curcumin presents an adjuvant that not only improves the effects of established therapies but also holds the potential to reduce negative side effects in tumor entities with increased NF-κB activation. Abstract Curcumin is known to have immune-modulatory and antitumor effects by interacting with more than 30 different proteins. An important feature of curcumin is the inhibition of nuclear factor kappa of activated B-cells (NF-κB). Here, we evaluate the potential of curcumin to reverse the epithelial to mesenchymal transition (EMT) of head and neck squamous cell carcinoma (HNSCC) cells as a part of tumor escape mechanisms. We examined the impact of curcumin on the expression of different pro- and antitumoral chemokines in ex vivo HNSCC tumor tissue and primary macrophage cultures. Further, we evaluated the combinatorial effect of curcumin and toll-like receptor 3 (TLR3) agonist Poly I:C (PIC) on NF-κB inhibition and regulatory T-cell (Treg) attraction. Mesenchymal markers were significantly reduced in cancer specimens after incubation with curcumin, with simultaneous reduction of key transcription factors of EMT, Snail, and Twist. Furthermore, a decrease of the Treg-attracting chemokine CCL22 was observed. Additionally, curcumin-related inhibition of NF-κB nuclear translocation was evident. The combination of PIC with curcumin resulted in further NF-κB inhibition, whereas PIC alone contrarily resulted in NF-κB activation. Furthermore, curcumin was more effective in inhibiting PIC-dependent NF-κB activation and Treg attraction compared to known NF-κB inhibitors BAY 11-7082 or caffeic acid phenethyl ester (CAPE). The presented results show, for the first time, the immune-modulating effects of curcumin in HNSCC, with potent inhibition of the Treg-attracting effects of PIC. Hence, curcumin presents a promising drug in cancer therapy as a supplement to already established treatments.
Collapse
Affiliation(s)
- Charlotte Kötting
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, 89081 Ulm, Germany;
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany
| | - Daphne Engelhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, 89070 Ulm, Germany; (C.K.); (L.H.); (D.E.); (S.L.); (P.J.S.); (T.K.H.); (C.B.)
- Correspondence: ; Tel.: +49-731-500-59521
| |
Collapse
|
8
|
Uz U, Eskiizmir G. Association Between Interleukin-6 and Head and Neck Squamous Cell Carcinoma: A Systematic Review. Clin Exp Otorhinolaryngol 2021; 14:50-60. [PMID: 33587847 PMCID: PMC7904429 DOI: 10.21053/ceo.2019.00906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine which plays an important role in several regulatory mechanisms of cancer. Moreover, experimental and clinical studies have reported that IL-6 targeted therapies might provide significant benefits for cancer treatment. The purpose of this systematic review is to evaluate IL-6 activity in patients with head and neck squamous cell carcinoma (HNSCC). A systematic review of the association between serum, saliva and tumor IL-6 and HNSCC was developed on PubMed/Medline in the publication range from January 1995 to January 2019. Our literature analysis demonstrated that overexpression and elevated serum and/or saliva IL-6 concentrations in patients with HNSCC are related to poor survival and oncological outcomes. Although there is a correlation between IL-6 concentrations and tumorigenicity, it is noteworthy that IL-6 targeted therapies are generally performed in vitro and in experimental studies. Therefore, prospective, randomized clinical trials are required that focus on IL-6 targeted therapies for the treatment of HNSCC.
Collapse
Affiliation(s)
- Uzdan Uz
- Department of Otolaryngology-Head and Neck Surgery, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Görkem Eskiizmir
- Department of Otolaryngology-Head and Neck Surgery, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Ding J, Xu K, Zhang J, Lin B, Wang Y, Yin S, Xie H, Zhou L, Zheng S. Overexpression of CXCL2 inhibits cell proliferation and promotes apoptosis in hepatocellular carcinoma. BMB Rep 2019. [PMID: 30293547 PMCID: PMC6330937 DOI: 10.5483/bmbrep.2018.51.12.140] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C-X-C motif chemokine ligand 2 (CXCL2) is a small secreted protein that exhibits a structure similar to the proangiogenic subgroup of the CXC chemokine family. Recently, accumulating evidence suggests that chemokines play a pivotal role in cancer progression and carcinogenesis. We examined the expression levels of 7 types of ELR+ CXCLs messenger RNA (mRNA) in 264 clinical samples. We found that CXCL2 expression was stably down-regulated in 94% of hepatocellular carcinoma (HCC) specimens compared with paired adjacent normal liver tissues and some HCC cell lines. Moreover, CXCL2 overexpression profoundly attenuated HCC cell proliferation and growth and induced apoptosis in vitro. In animal studies, we found that overexpressing CXCL2 by lentivirus also apparently inhibited the size and weight of subcutaneous tumours in nude mice. Furthermore, we demonstrated that CXCL2 induced HCC cell apoptosis via both nuclear and mitochondrial apoptosis pathways. Our results indicate that CXCL2 negatively regulates the cell cycle in HCC cells via the ERK1/2 signalling pathway. These results provide new insights into HCC and may ultimately lead to the discovery of innovative therapeutic approaches of HCC. [BMB Reports 2018; 51(12): 630-635].
Collapse
Affiliation(s)
- Jun Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Kangdi Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Jie Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Department of Hepatobiliary Surgical, First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R.China
| | - Bingyi Lin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis treatment of infectious diseases, Hangzhou, Zhejiang 310003, P.R.China
| | - Yubo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang 310003, P.R.China
| | - Shengyong Yin
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003, P.R.China
| | - Lin Zhou
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003; Collaborative Innovation Center for Diagnosis treatment of infectious diseases, Hangzhou, Zhejiang 310003, P.R.China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery First Affiliated Hospital School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Chinese Academy of Medical Sciences; Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang 310003; Collaborative Innovation Center for Diagnosis treatment of infectious diseases, Hangzhou, Zhejiang 310003, P.R.China
| |
Collapse
|
10
|
Bao CX, Zhang DX, Wang NN, Zhu XK, Zhao Q, Sun XL. MicroRNA-335-5p suppresses lower extremity deep venous thrombosis by targeted inhibition of PAI-1 via the TLR4 signalingpathway. J Cell Biochem 2018; 119:4692-4710. [PMID: 29278662 DOI: 10.1002/jcb.26647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022]
Abstract
This study aims to investigate the effects of microRNA-335-5p (miR-335-5p) on lower-extremity deep vein thrombosis (LEDVT) by targeting PAI-1 through the TLR4 signaling pathway in rat models. siRNA, mimic, and inhibitor were used for transfection. The miR-335-5p expression was detected by in situ hybridization. CCK-8 assay and flow cytometry were adopted to detect proliferation, cell cycle, and apoptosis, respectively. Scratch test and Matrigel-based tube formation assay were used to detect the effect of miR-335-5p on cell migration ability and tube formation ability. A miR-335-5p lentivirus plasmid was constructed and injected into LEDVT rats. The length and weight of thrombus were measured, changes of thrombus recanalization were observed by CD34 immunohistochemistry, and levels of PAI-1 and inflammatory factors in femoral vein blood were detected by ELISA. LEDVT rats showed a higher AOD value of PAI-1, higher expression of PAI-1, NF-κB, Rac1, IL-1β, and TLR4 and a lower miR-335-5p expression. PAI-1 and miR-335-5p were negatively correlated. Compared to the blank and siRNA-NC groups, the miR-335-5p mimic and siRNA-PAI-1 groups showed declined expression of PAI-1, TLR4, NF-κB, Rac1, and IL-1β, increased proliferation and tube formation abilities, less cells in G0/G1 phase, and decreased apoptosis, decreased length and weight of thrombus, organized thrombus, increased new blood vessels, and decreased levels of PAI-1, IL-1, IL-6, and Tnf-a. miR-335-5p may suppress the occurrence and development of LEDVT in rats by repressing the activation of the TLR4 signaling pathway by targeted inhibition of PAI-1.
Collapse
Affiliation(s)
- Cui-Xia Bao
- Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P. R. China
| | - Dong-Xia Zhang
- Department of Cardiovascular Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P. R. China
| | - Na-Na Wang
- Clinical Laboratory, Yantai Yeda Hospital, Yantai, P. R. China
| | - Xiang-Kui Zhu
- Department of Radiology, Yantai Stomatological Hospital, Yantai, P. R. China
| | - Qi Zhao
- Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, P. R. China
| | - Xiao-Lei Sun
- Department of Cardiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, P. R. China
| |
Collapse
|
11
|
Yang J, Liu D, Khatri KS, Wang J, Zhang G, Meng C, Guan J. Prognostic value of toll-like receptor 4 and nuclear factor-κBp65 in oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:753-764.e1. [DOI: 10.1016/j.oooo.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
12
|
Simko V, Takacova M, Debreova M, Laposova K, Ondriskova-Panisova E, Pastorekova S, Csaderova L, Pastorek J. Dexamethasone downregulates expression of carbonic anhydrase IX via HIF-1α and NF-κB-dependent mechanisms. Int J Oncol 2016; 49:1277-88. [PMID: 27431580 PMCID: PMC5021256 DOI: 10.3892/ijo.2016.3621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
Dexamethasone is a synthetic glucocorticoid frequently used to suppress side-effects of anticancer chemotherapy. In the present study, we showed that dexamethasone treatment leads to concentration-dependent downregulation of cancer-associated marker, carbonic anhydrase IX (CA IX), at the level of promoter activity, mRNA and protein expression in 2D and 3D cancer cell models. The effect of dexamethasone on CA IX expression under hypoxic conditions is predominantly mediated by impaired transcriptional activity and decreased protein level of the main hypoxic transcription factor HIF-1α. In addition, CA9 downregulation can be caused by protein-protein interactions between activated glucocorticoid receptors, major effectors of glucocorticoid action, and transcription factors that trigger CA9 transcription (e.g. AP-1). Moreover, we identified a potential NF-κB binding site in the CA9 promoter and propose the involvement of NF-κB in the dexamethasone-mediated inhibition of CA9 transcription. As high level of CA IX is often linked to aggressive tumor behavior, poor prognosis and chemo- and radiotherapy resistance, uncovering its reduction after dexa-methasone treatment and implication of additional regulatory mechanisms can be relevant for the CA IX-related clinical applications.
Collapse
Affiliation(s)
- Veronika Simko
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Martina Takacova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Michaela Debreova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Katarina Laposova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Elena Ondriskova-Panisova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Lucia Csaderova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Rich AM, Hussaini HM, Parachuru VPB, Seymour GJ. Toll-like receptors and cancer, particularly oral squamous cell carcinoma. Front Immunol 2014; 5:464. [PMID: 25309546 PMCID: PMC4174116 DOI: 10.3389/fimmu.2014.00464] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/10/2014] [Indexed: 01/07/2023] Open
Abstract
It is becoming increasingly apparent that the tumor microenvironment plays an important role in the progression of cancer. The microenvironment may promote tumor cell survival and proliferation or, alternatively may induce tumor cell apoptosis. Toll-like receptors (TLRs) are transmembrane proteins, expressed on immune cells and epithelial cells, that recognize exogenous and endogenous macromolecules. Once activated, they initiate signaling pathways leading to the release of cytokines and chemokines, which recruit immune cells inducing further cytokine production, the production of angiogenic mediators and growth factors, all of which may influence tumor progression. This paper examines the actions of TLRs in carcinogenesis with particular emphasis on their role in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Alison Mary Rich
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago , Dunedin , New Zealand
| | - Haizal Mohd Hussaini
- Faculty of Dentistry, Department of Oral Pathology and Oral Medicine, National University of Malaysia , Kuala Lumpur , Malaysia
| | - Venkata P B Parachuru
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago , Dunedin , New Zealand
| | - Gregory J Seymour
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago , Dunedin , New Zealand
| |
Collapse
|
14
|
Astragalus Polysaccharide Protects Astrocytes from Being Infected by HSV-1 through TLR3/NF-κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:285356. [PMID: 25057274 PMCID: PMC4098889 DOI: 10.1155/2014/285356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/10/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Astragalus polysaccharide (APS) is the most immunoreactive substance in Astragalus. APS can regulate the body's immunity and is widely used in many immune related diseases. However, till now, there is little information about its contribution to the protection of astrocytes infected by virus. Toll-like receptor 3 (TLR3) is a key component of the innate immune system and has the ability to detect virus infection and trigger host defence responses. This study was undertaken to elucidate the protective effect of APS on herpes simplex virus (HSV-1) infected astrocytes and the underlying mechanisms. The results showed that APS protected the astrocytes from HSV-1 induced proliferation inhibition along with increasing expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) markedly. Moreover, APS significantly promoted the expression of Toll-like receptor 3 (TLR3) and the activation of nuclear factor-κB (NF-κB) in astrocytes. In addition, while astrocytes were pretreated with TLR3 antibody before adding HSV-1 and APS, the expression of TLR3, TNF-α, and IL-6 and the activation of NF-κB decreased sharply. These results indicate that APS can protect astrocytes by promoting immunological function provoked by HSV-1 through TLR3/NF-κB pathway.
Collapse
|
15
|
Jiang C, Zhu W, Xu J, Wang B, Hou W, Zhang R, Zhong N, Ning Q, Han Y, Yu H, Sun J, Meng L, Lu S. MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res Ther 2014; 16:R9. [PMID: 24423102 PMCID: PMC3978458 DOI: 10.1186/ar4435] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/31/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Abnormal toll-like receptor (TLR)3 signaling plays an indispensable role in pathogenesis of both experimental and human rheumatoid arthritis, and microRNAs (miRNAs) might orchestrate this signaling pathway. This study was performed to determine the relationship between miR-26a and TLR3 in rat macrophages and to observe effects of miR-26a mimic on pristane induced arthritis (PIA) in rats. Methods Dual luciferase reporter assay was used to validate the direct interaction between miR-26a (a candidate miRNA to target tlr3 mRNA) and tlr3 3′UTR. MiR-26a regulation on TLR3 gene expression was determined using RT-qPCR and Western blotting after miR-26a mimics and inhibitors were transfected into rat macrophage line NR8383 cells. Poly I:C (TLR3 ligand) was used to trigger TLR3 activation, and mRNA expression of its downstream cytokines interferon (ifn)-β and tumor necrosis factor (tnf)-α was accordingly detected to determine the regulation of TLR3 signaling. Expressions of TLR3 and miR-26a were detected during rat bone marrow derived macrophage (BMDM) induction, in pristane stimulated NR8383 cells and spleens from methotrexate (MTX) treated PIA rats. A miR-26a mimic was administrated intraperitoneally to PIA rats, and arthritis severity was evaluated by macroscopic or microscopic observations. Results Direct target relationship between miR-26a and tlr3 mRNA in rats was confirmed. Modifications of miR-26a function by transfection of miR-26a mimics and inhibitors exhibited corresponding repression and augmentation of TLR3 and its signaling downstream cytokine expressions in NR8383 cells. The alteration of miR-26a expression was negatively related with TLR3 expression during BMDM induction, in pristane-primed NR8383 cells and PIA rat spleens. Moreover, both abnormal expressions were rescued in MTX treated arthritis rat spleens. The miR-26a mimic treatment displayed the depression of TLR3 expression and ameliorated the disease severity in the rats with pristane induced arthritis. Conclusions MiR-26a negatively regulates TLR3 signaling via targeting of TLR3 itself in rat macrophages, and this finding provides a novel insight into abnormal TLR3 overexpression during experimental arthritis.
Collapse
|
16
|
Vander Broek R, Snow GE, Chen Z, Van Waes C. Chemoprevention of head and neck squamous cell carcinoma through inhibition of NF-κB signaling. Oral Oncol 2013; 50:930-41. [PMID: 24177052 DOI: 10.1016/j.oraloncology.2013.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 10/04/2013] [Indexed: 01/27/2023]
Abstract
Nuclear factor-kappa B (NF-κB) transcription factors regulate cellular processes such as inflammation and cell survival. The NF-κB pathway is often activated with development and progression of head and neck squamous cell carcinoma (HNSCC). As such, NF-κB represents an attractive target for chemoprevention. HNSCC involves progression of lesions from premalignant to malignant, providing a window of opportunity for intervention with chemopreventive agents. Appropriate chemopreventive agents should be inexpensive, nontoxic, and target important pathways involved in the development of HNSCC. Several such agents that inhibit the NF-κB pathway have been investigated in HNSCC. Retinoids have been studied most extensively but have shown limited potential in human trials. Epidermal growth factor receptor inhibitors and PI3K-mTOR inhibitors may benefit a subset of patients. Other agents such as green tea extract and curcumin are appealing because they are generally regarded as safe. In contrast, there is evidence that Vitamin E supplementation may actually increase mortality of cancer patients. Repurposed drugs such as cyclooxygenase (COX) inhibitors and antidiabetic drugs are an emerging area of interest. Future research to develop agents with lower toxicity and higher specificity for the NF-κB pathway, and to target these therapies to individual patient genetic signatures should help to increase the utility of chemoprevention in HSNCC.
Collapse
Affiliation(s)
- Robert Vander Broek
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Grace E Snow
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States; Medical Research Scholars Program, NIH, Bethesda, Maryland, United States
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, United States.
| |
Collapse
|
17
|
Ren Z, Chen X, Cui G, Yin S, Chen L, Jiang J, Hu Z, Xie H, Zheng S, Zhou L. Nanosecond pulsed electric field inhibits cancer growth followed by alteration in expressions of NF-κB and Wnt/β-catenin signaling molecules. PLoS One 2013; 8:e74322. [PMID: 24069295 PMCID: PMC3775773 DOI: 10.1371/journal.pone.0074322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022] Open
Abstract
Cancer remains a leading cause of death worldwide and total number of cases globally is increasing. Novel treatment strategies are therefore desperately required for radical treatment of cancers and long survival of patients. A new technology using high pulsed electric field has emerged from military application into biology and medicine by applying nsPEF as a means to inhibit cancer. However, molecular mechanisms of nsPEF on tumors or cancers are still unclear. In this paper, we found that nsPEF had extensive biological effects in cancers, and clarified its possible molecular mechanisms in vitro and in vivo. It could not only induce cell apoptosis via dependent-mitochondria intrinsic apoptosis pathway that was triggered by imbalance of anti- or pro-apoptosis Bcl-2 family proteins, but also inhibit cell proliferation through repressing NF-κB signaling pathway to reduce expressions of cyclin proteins. Moreover, nsPEF could also inactivate metastasis and invasion in cancer cells by suppressing Wnt/β-Catenin signaling pathway to down-regulating expressions of VEGF and MMPs family proteins. More importantly, nsPEF could function safely and effectively as an anti-cancer therapy through inducing tumor cell apoptosis, destroying tumor microenvironment, and depressing angiogenesis in tumor tissue in vivo. These findings may provide a creative and effective therapeutic strategy for cancers.
Collapse
Affiliation(s)
- Zhigang Ren
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xinhua Chen
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shengyong Yin
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Luyan Chen
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jianwen Jiang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhenhua Hu
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shusen Zheng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
18
|
Miyazaki H, Takabe K, Yeudall WA. Chemokines, chemokine receptors and the gastrointestinal system. World J Gastroenterol 2013; 19:2847-2863. [PMID: 23704819 PMCID: PMC3660811 DOI: 10.3748/wjg.v19.i19.2847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/13/2012] [Accepted: 04/27/2013] [Indexed: 02/06/2023] Open
Abstract
The biological properties of tumor cells are known to be regulated by a multitude of cytokines and growth factors, which include epidermal growth factor receptor agonists and members of the transforming growth factor β family. Furthermore, the recent explosion of research in the field of chemokine function as mediators of tumor progression has led to the possibility that these small, immunomodulatory proteins also play key roles in carcinogenesis and may, therefore, be potential targets for novel therapeutic approaches. In this review, we will summarize recently reported findings in chemokine biology with a focus on the gastrointestinal tract.
Collapse
|