1
|
A Genome-Wide Association Study Identified Novel Genetic Susceptibility Loci for Oral Cancer in Taiwan. Int J Mol Sci 2023; 24:ijms24032789. [PMID: 36769103 PMCID: PMC9917812 DOI: 10.3390/ijms24032789] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Taiwan has the highest incidence rate of oral cancer in the world. Although oral cancer is mostly an environmentally induced cancer, genetic factors also play an important role in its etiology. Genome-wide association studies (GWAS) have identified nine susceptibility regions for oral cancers in populations of European descent. In this study, we performed the first GWAS of oral cancer in Taiwan with 1529 cases and 44,572 controls. We confirmed two previously reported loci on the 6p21.33 (HLA-B) and 6p21.32 (HLA-DQ gene cluster) loci, highlighting the importance of the human leukocyte antigen and, hence, the immunologic mechanisms in oral carcinogenesis. The TERT-CLMPT1L locus on 5p15.33, the 4q23 ADH1B locus, and the LAMC3 locus on 9q34.12 were also consistent in the Taiwanese. We found two new independent loci on 6p21.32, rs401775 in SKIV2L gene and rs9267798 in TNXB gene. We also found two suggestive novel Taiwanese-specific loci near the TPRS1 gene on 8q23.3 and in the TMED3 gene on 15q25.1. This study identified both common and unique oral cancer susceptibility loci in the Taiwanese as compared to populations of European descent and shed significant light on the etiology of oral cancer in Taiwan.
Collapse
|
2
|
Rebl A, Rebl H, Verleih M, Haupt S, Köbis JM, Goldammer T, Seyfert HM. At Least Two Genes Encode Many Variants of Irak3 in Rainbow Trout, but Neither the Full-Length Factor Nor Its Variants Interfere Directly With the TLR-Mediated Stimulation of Inflammation. Front Immunol 2019; 10:2246. [PMID: 31616422 PMCID: PMC6763605 DOI: 10.3389/fimmu.2019.02246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
The interleukin-1-receptor-associated kinase 3 (IRAK3) is known in mammals as a negative feedback regulator of NF-κB-mediated innate-immune mechanisms. Our RNA-seq experiments revealed a prototypic 1920-nt sequence encoding irak3 from rainbow trout (Oncorhynchus mykiss), as well as 20 variants that vary in length and nucleotide composition. Based on the DNA-sequence information from two closely related irak3 genes from rainbow trout and an irak3-sequence fragment from Atlantic salmon retrieved from public databases, we elucidated the underlying genetic causes for this striking irak3 diversity. Infecting rainbow trout with a lethal dose of Aeromonas salmonicida enhanced the expression of all variants in the liver, head kidney, and peripheral blood leucocytes. We analyzed the functional impact of the full-length factor and selected structural variants by overexpressing them in mammalian HEK-293 cells. The full-length factor enhanced the basal activity of NF-κB, but did not dampen the TLR2-signaling-induced levels of NF-κB activation. Increasing the basal NF-κB-activity through Irak3 apparently does not involve its C-terminal domain. However, more severely truncated factors had only a minor impact on the activity of NF-κB. The TLR2-mediated stimulation did not alter the spatial distribution of Irak3 inside the cells. In salmonid CHSE-214 cells, we observed that the Irak3-splice variant that prominently expresses the C-terminal domain significantly quenched the stimulation-dependent production of interleukin-1β and interleukin-8, but not the production of other immune regulators. We conclude that the different gene and splice variants of Irak3 from trout play distinct roles in the activation of immune-regulatory mechanisms.
Collapse
Affiliation(s)
- Alexander Rebl
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, Rostock, Germany
| | - Marieke Verleih
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Stephanie Haupt
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Judith M Köbis
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Hans-Martin Seyfert
- Fish Genetics Unit, Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| |
Collapse
|
3
|
Damani Shah H, Saranath D, Pradhan S. Single nucleotide polymorphisms in transcription factor genes associated with susceptibility to oral cancer. J Cell Biochem 2019; 121:1050-1060. [PMID: 31452252 DOI: 10.1002/jcb.29341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
Oral cancer is a major public health concern in the Asian countries predominated by India which accounts for 33.81% of the annual global oral cancer burden. The well-established high-risk factors associated with oral cancer include tobacco, areca nut, alcohol consumption, and high-risk human papilloma virus types 16/18. Additionally, in the past two decades, the critical role of the genomic constitution of individuals in oral cancer susceptibility has emerged. Accumulating evidence indicates the association of several single nucleotide polymorphisms (SNPs) with oral cancer risk. Thus in the current study, we assessed the association of thirteen SNPs in seven transcription factor genes along with HBB (a control SNP) to identify high-risk genotypes associated with increased oral cancer risk in an Indian cohort of tobacco habitués. Fourteen SNPs were investigated in 500 patients with oral cancer and 500 clinically healthy long-term tobacco users as controls of Indian ethnicity. Allelic discrimination real-time polymerase chain reaction was the method of choice for genotyping the samples. Logistic regression analysis was performed and the association of SNPs with oral cancer risk was estimated using odds ratio (OR) and 95% confidence interval (CI). We observed five SNPs-rs2051526 (ETV6), rs6021247 (NFATC2), rs3757769 (SND1), rs7085532 (TCF7L2), and rs7778413 (SND1) indicating increased oral cancer risk with OR ranging from 1.61 to 34.60. Further, as a proof of concept, the coinheritance of high-risk genotypes in rs6021247 (NFATC2) GG (OR, 2.77; CI, 2.09-3.69) and rs7778413 (SND1) CC (OR, 34.60; CI, 17.32-69.13) reflected further increase in the risk with OR-49.94 (CI, 16.25-153.48). The present study indicates the association of transcription factor SNPs with increased oral cancer risk constituting "predictive biomarkers" in oral cancers.
Collapse
Affiliation(s)
- Hetal Damani Shah
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Sultan Pradhan
- Department of Surgical Oncology, Prince Aly Khan Hospital, Mumbai, India
| |
Collapse
|
4
|
Chung CM, Hung CC, Lee CH, Lee CP, Lee KW, Chen MK, Yeh KT, Ko YC. Variants in FAT1 and COL9A1 genes in male population with or without substance use to assess the risk factors for oral malignancy. PLoS One 2019; 14:e0210901. [PMID: 30657779 PMCID: PMC6338366 DOI: 10.1371/journal.pone.0210901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
A number of genetic variants were suggested to be associated with oral malignancy, few variants can be replicated. The aim of this study was to identify significant variants that enhanced personal risk prediction for oral malignancy. A total of 360 patients diagnosed with oral squamous cell carcinoma, 486 controls and 17 newly diagnosed patients with OPMD including leukoplakia or oral submucous fibrosis were recruited. Fifteen tagSNPs which were derived from somatic mutations were genotyped and examined in associations with the occurrence of oral malignancy. Environmental variables along with the SNPs data were used to developed risk predictive models for oral malignancy occurrence. The stepwise model analysis was conducted to fit the best model in an economically efficient way. Two tagSNPs, rs28647489 in FAT1 gene and rs550675 in COL9A1 gene, were significantly associated with the risk of oral malignancy. The sensitivity and specificity were 85.7% and 85.5%, respectively (area under the receiver operating characteristic curve (AUC) was 0.91) for predicting oral squamous cell carcinoma occurrence with the combined genetic variants, betel-quid, alcohol and age. The AUC for OPMD was only 0.69. The predictive probability of squamous cell carcinoma occurrence for genetic risk score without substance use increased from 10% up to 43%; with substance use increased from 73% up to 92%. Genetic variants with or without substance use may enhance risk prediction for oral malignancy occurrence in male population. The prediction model may be useful as a clinical index for oral malignancy occurrence and its risk assessments.
Collapse
Affiliation(s)
- Chia-Min Chung
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chung-Chieh Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ka-Wo Lee
- Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mu-Kuan Chen
- Oral Cancer Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail: ,
| |
Collapse
|
5
|
Kundu S, Ramshankar V, Verma AK, Thangaraj SV, Krishnamurthy A, Kumar R, Kannan R, Ghosh SK. Association of DFNA5, SYK, and NELL1 variants along with HPV infection in oral cancer among the prolonged tobacco-chewers. Tumour Biol 2018; 40:1010428318793023. [PMID: 30091681 DOI: 10.1177/1010428318793023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Southeast Asia, especially India, is well known for the highest use of smokeless tobacco. These products are known to induce oral squamous cell carcinoma. However, not all long-term tobacco-chewers develop oral squamous cell carcinoma. In addition, germline variants play a crucial role in susceptibility, prognosis, development, and progression of the disease. These prompted us to study the genetic susceptibility to oral squamous cell carcinoma among the long-term tobacco-chewers. Here, we presented a retrospective study on prolonged tobacco-chewers of Northeast India to identify the potential protective or risk-associated germline variants in tobacco-related oral squamous cell carcinoma along with HPV infection. Targeted re-sequencing (n = 60) of 170 genetic regions from 75 genes was carried out in Ion-PGM™ and validation (n = 116) of the observed variants was done using Sequenom iPLEX MassARRAY™ platform followed by polymerase chain reaction-based HPV genotyping and p16-immunohistochemistry study. Subsequently, estimation of population structure, different statistical and in silico approaches were undertaken. We identified one nonsense-mediated mRNA decay transcript variant in the DFNA5 region (rs2237306), associated with Benzo(a)pyrene, as a protective factor (odds ratio = 0.33; p = 0.009) and four harmful (odds ratio > 2.5; p < 0.05) intronic variants, rs182361, rs290974, and rs169724 in SYK and rs1670661 in NELL1 region, involved in genetic susceptibility to tobacco- and HPV-mediated oral oncogenesis. Among the oral squamous cell carcinoma patients, 12.6% (11/87) were HPV positive, out of which 45.5% (5/11) were HPV16-infected, 27.3% (3/11) were HPV18-infected, and 27.3% (3/11) had an infection of both subtypes. Multifactor dimensionality reduction analysis showed that the interactions among HPV and NELL1 variant rs1670661 with age and gender augmented the risk of both non-tobacco- and tobacco-related oral squamous cell carcinoma, respectively. These suggest that HPV infection may be one of the important risk factors for oral squamous cell carcinoma in this population. Finally, we newly report a DFNA5 variant probably conferring protection via nonsense-mediated mRNA decay pathway against tobacco-related oral squamous cell carcinoma. Thus, the analytical approach used here can be useful in predicting the population-specific significant variants associated with oral squamous cell carcinoma in any heterogeneous population.
Collapse
Affiliation(s)
- Sharbadeb Kundu
- 1 Department of Biotechnology, Assam University, Silchar, India
| | | | | | | | | | - Rajeev Kumar
- 5 Department of Molecular Oncology, Cachar Cancer Hospital & Research Centre, Silchar, India
| | - Ravi Kannan
- 5 Department of Molecular Oncology, Cachar Cancer Hospital & Research Centre, Silchar, India
| | - Sankar Kumar Ghosh
- 1 Department of Biotechnology, Assam University, Silchar, India.,6 University of Kalyani, Nadia, India
| |
Collapse
|
6
|
Rajagopalan P, Patel K, Jain AP, Nanjappa V, Datta KK, Subbannayya T, Mangalaparthi KK, Kumari A, Manoharan M, Coral K, Murugan S, Nair B, Prasad TSK, Mathur PP, Gupta R, Gupta R, Khanna-Gupta A, Califano J, Sidransky D, Gowda H, Chatterjee A. Molecular alterations associated with chronic exposure to cigarette smoke and chewing tobacco in normal oral keratinocytes. Cancer Biol Ther 2018; 19:773-785. [PMID: 29723088 DOI: 10.1080/15384047.2018.1470724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tobacco usage is a known risk factor associated with development of oral cancer. It is mainly consumed in two different forms (smoking and chewing) that vary in their composition and methods of intake. Despite being the leading cause of oral cancer, molecular alterations induced by tobacco are poorly understood. We therefore sought to investigate the adverse effects of cigarette smoke/chewing tobacco exposure in oral keratinocytes (OKF6/TERT1). OKF6/TERT1 cells acquired oncogenic phenotype after treating with cigarette smoke/chewing tobacco for a period of 8 months. We employed whole exome sequencing (WES) and quantitative proteomics to investigate the molecular alterations in oral keratinocytes chronically exposed to smoke/ chewing tobacco. Exome sequencing revealed distinct mutational spectrum and copy number alterations in smoke/ chewing tobacco treated cells. We also observed differences in proteomic alterations. Proteins downstream of MAPK1 and EGFR were dysregulated in smoke and chewing tobacco exposed cells, respectively. This study can serve as a reference for fundamental damages on oral cells as a consequence of exposure to different forms of tobacco.
Collapse
Affiliation(s)
- Pavithra Rajagopalan
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,b School of Biotechnology , Kalinga Institute of Industrial Technology , Bhubaneswar , India
| | - Krishna Patel
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,c School of Biotechnology , Amrita Vishwa Vidyapeetham , Kollam , India
| | - Ankit P Jain
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,b School of Biotechnology , Kalinga Institute of Industrial Technology , Bhubaneswar , India
| | | | - Keshava K Datta
- a Institute of Bioinformatics, International Tech Park , Bangalor , India
| | | | - Kiran K Mangalaparthi
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,c School of Biotechnology , Amrita Vishwa Vidyapeetham , Kollam , India
| | | | | | | | | | - Bipin Nair
- c School of Biotechnology , Amrita Vishwa Vidyapeetham , Kollam , India
| | - T S Keshava Prasad
- a Institute of Bioinformatics, International Tech Park , Bangalor , India.,e NIMHANS-IOB Bioinformatics and Proteomics Laboratory , Neurobiology Research Centre, National Institute of Mental Health and Neurosciences , Bangalore , India.,f Center for Systems Biology and Molecular Medicine , Yenepoya , Mangalore , India
| | - Premendu P Mathur
- b School of Biotechnology , Kalinga Institute of Industrial Technology , Bhubaneswar , India.,g Dept. of Biochemistry & Molecular Biology , School of Life Sciences, Pondicherry University , Pondicherry , India
| | - Ravi Gupta
- d Medgenome Labs Pvt. Ltd. , Bangalore , India
| | - Rohit Gupta
- d Medgenome Labs Pvt. Ltd. , Bangalore , India
| | | | - Joseph Califano
- h Department of Surgery , UC San Diego, Moores Cancer Center , La Jolla , CA , USA
| | - David Sidransky
- i Department of Otolaryngology-Head and Neck Surgery , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Harsha Gowda
- a Institute of Bioinformatics, International Tech Park , Bangalor , India
| | - Aditi Chatterjee
- a Institute of Bioinformatics, International Tech Park , Bangalor , India
| |
Collapse
|
7
|
D'Souza W, Saranath D. OMICS, Oral Cancer Molecular Landscapes, and Clinical Practice. ACTA ACUST UNITED AC 2017; 21:689-703. [DOI: 10.1089/omi.2017.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
8
|
Sharma V, Nandan A, Sharma AK, Singh H, Bharadwaj M, Sinha DN, Mehrotra R. Signature of genetic associations in oral cancer. Tumour Biol 2017; 39:1010428317725923. [DOI: 10.1177/1010428317725923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Vishwas Sharma
- Department of Health Research, National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Amrita Nandan
- Society for Life Science and Human Health, Allahabad, India
| | - Amitesh Kumar Sharma
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Department of Bioinformatics, Indian Council of Medical Research, New Delhi, India
| | - Harpreet Singh
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Department of Bioinformatics, Indian Council of Medical Research, New Delhi, India
| | - Mausumi Bharadwaj
- Department of Health Research, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Division of Molecular Genetics & Biochemistry
| | - Dhirendra Narain Sinha
- WHO FCTC Global Knowledge Hub on Smokeless Tobacco, National Institute of Cancer Prevention and Research (NICPR), Noida, India
| | - Ravi Mehrotra
- Department of Health Research, National Institute of Cancer Prevention and Research (NICPR), Noida, India
- Data Management Laboratory, National Institute of Cancer Prevention and Research (NICPR), Noida, India
| |
Collapse
|
9
|
D'Souza W, Pradhan S, Saranath D. Multiple single nucleotide polymorphism analysis and association of specific genotypes in FHIT, SAMD4A, and ANKRD17 in Indian patients with oral cancer. Head Neck 2017; 39:1586-1595. [DOI: 10.1002/hed.24798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 12/22/2022] Open
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences; Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Vile Parle; Mumbai 400056 India
| | | | - Dhananjaya Saranath
- Department of Biological Sciences; Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Vile Parle; Mumbai 400056 India
| |
Collapse
|
10
|
Yete S, Pradhan S, Saranath D. Single nucleotide polymorphisms in an Indian cohort and association of CNTN4, MMP2 and SNTB1 variants with oral cancer. Cancer Genet 2017; 214-215:16-25. [PMID: 28595731 DOI: 10.1016/j.cancergen.2017.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/05/2017] [Accepted: 03/20/2017] [Indexed: 12/27/2022]
Abstract
Oral cancer is a high incidence cancer in India primarily due to the prevalent tobacco/areca nut chewing habits and hence a major health concern. India constitutes 26% of the global oral cancer burden. Besides the well-established risk factors, the genomic constitution of an individual plays a role in oral cancer. The aim of the current study was to analyse genomic variants represented as single nucleotide polymorphisms (SNPs), analyse their prevalence and investigate risk association of allelotypes/genotypes to oral cancers. Eleven SNPs in genes associated with biological functions were analysed in an Indian cohort (n = 1000) comprising 500 oral cancer patients and 500 long term tobacco habitués as controls, using Allelic discrimination Real-Time PCR assay with SYBR Green dye. Fisher's exact test and Odds Ratio were used for statistical analysis. Increased risk was observed for rs9849237 CC [P = 0.008; OR 1.412 (1.09-1.82)] and rs243865 CT [P = 0.004; OR 1.469 (1.13-1.90)] genotypes, whereas rs9849237 CT [P = 0.034; OR 0.755 (0.58-0.97)], rs243865 CC [P = 0.002; OR 0.669 (0.51-0.86)] and rs10090787 CC [P = 0.049; OR 0.774 (0.60-0.99)] genotypes indicated decreased risk to oral cancer. The other SNPs showed equidistribution in both groups. Our data indicated genotypes and alleles in specific SNPs rs9849237, rs243865 and rs10090787 with increased/decreased risk to oral cancer.
Collapse
Affiliation(s)
- Subuhi Yete
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (deemed-to-be) University, Vile Parle, Mumbai 400056, India
| | - Sultan Pradhan
- Prince Aly Khan Hospital, Mazagaon, Mumbai 400010, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (deemed-to-be) University, Vile Parle, Mumbai 400056, India.
| |
Collapse
|
11
|
Multani S, Saranath D. Genotypic distribution of single nucleotide polymorphisms in oral cancer: global scene. Tumour Biol 2016; 37:14501-14512. [PMID: 27651159 DOI: 10.1007/s13277-016-5322-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
Globocan 2012 reports the global oral cancer incidence of 300,373 new oral cancer cases annually, contributing to 2.1 % of the world cancer burden. The major well-established risk factors for oral cancer include tobacco, betel/areca nut, alcohol and high-risk oncogenic human papilloma virus (HPV) 16/18. However, only 5-10 % of individuals with high-risk lifestyle develop oral cancer. Thus, genomic variants in individuals represented as single nucleotide polymorphisms (SNPs) influence susceptibility to oral cancer. With a view to understanding the role of genomic variants in oral cancer, we reviewed SNPs in case-control studies with a minimum of 100 cases and 100 controls. PubMed and HuGE navigator search engines were used to obtain data published from 1990 to 2015, which identified 67 articles investigating the role of SNPs in oral cancer. Single publications reported 93 SNPs in 55 genes, with 34 SNPs associated with a risk of oral cancer. Meta-analysis of data in multiple studies defined nine SNPs associated with a risk of oral cancer. The genes were associated with critical functions deregulated in cancers, including cell proliferation, immune function, inflammation, transcription, DNA repair and xenobiotic metabolism.
Collapse
Affiliation(s)
- Shaleen Multani
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, 400056, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
12
|
Multani S, Pradhan S, Saranath D. Gene polymorphisms and oral cancer risk in tobacco habitués. Tumour Biol 2015; 37:6169-76. [PMID: 26614431 DOI: 10.1007/s13277-015-4448-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 12/31/2022] Open
Abstract
Oral cancer incidence of 77,003 poses a major health concern in India, with 5-10 % tobacco habitués developing oral cancer. The current study examined the role of specific genomic variants in oral cancer. We examined five genomic variants represented as single nucleotide polymorphisms (SNPs) in genes associated with cell proliferation and cellular invasion. The SNPs rs2124437 (RASGRP3), rs1335022 (GRIK2), rs4512367 (PREX2), rs4748011 (CCDC3), and rs1435218 (LNX1) were analyzed in 500 histopathologically confirmed oral cancers and 500 healthy controls with a minimum of 10 years of tobacco usage. Allelic discrimination real-time PCR SYBR Green assay was used. The genotypic and allelic frequencies between cases and controls were analyzed using SPSS software (version 19) and odds ratio (OR) using Hutchon.net, indicating increased risk to oral cancers. A significant association of the SNPs in oral cancer was observed in RASGRP3 AA (rs2124437) (p < 0.000, OR 1.34, 95 % confidence interval (CI) 1.01-1.76), GRIK2 TT (rs1335022) (p = 0.008, OR 1.58, 95 % CI 1.23-2.03), PREX2 CC (p = 0.008, OR 1.56, 95 % CI 1.15-2.1), and TT (p < 0.000, OR 2.77, 1.68-4.57) genotypes, whereas the heterozygous genotypes showed higher frequencies in controls, i.e., GRIK2 CT (rs1335022) (p = 0.029, OR 0.68, 95 % CI 0.53-0.87) and PREX2 CT (p = 0.004, OR 0.49, 95 % CI 0.37-0.64), indicating protection. Coinheritance of the SNPs was associated with further increase in the risk. Thus, the SNP genotypes in the three genes, present singly or as a coinherited panel constituted "Predictive Biomarkers" indicating increased risk of oral cancer in tobacco habitués.
Collapse
Affiliation(s)
- Shaleen Multani
- Department of Biological Sciences, Sunandan Divatia, School of Science, NMIMS (deemed-to-be) University, Vile Parle (West), Mumbai, Maharashtra, 400056, India
| | - Sultan Pradhan
- Prince Aly Khan Hospital, Nesbit Road, Mazagaon, Mumbai, Maharashtra, 400010, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia, School of Science, NMIMS (deemed-to-be) University, Vile Parle (West), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
13
|
D'Souza W, Saranath D. Clinical implications of epigenetic regulation in oral cancer. Oral Oncol 2015; 51:1061-8. [PMID: 26421863 DOI: 10.1016/j.oraloncology.2015.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023]
Abstract
Oral cancer is a high incidence cancer which is of major public health concern in India being the most common cancer in males and fifth most common cancer in females in India, contributing to 26% of the global oral cancer burden. The major risk factors of oral cancer are tobacco, alcohol and high risk Human Papilloma Virus type 16/18. However, only 3-12% of the high risk individuals with dysplasia develop oral cancer. Thus, individual genomic variants representing the genomic constitution and epigenetic alterations play a critical role in the development of oral cancer. Extensive epigenetic studies on the molecular lesions including oncogenes, tumor suppressor genes, genes associated with apoptosis, DNA damage repair have been reported. The current review highlights epigenetic regulation with a focus on molecular biomarkers and epidrug therapy in oral cancer. Epigenetic regulation by hypermethylation, histone modifications and specific microRNAs are often associated with early events and advanced stages in oral cancer, and thus indicate epidrug therapy for intervention. The presence of epigenetic marks in oral lesions, cancers and tumor associated mucosa emphasizes indications as biomarkers and epidrugs with therapeutic potential for better patient management.
Collapse
Affiliation(s)
- Wendy D'Souza
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai 400056, India
| | - Dhananjaya Saranath
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be) University, Mumbai 400056, India.
| |
Collapse
|
14
|
Whole genome expression profiling in chewing-tobacco-associated oral cancers: a pilot study. Med Oncol 2015; 32:60. [DOI: 10.1007/s12032-015-0483-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/22/2015] [Indexed: 01/14/2023]
|
15
|
Valenciano A, Henríquez-Hernández LA, Lloret M, Pinar B, Lara PC. New biological markers in the decision of treatment of head and neck cancer patients. Clin Transl Oncol 2014; 16:849-58. [PMID: 24981589 DOI: 10.1007/s12094-014-1193-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 06/07/2014] [Indexed: 12/22/2022]
Abstract
Head and neck squamous cell carcinoma is the sixth most common cancer type worldwide. Also the 5-year survival rate of less than 50 % seems to be lower than other cancer types. There are some reasons behind this high mortality rate; one of them is the lack of knowledge about the biology and genomic instability behind the carcinogenic processes. These biological features could condition the failure of frontline treatment, in which case rescue treatment should be used, representing an overtreatment for the patients. For years many biological factors have been tested as prognostic and predictive factors in relation to treatment with a modest success. To find appropriate tests which could be used in the context of the individualized treatment decision, we have reviewed new biological markers, not only in tumor tissue, but also in normal tissue from head and neck carcinoma patients.
Collapse
Affiliation(s)
- A Valenciano
- Instituto Canario de Investigación del Cáncer, San Cristóbal de la Laguna, Spain,
| | | | | | | | | |
Collapse
|
16
|
Clinical relevance of breast cancer-related genes as potential biomarkers for oral squamous cell carcinoma. BMC Cancer 2014; 14:324. [PMID: 24885002 PMCID: PMC4031971 DOI: 10.1186/1471-2407-14-324] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/29/2014] [Indexed: 02/07/2023] Open
Abstract
Background Squamous cell carcinoma of the oral cavity (OSCC) is a common cancer form with relatively low 5-year survival rates, due partially to late detection and lack of complementary molecular markers as targets for treatment. Molecular profiling of head and neck cancer has revealed biological similarities with basal-like breast and lung carcinoma. Recently, we showed that 16 genes were consistently altered in invasive breast tumors displaying varying degrees of aggressiveness. Methods To extend our findings from breast cancer to another cancer type with similar characteristics, we performed an integrative analysis of transcriptomic and proteomic data to evaluate the prognostic significance of the 16 putative breast cancer-related biomarkers in OSCC using independent microarray datasets and immunohistochemistry. Predictive models for disease-specific (DSS) and/or overall survival (OS) were calculated for each marker using Cox proportional hazards models. Results We found that CBX2, SCUBE2, and STK32B protein expression were associated with important clinicopathological features for OSCC (peritumoral inflammatory infiltration, metastatic spread to the cervical lymph nodes, and tumor size). Consequently, SCUBE2 and STK32B are involved in the hedgehog signaling pathway which plays a pivotal role in metastasis and angiogenesis in cancer. In addition, CNTNAP2 and S100A8 protein expression were correlated with DSS and OS, respectively. Conclusions Taken together, these candidates and the hedgehog signaling pathway may be putative targets for drug development and clinical management of OSCC patients.
Collapse
|
17
|
Genomic DNA copy number alterations from precursor oral lesions to oral squamous cell carcinoma. Oral Oncol 2014; 50:404-12. [PMID: 24613650 DOI: 10.1016/j.oraloncology.2014.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 12/16/2022]
Abstract
Oral cancer is a multifactorial disease in which both environmental and genetic factors contribute to the aetiopathogenesis. Oral cancer is the sixth most common cancer worldwide with a higher incidence among Melanesian and South Asian countries. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). The present study aimed to determine common genomic copy number alterations (CNAs) and their frequency by including 12 studies that have been conducted on OSCCs using array comparative genomic hybridization (aCGH). In addition, we reviewed the literature dealing with CNAs that drive oral precursor lesions to the invasive tumors. Results showed a sequential accumulation of genetic changes from oral precursor lesions to invasive tumors. With the disease progression, accumulation of genetic changes increases in terms of frequency, type and size of the abnormalities, even on different regions of the same chromosome. Gains in 3q (36.5%), 5p (23%), 7p (21%), 8q (47%), 11q (45%), 20q (31%) and losses in 3p (37%), 8p (18%), 9p (10%) and 18q (11%) were the most common observations among those studies. However, losses are less frequent than gains but it appears that they might be the primary clonal events in causing oral cancer.
Collapse
|
18
|
Liao G, Wang Y, Zhou YQ, Li TW, Zeng DQ, Zeng X, Li J, Dan HX, Chen QM. Host genetic susceptibility to oral cancer: evidence from meta-analyses and pooled analyses. Oral Dis 2013; 20:644-9. [PMID: 24102947 DOI: 10.1111/odi.12184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/16/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Affiliation(s)
- G Liao
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - Y Wang
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - Y-Q Zhou
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - T-W Li
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - D-Q Zeng
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - X Zeng
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - J Li
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - H-X Dan
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| | - Q-M Chen
- State Key Laboratory of Oral Diseases; West China School of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
19
|
Vincent-Chong VK, Anwar A, Karen-Ng LP, Cheong SC, Yang YH, Pradeep PJ, Rahman ZAA, Ismail SM, Zaini ZM, Prepageran N, Kallarakkal TG, Ramanathan A, Mohayadi NABM, Rosli NSBM, Mustafa WMW, Abraham MT, Tay KK, Zain RB. Genome wide analysis of chromosomal alterations in oral squamous cell carcinomas revealed over expression of MGAM and ADAM9. PLoS One 2013; 8:e54705. [PMID: 23405089 PMCID: PMC3566089 DOI: 10.1371/journal.pone.0054705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/14/2012] [Indexed: 12/26/2022] Open
Abstract
Despite the advances in diagnosis and treatment of oral squamous cell carcinoma (OSCC), mortality and morbidity rates have not improved over the past decade. A major drawback in diagnosis and treatment of OSCC is the lack of knowledge relating to how genetic instability in oral cancer genomes affects oral carcinogenesis. Hence, the key aim of this study was to identify copy number alterations (CNAs) that may be cancer associated in OSCC using high-resolution array comparative genomic hybridization (aCGH). To our knowledge this is the first study to use ultra-high density aCGH microarrays to profile a large number of OSCC genomes (n = 46). The most frequently amplified CNAs were located on chromosome 11q11(52%), 2p22.3(52%), 1q21.3-q22(54%), 6p21.32(59%), 20p13(61%), 7q34(52% and 72%),8p11.23-p11.22(80%), 8q11.1-q24.4(54%), 9q13-q34.3(54%), 11q23.3-q25(57%); 14q21.3-q31.1(54%); 14q31.3-q32.33(57%), 20p13-p12.3(54%) and 20q11.21-q13.33(52%). The most frequently deleted chromosome region was located on 3q26.1 (54%). In order to verify the CNAs from aCGH using quantitative polymerase chain reaction (qPCR), the three top most amplified regions and their associated genes, namely ADAM5P (8p11.23-p11.22), MGAM (7q34) and SIRPB1 (20p13.1), were selected in this study. The ADAM5P locus was found to be amplified in 39 samples and deleted in one; MGAM (24 amplifications and 3 deletions); and SIRPB1 (12 amplifications, others undetermined). On the basis of putative cancer-related annotations, two genes, namely ADAM metallopeptidase domain 9 (ADAM9) and maltase-glucoamylase alpha-glucosidase (MGAM), that mapped to CNA regions were selected for further evaluation of their mRNA expression using reverse transcriptase qPCR. The over-expression of MGAM was confirmed with a 6.6 fold increase in expression at the mRNA level whereas the fold change in ADAM9 demonstrated a 1.6 fold increase. This study has identified significant regions in the OSCC genome that were amplified and resulted in consequent over-expression of the MGAM and ADAM9 genes that may be utilized as biological markers for OSCC.
Collapse
Affiliation(s)
- Vui King Vincent-Chong
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Arif Anwar
- Sengenics Sdn Bhd, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Lee Peng Karen-Ng
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sok Ching Cheong
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research Team, Cancer Research Initiatives Foundation, Selangor Darul Ehsan, Malaysia
| | - Yi-Hsin Yang
- Department of Dental Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Padmaja Jayaprasad Pradeep
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti Mazlipah Ismail
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Zuraiza Mohamad Zaini
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Narayanan Prepageran
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Otorhinolaringology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | - Keng Kiong Tay
- Oral Health Division, Ministry of Health, Putrajaya, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- Department of Oral Pathology, Oral Medicine and Periodontology, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|