1
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
2
|
Wang Q, Zhao Y, Tan G, Ai J. Single cell analysis revealed SFRP2 cancer associated fibroblasts drive tumorigenesis in head and neck squamous cell carcinoma. NPJ Precis Oncol 2024; 8:228. [PMID: 39384902 PMCID: PMC11464629 DOI: 10.1038/s41698-024-00716-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
Understanding the mechanisms of invasion and metastasis in head and neck squamous cell carcinoma (HNSCC) is crucial for effective treatment, particularly in metastatic cases. In this study, we analyzed multicenter bulk sequencing and comprehensive single-cell data from 702,446 cells, leading to the identification of a novel subtype of cancer-associated fibroblasts (CAFs), termed Secreted Frizzled-Related Protein2 CAFs (SFRP2_CAFs). These cells, originating from smooth muscle cells, display unique characteristics resembling both myofibroblastic CAFs and inflammatory CAFs, and are linked to poorer survival outcomes in HNSCC patients. Our findings reveal significant interactions between SFRP2_CAFs and SPP1 tumor-associated macrophages, which facilitate tumor invasion and metastasis. Moreover, our research identifies Nuclear factor I/X (NFIX) as a key transcription factor regulating SFRP2_CAFs behavior, confirmed through gene regulatory network analysis and simulation perturbation.
Collapse
Affiliation(s)
- Qiwei Wang
- MD, Department of head and neck surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya school of medicine, Central South University, Changsha, Hunan, China
- MD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Zhao
- PhD, Xiangya school of nursing, Central South University, Changsha, Hunan, China
| | - Guolin Tan
- MD, PhD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - JinGang Ai
- MD, Department of otolaryngology head and neck surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Li X, González-Maroto C, Tavassoli M. Crosstalk between CAFs and tumour cells in head and neck cancer. Cell Death Discov 2024; 10:303. [PMID: 38926351 PMCID: PMC11208506 DOI: 10.1038/s41420-024-02053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are amongst the most aggressive, complex, and heterogeneous malignancies. The standard of care treatments for HNC patients include surgery, radiotherapy, chemotherapy, or their combination. However, around 50% do not benefit while suffering severe toxic side effects, costing the individuals and society. Decades have been spent to improve HNSCC treatment outcomes with only limited success. Much of the research in HNSCC treatment has focused on understanding the genetics of the HNSCC malignant cells, but it has become clear that tumour microenvironment (TME) plays an important role in the progression as well as treatment response in HNSCC. Understanding the crosstalk between cancer cells and TME is crucial for inhibiting progression and treatment resistance. Cancer-associated fibroblasts (CAFs), the predominant component of stroma in HNSCC, serve as the primary source of extra-cellular matrix (ECM) and various pro-tumoral composites in TME. The activation of CAFs in HNSCC is primarily driven by cancer cell-secreted molecules, which in turn induce phenotypic changes, elevated secretive status, and altered ECM production profile. Concurrently, CAFs play a pivotal role in modulating the cell cycle, stemness, epithelial-mesenchymal transition (EMT), and resistance to targeted and chemoradiotherapy in HNSCC cells. This modulation occurs through interactions with secreted molecules or direct contact with the ECM or CAF. Co-culture and 3D models of tumour cells and other TME cell types allows to mimic the HNSCC tumour milieu and enable modulating tumour hypoxia and reprograming cancer stem cells (CSC). This review aims to provide an update on the development of HNSCC tumour models comprising CAFs to obtain better understanding of the interaction between CAFs and tumour cells, and for providing preclinical testing platforms of current and combination with emerging therapeutics.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
| | - Celia González-Maroto
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King's College London, Hodgkin Building, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Martinez FEO, Bezerra TMM, Alves APNN, Fernandes IJLS, Sousa FB, de Barros Silva PG, Mota MRL. Assessment of the association of myofibroblasts and structural components of the extracellular matrix with histopathological parameters of actinic cheilitis and lower lip squamous cell carcinoma. J Oral Pathol Med 2024; 53:321-330. [PMID: 38693618 DOI: 10.1111/jop.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND To evaluate the presence of myofibroblasts (MFs) in the development of lip carcinogenesis, through the correlation of clinical, histomorphometric and immunohistochemical parameters, in actinic cheilitis (ACs) and lower lip squamous cell carcinomas (LLSCCs). METHODS Samples of ACs, LLSCCs, and control group (CG) were prepared by tissue microarray (TMA) for immunohistochemical TGF-β, α-SMA, and Ki-67 and histochemical hematoxylin and eosin, picrosirius red, and verhoeff van gieson reactions. Clinical and microscopic data were associated using the Mann-Whitney, Kruskal-Wallis/Dunn, and Spearman correlation tests (SPSS, p < 0.05). RESULTS ACs showed higher number of α-SMA+ MFs when compared to CG (p = 0.034), and these cells were associated with the vertical expansion of solar elastosis (SE) itself (p = 0.027). Areas of SE had lower deposits of collagen (p < 0.001), immunostaining for TGF-β (p < 0.001), and higher density of elastic fibers (p < 0.05) when compared to areas without SE. A positive correlation was observed between high-risk epithelial dysplasia (ED) and the proximity of SE to the dysplastic epithelium (p = 0.027). LLSCCs showed a higher number of α-SMA+ MFs about CG (p = 0.034), as well as a reduction in the deposition of total collagen (p = 0.009) in relation to ACs and CG. There was also a negative correlation between the amount of α-SMA+ cells and the accumulation of total collagen (p = 0.041). Collagen and elastic density loss was higher in larger tumors (p = 0.045) with nodal invasion (p = 0.047). CONCLUSIONS Our findings show the possible role of MFs, collagen fibers, and elastosis areas in the lip carcinogenesis process.
Collapse
Affiliation(s)
- Farah Essgui Orellana Martinez
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Thâmara Manoela Marinho Bezerra
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | - Fabricio Bitu Sousa
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Brazil
- Department of Dentistry, Christus University, Fortaleza, Brazil
| | - Paulo Goberlânio de Barros Silva
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Brazil
- Department of Dentistry, Christus University, Fortaleza, Brazil
| | - Mário Rogério Lima Mota
- Division of Oral Pathology, Department of Dental Clinic, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Brazil
| |
Collapse
|
5
|
Ye C, Zhang X, Wang Y, Jing Y, Song Y, Celentano A, Ni Y. Effects of cancer-associated fibroblasts deletion using HSVtk suicide system in OSCC. Oral Dis 2024; 30:1981-1988. [PMID: 37203377 DOI: 10.1111/odi.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To evaluate the biological characteristics of oral cancer cells co-cultured with cancer-associated fibroblasts (CAFs)-HSVtk and to assess the reliability of the CAFs-HSVtk suicide system in a co-culture model. METHODS CAFs were lentivirus-transfected with PCDH-HSVtk. Ganciclovir (GCV) was added and the survival rates of the CAFs-HSVtk were measured. In parallel with the selective elimination of CAFs, comparison was made of the effects of CAF-HSVtk on tumor cell proliferation/migration in a CAFs-tumor co-cultural system. Cell death of co-cultured oral cancer cells was evaluated by flow cytometry. RESULTS Q-PCR analysis showed that the expression of HSVtk in the CAFs-HSVtk group was significantly higher than in the control group (p < 0.01). The survival rates of CAFs-HSVtk with GCV were significantly reduced (p < 0.01). Following selective depletion of CAFs-HSVtk, the growth and migration rates of oral cancer cells co-cultured with CAFs-HSVtk were reduced in a mixture ratio of 1:2 (p < 0.01, p < 0.01). CONCLUSIONS Enhanced proliferation and migration rates of oral cancer cells in co-culture were seriously impaired after deleting CAFs using the HSVtk suicide system, while oral tumor cell death was not affected. Therefore, CAFs-HSVtk can be utilized as a valid model for CAF signature identification.
Collapse
Affiliation(s)
- Chuanjin Ye
- Department of Oral Pathology, Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoxin Zhang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuhan Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, Victoria, Australia
| | - Yanhong Ni
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Peng L, Gao P, Xiong W, Li Z, Chen X. Identifying potential ligand-receptor interactions based on gradient boosted neural network and interpretable boosting machine for intercellular communication analysis. Comput Biol Med 2024; 171:108110. [PMID: 38367445 DOI: 10.1016/j.compbiomed.2024.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
Cell-cell communication is essential to many key biological processes. Intercellular communication is generally mediated by ligand-receptor interactions (LRIs). Thus, building a comprehensive and high-quality LRI resource can significantly improve intercellular communication analysis. Meantime, due to lack of a "gold standard" dataset, it remains a challenge to evaluate LRI-mediated intercellular communication results. Here, we introduce CellGiQ, a high-confident LRI prediction framework for intercellular communication analysis. Highly confident LRIs are first inferred by LRI feature extraction with BioTriangle, LRI selection using LightGBM, and LRI classification based on ensemble of gradient boosted neural network and interpretable boosting machine. Subsequently, known and identified high-confident LRIs are filtered by combining single-cell RNA sequencing (scRNA-seq) data and further applied to intercellular communication inference through a quartile scoring strategy. To validation the predictions, CellGiQ exploited several evaluation strategies: using AUC and AUPR, it surpassed six competing LRI prediction models on four LRI datasets; through Venn diagrams and molecular docking, its predicted LRIs were validated by five other popular intercellular communication inference methods; based on the overlapping LRIs, it computed high Jaccard index with six other state-of-the-art intercellular communication prediction tools within human HNSCC tissues; by comparing with classical models and literature retrieve, its inferred HNSCC-related intercellular communication results was further validated. The novelty of this study is to identify high-confident LRIs based on machine learning as well as design several LRI validation ways, providing reference for computational LRI prediction. CellGiQ provides an open-source and useful tool to decompose LRI-mediated intercellular communication at single cell resolution. CellGiQ is freely available at https://github.com/plhhnu/CellGiQ.
Collapse
Affiliation(s)
- Lihong Peng
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Pengfei Gao
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Wei Xiong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
| | - Zejun Li
- School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang, 421002, Hunan, China.
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
7
|
Lv T, Liu H, Mao L, Song Y, Liao L, Zhong K, Shuai B, Luo Y, Guo T, Huang W, Zhang S. Cancer-associated fibroblast-derived extracellular vesicles promote lymph node metastases in oral cavity squamous cell carcinoma by encapsulating ITGB1 and BMI1. BMC Cancer 2024; 24:113. [PMID: 38254031 PMCID: PMC10804601 DOI: 10.1186/s12885-024-11855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) have been revealed to facilitate the development of oral squamous cavity cell carcinoma (OCSCC), while its supporting role in lymph node metastases is under continuous investigation. This study aimed to examine the function of cancer-associated fibroblasts (CAF)-derived EVs (CAF-EVs) during lymph node metastasis in OCSCC and the mechanisms. METHODS CAF were isolated from OCSCC tissues of patients, and CAF-EVs were extracted and identified. EdU, colony formation, wound healing, and Transwell assays were performed. The OCSCC cells before and after CAF-EVs treatment were injected into mice to probe the effects of CAF-EVs on tumor growth and lymph node metastasis, respectively. The effect of CAF-EVs treatment on transcriptome changes in OCSCC cells was analyzed. Clinical data of patients with OCSCC were analyzed to determine the prognostic significance of the selected genes. Finally, loss-of-function assays were conducted to corroborate the involvement of polycomb complex protein BMI-1 (BMI1) and integrin beta1 (ITGB1). RESULTS CAF-EVs promoted the malignant behavior of OCSCC cells and accelerated tumor growth and lymph node metastasis in mice. CAF-EVs significantly increased the expression of BMI1 and ITGB1, and the expression of BMI1 and ITGB1 was negatively correlated with the overall survival and relapse-free survival of OCSCC patients. Knockdown of BMI1 or ITGB1 in OCSCC cells abated the promoting effects of CAF-EVs in vitro and in vivo. CONCLUSION CAF-EVs elicited the metastasis-promoting properties in OCSCC by elevating BMI1 and ITGB1, suggesting that BMI1 and ITGB1 could be potential biomarkers and therapeutic targets for OCSCC.
Collapse
Affiliation(s)
- Tianzhu Lv
- Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Hongjing Liu
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Ling Mao
- Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Yanrong Song
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Lili Liao
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Kun Zhong
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Binbin Shuai
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Yingkun Luo
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Tingting Guo
- Comprehensive Emergency Department of Stomatology, Stomatological Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, P.R. China
| | - Wentao Huang
- School of Savaid Stomatology, Hangzhou Medical College, 311399, Hangzhou, Zhejiang, P.R. China.
| | - Shenyingjie Zhang
- Medical Department, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 310006, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
8
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Role of Microenvironmental Components in Head and Neck Squamous Cell Carcinoma. J Pers Med 2023; 13:1616. [PMID: 38003931 PMCID: PMC10672525 DOI: 10.3390/jpm13111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is one of the ten most common malignant neoplasms, characterized by an aggressive course, high recurrence rate, poor response to treatment, and low survival rate. This creates the need for a deeper understanding of the mechanisms of the pathogenesis of this cancer. The tumor microenvironment (TME) of HNSCC consists of stromal and immune cells, blood and lymphatic vessels, and extracellular matrix. It is known that HNSCC is characterized by complex relationships between cancer cells and TME components. TME components and their dynamic interactions with cancer cells enhance tumor adaptation to the environment, which provides the highly aggressive potential of HNSCC and resistance to antitumor therapy. Basic research aimed at studying the role of TME components in HNSCC carcinogenesis may serve as a key to the discovery of both new biomarkers-predictors of prognosis and targets for new antitumor drugs. This review article focuses on the role and interaction with cancer of TME components such as newly formed vessels, cancer-associated fibroblasts, and extracellular matrix.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (A.L.); (A.K.); (T.F.)
- Avtsyn Research Institute of Human Morphology of FSBSI Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
9
|
Dwivedi N, Shukla N, Prathima KM, Das M, Dhar SK. Novel CAF-identifiers via transcriptomic and protein level analysis in HNSC patients. Sci Rep 2023; 13:13899. [PMID: 37626157 PMCID: PMC10457345 DOI: 10.1038/s41598-023-40908-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs), a prominent component of the tumor microenvironment, play an important role in tumor development, invasion, and drug resistance. The expression of distinct "CAF-markers" which separates CAFs from normal fibroblasts and epithelial cells, have traditionally been used to identify them. These commonly used CAF-markers have been reported to differ greatly across different CAF subpopulations, even within a cancer type. Using an unbiased -omic approach from public data and in-house RNAseq data from patient derived novel CAF cells, TIMP-1, SPARC, COL1A2, COL3A1 and COL1A1 were identified as potential CAF-markers by differential gene expression analysis using publicly available single cell sequencing data and in-house RNAseq data to distinguish CAF populations from tumor epithelia and normal oral fibroblasts. Experimental validation using qPCR and immunofluorescence revealed CAF-specific higher expression of TIMP-1 and COL1A2 as compared to other markers in 5 novel CAF cells, derived from patients of diverse gender, habits and different locations of head and neck squamous cell carcinoma (HNSC). Upon immunohistochemical (IHC) analysis of FFPE blocks however, COL1A2 showed better differential staining between tumor epithelia and tumor stroma. Similar data science driven approach utilizing single cell sequencing and RNAseq data from stabilized CAFs can be employed to identify CAF-markers in various cancers.
Collapse
Affiliation(s)
- Nehanjali Dwivedi
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India
- MAHE, Manipal, 576104, India
| | - Nidhi Shukla
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India
| | - K M Prathima
- Manipal Hospital, Miller's Road, Bangalore, Karnataka, 560052, India
| | - Manjula Das
- Molecular Immunology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India
| | - Sujan K Dhar
- Computational Biology, Mazumdar Shaw Medical Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, 560099, India.
| |
Collapse
|
10
|
Bensa T, Tekkela S, Rognoni E. Skin fibroblast functional heterogeneity in health and disease. J Pathol 2023; 260:609-620. [PMID: 37553730 DOI: 10.1002/path.6159] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 08/10/2023]
Abstract
Fibroblasts are the major cell population of connective tissue, including the skin dermis, and are best known for their function in depositing and remodelling the extracellular matrix. Besides their role in extracellular matrix homeostasis, fibroblasts have emerged as key players in many biological processes ranging from tissue immunity and wound healing to hair follicle development. Recent advances in single-cell RNA-sequencing technologies have revealed an astonishing transcriptional fibroblast heterogeneity in the skin and other organs. A key challenge in the field is to understand the functional relevance and significance of the identified new cell clusters in health and disease. Here, we discuss the functionally distinct fibroblast subtypes identified in skin homeostasis and repair and how they evolve in fibrotic disease conditions, in particular keloid scars and cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tjaša Bensa
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Stavroula Tekkela
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Prieto-Fernández L, Montoro-Jiménez I, de Luxan-Delgado B, Otero-Rosales M, Rodrigo JP, Calvo F, García-Pedrero JM, Álvarez-Teijeiro S. Dissecting the functions of cancer-associated fibroblasts to therapeutically target head and neck cancer microenvironment. Biomed Pharmacother 2023; 161:114502. [PMID: 37002578 DOI: 10.1016/j.biopha.2023.114502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) emerge as predominant TME components and key players in the generation of permissive conditions that ultimately impact in tumor progression and metastatic dissemination. Although CAFs were initially considered a consequence of tumor development, it is now well established that they actively contribute to numerous cancer hallmarks i.e., tumor cell growth, migration and invasion, cancer cell stemness, angiogenesis, metabolic reprograming, inflammation, and immune system modulation. In this scenario, therapeutic strategies targeting CAF functions could potentially have a major impact in cancer therapeutics, providing avenues for new treatment options or for improving efficacy in established approaches. This review is focused on thoroughly dissecting existing evidences supporting the contribution of CAFs in HNC biology with an emphasis on current knowledge of the key molecules and pathways involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effectively interfere the tumor-stroma crosstalk for HNC patients benefit. involved in CAF-tumor crosstalk, and their potential as novel biomarkers and/or therapeutic targets to effec- tively interfere the tumor-stroma crosstalk for HNC patients benefit.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz de Luxan-Delgado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Hu C, Zhang Y, Wu C, Huang Q. Heterogeneity of cancer-associated fibroblasts in head and neck squamous cell carcinoma: opportunities and challenges. Cell Death Discov 2023; 9:124. [PMID: 37055382 PMCID: PMC10102018 DOI: 10.1038/s41420-023-01428-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most severe and complex malignant diseases with a high level of heterogeneity and, as a result, a wide range of therapeutic responses, regardless of clinical stage. Tumor progression depends on ongoing co-evolution and cross-talk with the tumor microenvironment (TME). In particular, cancer-associated fibroblasts (CAFs), embedded in the extracellular matrix (ECM), induce tumor growth and survival by interacting with tumor cells. Origin of CAFs is quite varied, and the activation patterns of CAFs are also heterogeneous. Crucially, the heterogeneity of CAFs appears to play a key role in ongoing tumor expansion, including facilitating proliferation, enhancing angiogenesis and invasion, and promoting therapy resistance, through the production of cytokines, chemokines, and other tumor-promotive molecules in the TME. This review describes the various origin and heterogeneous activation mechanisms of CAFs, and biological heterogeneity of CAFs in HNSCC is also included. Moreover, we have highlighted versatility of CAFs heterogeneity in HNSCC progression, and have discussed different tumor-promotive functions of CAFs respectively. In the future, it is a promising strategy for the therapy of HNSCC that specifically targeting tumor-promoting CAF subsets or the tumor-promoting functional targets of CAFs.
Collapse
Affiliation(s)
- Chen Hu
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, 100730, Beijing, China
| | - Yifan Zhang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Chunping Wu
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Qiang Huang
- Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| |
Collapse
|
13
|
Harris A, Andl T. Precancerous Lesions of the Head and Neck Region and Their Stromal Aberrations: Piecemeal Data. Cancers (Basel) 2023; 15:cancers15082192. [PMID: 37190121 DOI: 10.3390/cancers15082192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) develop through a series of precancerous stages from a pool of potentially malignant disorders (PMDs). Although we understand the genetic changes that lead to HNSCC, our understanding of the role of the stroma in the progression from precancer to cancer is limited. The stroma is the primary battleground between the forces that prevent and promote cancer growth. Targeting the stroma has yielded promising cancer therapies. However, the stroma at the precancerous stage of HNSCCs is poorly defined, and we may miss opportunities for chemopreventive interventions. PMDs already exhibit many features of the HNSCC stroma, such as inflammation, neovascularization, and immune suppression. Still, they do not induce cancer-associated fibroblasts or destroy the basal lamina, the stroma's initial structure. Our review aims to summarize the current understanding of the transition from precancer to cancer stroma and how this knowledge can reveal opportunities and limitations for diagnostic, prognostic, and therapeutic decisions to benefit patients. We will discuss what may be needed to fulfill the promise of the precancerous stroma as a target to prevent progression to cancer.
Collapse
Affiliation(s)
- Ashlee Harris
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Pkwy, Orlando, FL 32826, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Pkwy, Orlando, FL 32826, USA
| |
Collapse
|
14
|
Wang Q, Zhao Y, Wang F, Tan G. Clustering and machine learning-based integration identify cancer associated fibroblasts genes’ signature in head and neck squamous cell carcinoma. Front Genet 2023; 14:1111816. [PMID: 37065499 PMCID: PMC10098459 DOI: 10.3389/fgene.2023.1111816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Background: A hallmark signature of the tumor microenvironment in head and neck squamous cell carcinoma (HNSCC) is abundantly infiltration of cancer-associated fibroblasts (CAFs), which facilitate HNSCC progression. However, some clinical trials showed targeted CAFs ended in failure, even accelerated cancer progression. Therefore, comprehensive exploration of CAFs should solve the shortcoming and facilitate the CAFs targeted therapies for HNSCC.Methods: In this study, we identified two CAFs gene expression patterns and performed the single‐sample gene set enrichment analysis (ssGSEA) to quantify the expression and construct score system. We used multi-methods to reveal the potential mechanisms of CAFs carcinogenesis progression. Finally, we integrated 10 machine learning algorithms and 107 algorithm combinations to construct most accurate and stable risk model. The machine learning algorithms contained random survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox (plsRcox), supervised principal components (SuperPC), generalised boosted regression modelling (GBM), and survival support vector machine (survival-SVM).Results: There are two clusters present with distinct CAFs genes pattern. Compared to the low CafS group, the high CafS group was associated with significant immunosuppression, poor prognosis, and increased prospect of HPV negative. Patients with high CafS also underwent the abundant enrichment of carcinogenic signaling pathways such as angiogenesis, epithelial mesenchymal transition, and coagulation. The MDK and NAMPT ligand–receptor cellular crosstalk between the cancer associated fibroblasts and other cell clusters may mechanistically cause immune escape. Moreover, the random survival forest prognostic model that was developed from 107 machine learning algorithm combinations could most accurately classify HNSCC patients.Conclusion: We revealed that CAFs would cause the activation of some carcinogenesis pathways such as angiogenesis, epithelial mesenchymal transition, and coagulation and revealed unique possibilities to target glycolysis pathways to enhance CAFs targeted therapy. We developed an unprecedentedly stable and powerful risk score for assessing the prognosis. Our study contributes to the understanding of the CAFs microenvironment complexity in patients with head and neck squamous cell carcinoma and serves as a basis for future in-depth CAFs gene clinical exploration.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yinan Zhao
- Xiangya School of Nursing, Central South University, Changsha, Hunan, China
| | - Fang Wang
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital Rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
| | - Guolin Tan
- Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
16
|
Prieto-Fernandez L, Villaronga MDLA, Hermida-Prado F, Hijazi M, Montoro-Jimenez I, Pevida M, Llames S, Rodrigo JP, Cutillas P, Calvo F, Garcia-Pedrero JM, Alvarez-Teijeiro S. Driving role of head and neck cancer cell secretome on the invasion of stromal fibroblasts: Mechanistic insights by phosphoproteomics. Biomed Pharmacother 2023; 158:114176. [PMID: 36916400 DOI: 10.1016/j.biopha.2022.114176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC). METHODS Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices. The changes in MMPs expression were evaluated by RT-qPCR and kinase enrichment was analyzed using mass spectrometry phosphoproteomics. RESULTS Our results consistently demonstrate that HNSCC-secreted factors (but not Kc CM) specifically and robustly promoted pro-invasive properties in both CAFs and NFs, thereby reflecting the plasticity of fibroblast subtypes. Concomitantly, HNSCC-secreted factors massively increased metalloproteinases levels in CAFs and NFs. By contrast, HNSCC CM and Kc CM exhibited comparable growth-promoting effects on stromal fibroblasts. Mechanistically, phosphoproteomic analysis predominantly revealed phosphorylation changes in fibroblasts upon treatment with HNSCC CM, and various promising kinases were identified: MKK7, MKK4, ASK1, RAF1, BRAF, ARAF, COT, PDK1, RSK2 and AKT1. Interestingly, pharmacologic inhibition of RAF1/BRAF using sorafenib emerged as the most effective drug to block tumor-promoted fibroblast invasion without affecting fibroblast viability CONCLUSIONS: Our findings demonstrate that HNSCC-secreted factors specifically fine tune the invasive potential of stromal fibroblasts, thereby generating tumor-driven pro-invasive niches, which in turn to ultimately facilitate cancer cell dissemination. Furthermore, the RAF/BRAF inhibitor sorafenib was identified as a promising candidate to effectively target the onset of pro-invasive clusters of stromal fibroblasts in the HNSCC microenvironment.
Collapse
Affiliation(s)
- Llara Prieto-Fernandez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria de Los Angeles Villaronga
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Maruan Hijazi
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Irene Montoro-Jimenez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Pevida
- Tissue engineering unit, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sara Llames
- Tissue engineering unit, Centro Comunitario Sangre y Tejidos de Asturias (CCST), Oviedo, Spain; Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Cutillas
- Cell Signalling & Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Fernando Calvo
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom; Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Juana Maria Garcia-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Saul Alvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
MicroRNAs and cancer-associated fibroblasts in the tumour microenvironment of oral squamous cell carcinoma (OSCC). Oral Oncol 2022; 134:106124. [PMID: 36096044 DOI: 10.1016/j.oraloncology.2022.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022]
|
18
|
Epithelial-to-Mesenchymal Transition in Metastasis: Focus on Laryngeal Carcinoma. Biomedicines 2022; 10:biomedicines10092148. [PMID: 36140250 PMCID: PMC9496235 DOI: 10.3390/biomedicines10092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
In epithelial neoplasms, such as laryngeal carcinoma, the survival indexes deteriorate abruptly when the tumor becomes metastatic. A molecular phenomenon that normally appears during embryogenesis, epithelial-to-mesenchymal transition (EMT), is reactivated at the initial stage of metastasis when tumor cells invade the adjacent stroma. The hallmarks of this phenomenon are the abolishment of the epithelial and acquisition of mesenchymal traits by tumor cells which enhance their migratory capacity. EMT signaling is mediated by complex molecular pathways that regulate the expression of crucial molecules contributing to the tumor’s metastatic potential. Effectors of EMT include loss of adhesion, cytoskeleton remodeling, evasion of apoptosis and immune surveillance, upregulation of metalloproteinases, neovascularization, acquisition of stem-cell properties, and the activation of tumor stroma. However, the current approach to EMT involves a holistic model that incorporates the acquisition of potentials beyond mesenchymal transition. As EMT is inevitably associated with a reverse mesenchymal-to-epithelial transition (MET), a model of partial EMT is currently accepted, signifying the cell plasticity associated with invasion and metastasis. In this review, we identify the cumulative evidence which suggests that various aspects of EMT theory apply to laryngeal carcinoma, a tumor of significant morbidity and mortality, introducing novel molecular targets with prognostic and therapeutic potential.
Collapse
|
19
|
Sarode GS, Sarode SC, Kumari N, Gophane R, Ghone U. FAP-targeted imaging in oral cancer: Critical viewpoints. Oral Oncol 2022; 133:106024. [PMID: 35870331 DOI: 10.1016/j.oraloncology.2022.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Gargi S Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri Pune, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri Pune, India
| | - Nidhi Kumari
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri Pune, India.
| | - Renuka Gophane
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri Pune, India
| | - Urmi Ghone
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaram Nagar, Pimpri Pune, India
| |
Collapse
|
20
|
Liang W, Chen Y, Liu H, Zhao H, Luo T, Tang H, Zhou X, Jiang E, Shao Z, Liu K, Shang Z. Cancer cells corrupt normal epithelial cells through miR-let-7c-rich small extracellular vesicle-mediated downregulation of p53/PTEN. Int J Oral Sci 2022; 14:36. [PMID: 35851058 PMCID: PMC9293927 DOI: 10.1038/s41368-022-00192-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Tumor volume increases continuously in the advanced stage, and aside from the self-renewal of tumor cells, whether the oncogenic transformation of surrounding normal cells is involved in this process is currently unclear. Here, we show that oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) promote the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of normal epithelial cells but delay their apoptosis. In addition, nuclear-cytoplasmic invaginations and multiple nucleoli are observed in sEV-treated normal cells, both of which are typical characteristics of premalignant lesions of OSCC. Mechanistically, miR-let-7c in OSCC-derived sEVs is transferred to normal epithelial cells, leading to the transcriptional inhibition of p53 and inactivation of the p53/PTEN pathway. In summary, we demonstrate that OSCC-derived sEVs promote the precancerous transformation of normal epithelial cells, in which the miR-let-7c/p53/PTEN pathway plays an important role. Our findings reveal that cancer cells can corrupt normal epithelial cells through sEVs, which provides new insight into the progression of OSCC.
Collapse
Affiliation(s)
- Weilian Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hanzhe Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tingting Luo
- Shenzhen PKU-HKUST Medical Center (Peking University Shenzhen Hospital), Shenzhen, China
| | - Hokeung Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocheng Zhou
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ke Liu
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- Department of Oral and Maxillofacial-Head and Neck oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Cury SS, Kuasne H, Souza JDS, Muñoz JJM, da Silva JP, Lopes A, Scapulatempo-Neto C, Faria EF, Delaissé JM, Marchi FA, Rogatto SR. Interplay Between Immune and Cancer-Associated Fibroblasts: A Path to Target Metalloproteinases in Penile Cancer. Front Oncol 2022; 12:935093. [PMID: 35928876 PMCID: PMC9343588 DOI: 10.3389/fonc.2022.935093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular matrix (ECM) remodeling and inflammation have been reported in penile carcinomas (PeCa). However, the cell types and cellular crosstalk involved in PeCa are unexplored. We aimed to characterize the complexity of cells and pathways involved in the tumor microenvironment (TME) in PeCa and propose target molecules associated with the TME. We first investigated the prognostic impact of cell types with a secretory profile to identify drug targets that modulate TME-enriched cells. The secretome analysis using the PeCa transcriptome revealed the enrichment of inflammation and extracellular matrix pathways. Twenty-three secreted factors were upregulated, mainly collagens and matrix metalloproteinases (MMPs). The deregulation of collagens and MMPs was confirmed by Quantitative reverse transcription - polymerase chain reaction (RT-qPCR). Further, the deconvolution method (digital cytometry) of the bulk samples revealed a high proportion of macrophages and dendritic cells (DCs) and B cells. Increased DCs and B cells were associated with better survival. A high proportion of cancer-associated fibroblasts (CAFs) was observed in low-survival patients. Patients with increased CAFs had decreased immune cell proportions. The treatment with the MMP inhibitor GM6001 in CAF cells derived from PeCa resulted in altered cell viability. We reported a crosstalk between immune cells and CAFs, and the proportion of these cell populations was associated with prognosis. We demonstrate that a drug targeting MMPs modulates CAFs, expanding the therapeutic options of PeCa.
Collapse
Affiliation(s)
- Sarah Santiloni Cury
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Hellen Kuasne
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- International Research Center (CIPE), A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Jeferson dos Santos Souza
- Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Juan Jose Moyano Muñoz
- International Research Center (CIPE), A. C. Camargo Cancer Center, São Paulo, Brazil
- Universidad Señor de Sipán, Chiclayo, Peru
| | | | - Ademar Lopes
- Pelvic Surgery Department, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Department of Pathology, Diagnósticos da América - DASA, Barueri, Brazil
| | - Eliney Ferreira Faria
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Uro-oncology and Robotic Surgery, Hospital Felicio Rocho, Belo Horizonte, Brazil
| | - Jean-Marie Delaissé
- Clinical Cell Biology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
- Department of Clinical Research, Clinical Cell Biology, University of Southern Denmark, Odense, Denmark
| | | | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- *Correspondence: Silvia Regina Rogatto,
| |
Collapse
|
22
|
Domingo-Vidal M, Whitaker-Menezes D, Mollaee M, Lin Z, Tuluc M, Philp N, Johnson JM, Zhan T, Curry J, Martinez-Outschoorn U. Monocarboxylate Transporter 4 in Cancer-Associated Fibroblasts Is a Driver of Aggressiveness in Aerodigestive Tract Cancers. Front Oncol 2022; 12:906494. [PMID: 35814364 PMCID: PMC9259095 DOI: 10.3389/fonc.2022.906494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The most common cancers of the aerodigestive tract (ADT) are non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC). The tumor stroma plays an important role in ADT cancer development and progression, and contributes to the metabolic heterogeneity of tumors. Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the tumor stroma of ADT cancers and exert pro-tumorigenic functions. Metabolically, glycolytic CAFs support the energy needs of oxidative (OXPHOS) carcinoma cells. Upregulation of the monocarboxylate transporter 4 (MCT4) and downregulation of isocitrate dehydrogenase 3α (IDH3α) are markers of glycolysis in CAFs, and upregulation of the monocarboxylate transporter 1 (MCT1) and the translocase of the outer mitochondrial membrane 20 (TOMM20) are markers of OXPHOS in carcinoma cells. It is unknown if glycolytic metabolism in CAFs is a driver of ADT cancer aggressiveness. In this study, co-cultures in vitro and co-injections in mice of ADT carcinoma cells with fibroblasts were used as experimental models to study the effects of fibroblasts on metabolic compartmentalization, oxidative stress, carcinoma cell proliferation and apoptosis, and overall tumor growth. Glycolytic metabolism in fibroblasts was modulated using the HIF-1α inhibitor BAY 87-2243, the antioxidant N-acetyl cysteine, and genetic depletion of MCT4. We found that ADT human tumors express markers of metabolic compartmentalization and that co-culture models of ADT cancers recapitulate human metabolic compartmentalization, have high levels of oxidative stress, and promote carcinoma cell proliferation and survival. In these models, BAY 87-2243 rescues IDH3α expression and NAC reduces MCT4 expression in fibroblasts, and these treatments decrease ADT carcinoma cell proliferation and increase cell death. Genetic depletion of fibroblast MCT4 decreases proliferation and survival of ADT carcinoma cells in co-culture. Moreover, co-injection of ADT carcinoma cells with fibroblasts lacking MCT4 reduces tumor growth and decreases the expression of markers of metabolic compartmentalization in tumors. In conclusion, metabolic compartmentalization with high expression of MCT4 in CAFs drives aggressiveness in ADT cancers.
Collapse
Affiliation(s)
- Marina Domingo-Vidal
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Mehri Mollaee
- Lewis Katz School of Medicine, Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, United States
| | - Zhao Lin
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Philp
- Sidney Kimmel Cancer Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jennifer M. Johnson
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Sidney Kimmel Cancer Center, Department of Otolaryngology - Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo Martinez-Outschoorn
- Sidney Kimmel Cancer Center, Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Ubaldo Martinez-Outschoorn,
| |
Collapse
|
23
|
Worsley CM, Veale RB, Mayne ES. The acidic tumour microenvironment: Manipulating the immune response to elicit escape. Hum Immunol 2022; 83:399-408. [PMID: 35216847 DOI: 10.1016/j.humimm.2022.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022]
Abstract
The success of cancer treatment relies on the composition of the tumour microenvironment which is comprised of tumour cells, blood vessels, stromal cells, immune cells, and extracellular matrix components. Barriers to effective cancer treatment need to be overcome, and the acidic microenvironment of the tumour provides a key target for treatment. This review intends to provide an overview of the effects that low extracellular pH has on components of the tumour microenvironment and how they contribute to immune escape. Further, potential therapeutic targets will be discussed.
Collapse
Affiliation(s)
- Catherine M Worsley
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa; Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; National Health Laboratory Service, South Africa.
| | - Rob B Veale
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| | - Elizabeth S Mayne
- Department of Haematology and Molecular Medicine, Faculty of Health Sciences, University of the Witwatersrand, South Africa; Department of Immunology Faculty of Health Sciences, University of the Witwatersrand, South Africa; Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| |
Collapse
|
24
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
25
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
26
|
Bienkowska KJ, Hanley CJ, Thomas GJ. Cancer-Associated Fibroblasts in Oral Cancer: A Current Perspective on Function and Potential for Therapeutic Targeting. FRONTIERS IN ORAL HEALTH 2021; 2:686337. [PMID: 35048030 PMCID: PMC8757746 DOI: 10.3389/froh.2021.686337] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The role of the tumour microenvironement (TME) in cancer progression and resistance to therapies is now widely recognized. The most prominent non-immune cell type in the microenvironment of oral cancer (OSCC) is cancer-associated fibroblasts (CAF). Although CAF are a poorly characterised and heterogenous cell population, those with an "activated" myofibroblastic phenotype have been shown to support OSCC progression, promoting growth, invasion and numerous other "hallmarks of malignancy." CAF also confer broad resistance to different types of therapy, including chemo/radiotherapy and EGFR inhibitors; consistent with this, CAF-rich OSCC are associated with poor prognosis. In recent years, much CAF research has focused on their immunological role in the tumour microenvironment, showing that CAF shield tumours from immune attack through multiple mechanisms, and particularly on their role in promoting resistance to anti-PD-1/PD-L1 checkpoint inhibitors, an exciting development for the treatment of recurrent/metastatic oral cancer, but which fails in most patients. This review summarises our current understanding of CAF subtypes and function in OSCC and discusses the potential for targeting these cells therapeutically.
Collapse
Affiliation(s)
- Kamila J. Bienkowska
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Gareth J. Thomas
- School of Cancer Sciences, University of Southampton, Southampton, United Kingdom
- Cancer Research UK and National Institute for Health Research (NIHR) Southampton Experimental Cancer Medicine Centre, Southampton, United Kingdom
| |
Collapse
|
27
|
Dos Santos ES, Wagner VP, Cabral Ramos J, Lambert DW, Castilho RM, Paes Leme AF. Epigenetic modulation of the tumor microenvironment in head and neck cancer: Challenges and opportunities. Crit Rev Oncol Hematol 2021; 164:103397. [PMID: 34146679 DOI: 10.1016/j.critrevonc.2021.103397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Head and neck cancer is globally challenging due to the resistance to therapy and aggressive behavior leading to high rates of mortality. Recent findings show that the tumor microenvironment plays a role in the maintenance and progression of many solid tumors, including head and neck cancer. The mechanisms involved in the modulation and regulation of the tumor microenvironment remain poorly understood. Increasing evidence suggests that epigenetic events can modulate the crosstalk between neoplastic and non-neoplastic cells during tumor progression. In this review, we explore the current understanding of the involvement of epigenetic events in the modulation of the tumor microenvironment and its impact on head and neck cancer behavior. We also explore the latest therapeutic strategies that use epigenetic-modulating drugs to manage tumor growth and progression.
Collapse
Affiliation(s)
| | - Vivian Petersen Wagner
- The University of Sheffield Faculty of Medicine Dentistry and Health, 152607, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Joab Cabral Ramos
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Daniel W Lambert
- The University of Sheffield Faculty of Medicine Dentistry and Health, 152607, Sheffield, United Kingdom of Great Britain and Northern Ireland
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, Division of Oral Pathology, Radiology and Medicine, University of Michigan School of Dentistry. Ann Arbor, 48109-1078, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Adriana Franco Paes Leme
- The Brazilian Bioscience National Laboratory, Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
28
|
Zhang Q, Wang Y, Xia C, Ding L, Pu Y, Hu X, Cai H, Hu Q. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals distinct cancer-associated fibroblasts in head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1017. [PMID: 34277817 PMCID: PMC8267303 DOI: 10.21037/atm-21-2767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
Background The heterogeneity of cancer-associated fibroblasts (CAFs) in head and neck squamous cell carcinoma (HNSCC) has been widely acknowledged, but has not yet been elucidated. The potential roles and clinical relevance of CAFs subclusters in HNSCC progression remain obscure. Methods In this study, we combined single-cell and bulk tissue transcriptome profiles of HNSCC with clinical data from The Cancer Genome Atlas (TCGA). The Seurat package was used to perform single-cell RNA-seq analysis to distinguish distinct CAFs subtypes. Prognostic relevance of several CAFs markers was assessed and functional analysis was also performed. Results We identified eight CAFs subclusters; of these, seven showed enhanced expression levels in HNSCC tumor tissues compared to normal tissue, and three (clusters 0, 3, and 4) were associated with poorer overall survival. Further functional analysis revealed that cluster 0 was characterized by myofibroblasts with high alpha smooth muscle actin (aSMA) expression and enrichment in smooth muscle contraction. The cluster 3 exhibited expression of extracellular matrix (ECM)-related genes and was enriched in epithelial-mesenchymal transition (EMT)-related gene sets. Cluster 4 expressed high levels of the major histocompatibility complex (MHC) class II family, which was characterized as antigen-presenting CAFs. Conclusions We determined CAFs heterogeneity in HNSCC. 8 CAFs subclusters were recognized and 3 of which were prognosis related. The 3 CAFs subclusters showed distinct phenotypes enriched in myofibroblast function, ECM remodeling and antigen-presenting function respectively.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chengwan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Ding
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yumei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaobei Hu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huiming Cai
- Nanjing Nuoyuan Medical Devices Co., Ltd., Nanjing, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Kang X, Chen Y, Yi B, Yan X, Jiang C, Chen B, Lu L, Sun Y, Shi R. An integrative microenvironment approach for laryngeal carcinoma: the role of immune/methylation/autophagy signatures on disease clinical prognosis and single-cell genotypes. J Cancer 2021; 12:4148-4171. [PMID: 34093817 PMCID: PMC8176413 DOI: 10.7150/jca.58076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of methylation/autophagy-related genes (MARGs) and immune infiltration in the tumor microenvironment on the prognosis of laryngeal cancer were comprehensively explored in this study. Survival analysis screened out 126 MARGs and 10 immune cells potentially associated with the prognosis of laryngeal carcinoma. Cox and lasso regression analyses were then used to select 8 MARGs (CAPN10, DAPK2, MBTPS2, ST13, CFLAR, FADD, PEX14 and TSC2) and 2 immune cells (Eosinophil and Mast cell) to obtain the prognostic risk scoring system (pRS). The pRS was used to establish a risk prediction model for the prognosis of laryngeal cancer. The predictive ability of the prediction model was evaluated by GEO datasets and our clinical samples. Further analysis revealed that pRS is highly associated with single nucleotide polymorphism (SNP), copy number variation (CNV), immune checkpoint blockade (ICB) therapy and tumor microenvironment. Moreover, the screened pRS-related ceRNA network and circ_0002951/miR-548k/HAS2 pathway provide potential therapeutic targets and biomarkers of laryngocarcinoma. Based on the clustering results of pRS-related genes, single cells were then genotyped and revealed by integrated scRNA-seq in laryngeal cancer samples. Fibroblasts were found enriched in high risk cell clusters at the scRNA-seq level. Fibroblast-related ligand-receptor interactions were then exposed and a neural network-based deep learning model based on these pRS-related hub gene signatures was also established with a high accuracy in cell type prediction. In conclusion, the combination of single-cell and transcriptome laryngeal carcinoma landscape analyses can investigate the link between the tumor microenvironmental and prognostic characteristics.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Xiaojun Yan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Chenyan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Bin Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Lixing Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Yuxing Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| | - Runjie Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai ninth people's Hospital, Shanghai Jiao Tong University School of Medicine; Ear Institute, Shanghai JiaoTong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, China
| |
Collapse
|
30
|
Lei CS, Kung HJ, Shih JW. Long Non-Coding RNAs as Functional Codes for Oral Cancer: Translational Potential, Progress and Promises. Int J Mol Sci 2021; 22:4903. [PMID: 34063159 PMCID: PMC8124393 DOI: 10.3390/ijms22094903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022] Open
Abstract
Oral cancer is one of the leading malignant tumors worldwide. Despite the advent of multidisciplinary approaches, the overall prognosis of patients with oral cancer is poor, mainly due to late diagnosis. There is an urgent need to develop valid biomarkers for early detection and effective therapies. Long non-coding RNAs (lncRNAs) are recognized as key elements of gene regulation, with pivotal roles in various physiological and pathological processes, including cancer. Over the past few years, an exponentially growing number of lncRNAs have been identified and linked to tumorigenesis and prognosis outcomes in oral cancer, illustrating their emerging roles in oral cancer progression and the associated signaling pathways. Herein, we aim to summarize the most recent advances made concerning oral cancer-associated lncRNA, and their expression, involvement, and potential clinical impact, reported to date, with a specific focus on the lncRNA-mediated molecular regulation in oncogenic signaling cascades and oral malignant progression, while exploring their potential, and challenges, for clinical applications as biomarkers or therapeutic targets for oral cancer.
Collapse
Affiliation(s)
- Cing-Syuan Lei
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
| | - Hsing-Jien Kung
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Comprehensive Cancer Center, Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA 95817, USA
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (C.-S.L.); (H.-J.K.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|