1
|
Damerau A, Kirchner M, Mertins P, Buttgereit F, Gaber T. A point-of-research decision in synovial tissue engineering: Mesenchymal stromal cells, tissue derived fibroblast or CTGF-mediated mesenchymal-to-fibroblast transition. Eur J Cell Biol 2024; 103:151455. [PMID: 39293131 DOI: 10.1016/j.ejcb.2024.151455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are prevalent inflammatory joint diseases characterized by synovitis, cartilage, and bone destruction. Fibroblast-like synoviocytes (FLSs) of the synovial membrane are a decisive factor in arthritis, making them a target for future therapies. Developing novel strategies targeting FLSs requires advanced in vitro joint models that accurately replicate non-diseased joint tissue. This study aims to identify a cell source reflecting physiological synovial fibroblasts. Therefore, we newly compared the phenotype and metabolism of "healthy" knee-derived FLSs from patients with ligament injuries (trauma-FLSs) to mesenchymal stromal cells (MSCs), their native precursors. We differentiated MSCs into fibroblasts using connective tissue growth factor (CTGF) and compared selected protein and gene expression patterns to those obtained from trauma-FLSs and OA-FLSs. Based on these findings, we explored the potential of an MSC-derived synovial tissue model to simulate a chronic inflammatory response akin to that seen in arthritis. We have identified MSCs as a suitable cell source for synovial tissue engineering because, despite metabolic differences, they closely resemble human trauma-derived FLSs. CTGF-mediated differentiation of MSCs increased HAS2 expression, essential for hyaluronan synthesis. It showed protein expression patterns akin to OA-FLSs, including markers of ECM components and fibrosis, and enzymes leading to a shift in metabolism towards increased fatty acid oxidation. In general, cytokine stimulation of MSCs in a synovial tissue model induced pro-inflammatory and pro-angiogenic gene expression, hyperproliferation, and increased glucose consumption, reflecting cellular response in human arthritis. We conclude that MSCs can serve as a proxy to study physiological synovial processes and inflammatory responses. In addition, CTGF-mediated mesenchymal-to-fibroblast transition resembles OA-FLSs. Thus, we emphasize MSCs as a valuable cell source for tools in preclinical drug screening and their application in tissue engineering.
Collapse
Affiliation(s)
- Alexandra Damerau
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Frank Buttgereit
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany
| | - Timo Gaber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; German Rheumatism Research Centre (DRFZ) Berlin, a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
2
|
Asad MM, Abdelhafez RS, Barham R, Abdaljaleel M, Alkurdi B, Al-Hadidi S, Zalloum S, Ismail MM, Buqain R, Jafar H, Ababneh NA. Three-dimensional cultures of gingival fibroblasts on fibrin-based scaffolds for gingival augmentation: A proof-of-concept study. Arch Oral Biol 2023; 154:105754. [PMID: 37413831 DOI: 10.1016/j.archoralbio.2023.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Gingival tissue regeneration is associated with several challenges. Tissue engineering regenerates the different components of the tissues, providing three major elements: living cells, appropriate scaffolds, and tissue-inducing substances. This study aimed to regenerate the gingival connective tissue in vitro, using human gingival fibroblasts cultured in three-dimensional fibrin gel scaffolds. DESIGN Human gingival fibroblasts were seeded in a novel three-dimensional fibrin gel scaffold and maintained in two media types: platelet lysate media (control) and collagen-stimulating media (test). Cellular viability and proliferation were assessed, and the production of collagen and other extracellular matrix components in these constructs was investigated and compared. RESULTS Human gingival fibroblasts cultured in three-dimensional cultures were metabolically active and proliferated in both media. Furthermore, histologic sections, scanning electron microscopy, and quantitative polymerase chain reaction confirmed the production of higher levels of collagen and other extracellular matrix fibers in three-dimensional constructs cultured in collagen-stimulating media. CONCLUSIONS Culturing human gingival fibroblasts in a novel three-dimensional fibrin gel scaffold containing collagen-stimulating media resulted in a tissue-equivalent construct that mimics human gingival connective tissue. The impact of these results should be considered for further investigations, which may help to develop a compatible scaffold for gingival soft tissue regeneration and treatment of mucogingival deformities.
Collapse
Affiliation(s)
- Mahabba M Asad
- Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Reem S Abdelhafez
- Department of Preventive Dentistry, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan.
| | - Raghda Barham
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Maram Abdaljaleel
- Department of Pathology, Microbiology, and Forensic Medicine, Faculty of Medicine, the University of Jordan and Jordan University Hospital, Amman, Jordan
| | - Ban Alkurdi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Sabal Al-Hadidi
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Suzan Zalloum
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | | | - Rula Buqain
- Cell Therapy Center, the University of Jordan, Amman, Jordan
| | - Hanan Jafar
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Nidaa A Ababneh
- Cell Therapy Center, the University of Jordan, Amman, Jordan.
| |
Collapse
|
3
|
Taguchi T, Zhang N, Angibeau D, Spivey KP, Lopez MJ. Evaluation of canine adipose-derived multipotent stromal cell differentiation to ligamentoblasts on tensioned collagen type I templates in a custom bioreactor culture system. Am J Vet Res 2021; 82:924-934. [PMID: 34669492 DOI: 10.2460/ajvr.82.11.924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate differentiation of canine adipose-derived multipotent stromal cells (ASCs) into ligamentoblasts on tensioned collagen type I (Col1) templates in a perfusion culture system. SAMPLES Infrapatellar fat pad ASCs from healthy stifle joints of 6 female mixed-breed dogs. PROCEDURES Third-passage ASCs (6 × 106 cells/template) were loaded onto suture-augmented Col1 templates under 15% static strain in perfusion bioreactors. Forty-eight ASC-Col1 constructs were incubated with ligamentogenic (ligamentogenic constructs; n = 24) or stromal medium (stromal constructs; 24) for up to 21 days. Specimens were collected from each construct after 2 hours (day 0) and 7, 14, and 21 days of culture. Cell number, viability, distribution, and morphology; construct collagen content; culture medium procollagen-I-N-terminal peptide concentration; and gene expression were compared between ligamentogenic and stromal constructs. RESULTS ASCs adhered to collagen fibers. Cell numbers increased from days 0 to 7 and days 14 to 21 for both construct types. Relative to stromal constructs, cell morphology and extracellular matrix were more mature and collagen content on day 21 and procollagen-I-N-terminal peptide concentration on days 7 and 21 were greater for ligamentogenic constructs. Ligamentogenic constructs had increased expression of the genes biglycan on day 7, decorin throughout the culture period, and Col1, tenomodulin, fibronectin, and tenascin-c on day 21; expression of Col1, tenomodulin, and tenascin-c increased between days 7 and 21. CONCLUSIONS AND CLINICAL RELEVANCE Ligamentogenic medium was superior to stromal medium for differentiation of ASCs to ligamentoblasts on suture-augmented Col1 scaffolds. Customized ligament neotissue may augment treatment options for dogs with cranial cruciate ligament rupture.
Collapse
Affiliation(s)
- Takashi Taguchi
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Nan Zhang
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Dominique Angibeau
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Kathryn P Spivey
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Mandi J Lopez
- From the Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
4
|
Autologous bone marrow-derived mesenchymal stem cells provide complete regeneration in a rabbit model of the Achilles tendon bundle rupture. INTERNATIONAL ORTHOPAEDICS 2021; 45:3263-3276. [PMID: 34510279 DOI: 10.1007/s00264-021-05168-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To ascertain the role of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in the tendon regeneration. METHODS The study was conducted on 58 Achilles tendons from 29 laboratory Chinchilla adult rabbits. The central bundles of 48 tendons were partially removed and substituted with a tissue-engineered construct consisting of a collagen sponge either loaded with BM-MSCs (n = 24) or cell free (n = 24), placed inside a Vicryl mesh tube. The ends of the resected tendon were inserted in the construct to reach a direct contact with the sponge and sutured to the tube. The animals were sacrificed three and six months post-surgery. Ten intact tendons from five rabbits were used as an untreated control. The tissue samples (n = 30) were stained with haematoxylin and eosin, Picrosirius red, primary antibodies to collagen types I and III and studied by bright-field, phase-contrast, polarized light, and scanning electron microscopies followed by semi-quantitative morphometry. RESULTS Six months results of cell-loaded scaffolds demonstrated parallel collagen fibres, spindle-shaped tenocytes, and neoangiogenesis. In the control cell-free group, the injured areas were filled with a nonspecific fibrotic tissue with minor foci of incomplete regeneration. The biomechanical tests of 28 tendons taken from 14 rabbits showed that the stiffness of the cell-based reconstructed tendons increased to 98% of the value for the intact samples. CONCLUSION The obtained results support the hypothesis that the application of BM-MSCs in a tissue-engineered tendon construct leads to the restitution of the tendon tissue.
Collapse
|
5
|
Lui H, Denbeigh J, Vaquette C, Tran HM, Dietz AB, Cool SM, Dudakovic A, Kakar S, van Wijnen AJ. Fibroblastic differentiation of mesenchymal stem/stromal cells (MSCs) is enhanced by hypoxia in 3D cultures treated with bone morphogenetic protein 6 (BMP6) and growth and differentiation factor 5 (GDF5). Gene 2021; 788:145662. [PMID: 33887373 DOI: 10.1016/j.gene.2021.145662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/15/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Culture conditions and differentiation cocktails may facilitate cell maturation and extracellular matrix (ECM) secretion and support the production of engineered fibroblastic tissues with applications in ligament regeneration. The objective of this study is to investigate the potential of two connective tissue-related ligands (i.e., BMP6 and GDF5) to mediate collagenous ECM synthesis and tissue maturation in vitro under normoxic and hypoxic conditions based on the hypothesis that BMP6 and GDF5 are components of normal paracrine signalling events that support connective tissue homeostasis. METHODS Human adipose-derived MSCs were seeded on 3D-printed medical-grade polycaprolactone (PCL) scaffolds using a bioreactor and incubated in media containing GDF5 and/or BMP6 for 21 days in either normoxic (5% oxygen) or hypoxic (2% oxygen) conditions. Constructs were harvested on Day 3 and 21 for cell viability analysis by live/dead staining, structural analysis by scanning electron microscopy, mRNA levels by RTqPCR analysis, and in situ deposition of proteins by immunofluorescence microscopy. RESULTS Pro-fibroblastic gene expression is enhanced by hypoxic culture conditions compared to normoxic conditions. Hypoxia renders cells more responsive to treatment with BMP6 as reflected by increased expression of ECM mRNA levels on Day 3 with sustained expression until Day 21. GDF5 was not particularly effective either in the absence or presence of BMP6. CONCLUSIONS Fibroblastic differentiation of MSCs is selectively enhanced by BMP6 and not GDF5. Environmental factors (i.e., hypoxia) also influenced the responsiveness of cells to this morphogen.
Collapse
Affiliation(s)
- Hayman Lui
- Griffith University, School of Medicine, Gold Coast, Queensland, Australia; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Hoai My Tran
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia
| | - Allan B Dietz
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
6
|
Maghdouri-White Y, Petrova S, Sori N, Polk S, Wriggers H, Ogle R, Ogle R, Francis M. Electrospun silk–collagen scaffolds and BMP-13 for ligament and tendon repair and regeneration. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa9c6f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Su Y, Denbeigh JM, Camilleri ET, Riester SM, Parry JA, Wagner ER, Yaszemski MJ, Dietz AB, Cool SM, van Wijnen AJ, Kakar S. Extracellular matrix protein production in human adipose-derived mesenchymal stem cells on three-dimensional polycaprolactone (PCL) scaffolds responds to GDF5 or FGF2. GENE REPORTS 2017; 10:149-156. [PMID: 29868646 DOI: 10.1016/j.genrep.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose The poor healing potential of intra-articular ligament injuries drives a need for the development of novel, viable 'neo-ligament' alternatives. Ex vivo approaches combining stem cell engineering, 3-dimensional biocompatible scaffold design and enhancement of biological and biomechanical functionality via the introduction of key growth factors and morphogens, represent a promising solution to ligament regeneration. Methods We investigated growth, differentiation and extracellular matrix (ECM) protein production of human adipose-derived mesenchymal stem/stromal cells (MSCs), cultured in 5% human platelet lysate (PL) and seeded on three-dimensional polycaprolactone (PCL) scaffolds, in response to the connective-tissue related ligands fibroblast growth factor 2 (basic) (FGF2) and growth and differentiation factor-5 (GDF5). Phenotypic alterations of MSCs under different biological conditions were examined using cell viability assays, real time qPCR analysis of total RNA, as well as immunofluorescence microscopy. Results Phenotypic conversion of MSCs into ECM producing fibroblastic cells proceeds spontaneously in the presence of human platelet lysate. Administration of FGF2 and/or GDF5 enhances production of mRNAs for several ECM proteins including Collagen types I and III, as well as Tenomodulin (e.g., COL1A1, TNMD), but not Tenascin-C (TNC). Differences in the in situ deposition of ECM proteins Collagen type III and Tenascin-C were validated by immunofluorescence microscopy. Summary Treatment of MSCs with FGF2 and GDF5 was not synergistic and occasionally antagonistic for ECM production. Our results suggest that GDF5 alone enhances the conversion of MSCs to fibroblastic cells possessing a phenotype consistent with that of connective-tissue fibroblasts.
Collapse
Affiliation(s)
- Yan Su
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Joshua A Parry
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Eric R Wagner
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Department of Biomedical Engineering and Physiology, Mayo Clinic College of Medicine, Rochester, MN
| | - Allan B Dietz
- Department of Laboratory Medicine & Pathology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis MN.,Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| |
Collapse
|
8
|
Setiawati R, Utomo DN, Rantam FA, Ifran NN, Budhiparama NC. Early Graft Tunnel Healing After Anterior Cruciate Ligament Reconstruction With Intratunnel Injection of Bone Marrow Mesenchymal Stem Cells and Vascular Endothelial Growth Factor. Orthop J Sports Med 2017; 5:2325967117708548. [PMID: 28680888 PMCID: PMC5482354 DOI: 10.1177/2325967117708548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent adult stem cells and have become an important source of cells for engineering tissue repair and cell therapy. Vascular endothelial growth factor (VEGF) promotes angiogenesis and contributes fibrous integration between tendon and bone during the early postoperative stage. Both MSCs and VEGF can stimulate cell proliferation, differentiation, and matrix deposition by enhancing angiogenesis and osteogenesis of the graft in the tunnel. Hypothesis: Injection of intratunnel BM-MSCs and VEGF enhances the early healing process of a tendon graft. Study Design: Controlled laboratory study. Methods: In this controlled animal laboratory study, each of 4 groups of rabbits underwent unilateral anterior cruciate ligament (ACL) reconstruction with use of the ipsilateral semitendinosus tendon. The rabbits received intratunnel injection of BM-MSCs and VEGF with a fibrin glue seal covering the distal tunnel at the articular site. Evaluation using magnetic resonance imaging (MRI), collagen type III expression, and biomechanical analyses were performed at 3- and 6-week intervals. Results: All parameters using MRI, collagen type III expression, and biomechanical analysis of pullout strength of the graft showed that application of intratunnel BM-MSCs and VEGF enhanced tendon-to-bone healing after ACL reconstruction. Conclusion: Intratunnel injections of BM-MSCs and VEGF after ACL reconstruction enhanced graft tunnel healing. Overall, the femoral tunnel that received BM-MSCs and VEGF had better advanced healing with increased collagen type III fibers and better outcomes on MRI and biomechanical analysis. MRI is the most reliable tool for clinical use in evaluating stages of ACL healing after reconstruction, since biopsy is an invasive procedure.
Collapse
Affiliation(s)
- Rosy Setiawati
- Musculoskeletal Division, Department of Radiology, School of Medicine, Airlangga University, Dr Soetomo Hospital, Airlangga University Hospital, Surabaya, Indonesia.,Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Orthopedics, School of Medicine, Airlangga University, Dr Soetomo Hospital, Surabaya, Indonesia.,Regenerative Medicine, School of Medicine, Airlangga University, Dr Soetomo Hospital, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Virology and Immunology Laboratory, Department of Microbiology, School of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Nadia Nastassia Ifran
- Nicolaas Institute of Constructive Orthopedic Research and Education Foundation, Jakarta, Indonesia
| | - Nicolaas C Budhiparama
- Nicolaas Institute of Constructive Orthopedic Research and Education Foundation, Jakarta, Indonesia
| |
Collapse
|
9
|
Shou K, Huang Y, Qi B, Hu X, Ma Z, Lu A, Jian C, Zhang L, Yu A. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber-based hydrogel. J Tissue Eng Regen Med 2017; 12:e867-e880. [PMID: 28079980 DOI: 10.1002/term.2400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/05/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been considered to be a promising strategy for wound healing. However, poor viability of engrafted BMSCs and limited capabilities of differentiation into the desired cell types in wounds often hinder its application. Few studies report the induction of BMSC differentiation into the skin regeneration-related cell types using natural biopolymer, e.g. chitin and its derivative. Here we utilized a chitin nanofiber (CNF) hydrogel as a directive cue to induce BMSC differentiation for enhancing cutaneous wound regeneration in the absence of cell-differentiating factors. First, a 'green' fabrication of CNF hydrogels encapsulating green fluorescence protein (GFP)-transfected rat BMSCs was performed via in-situ physical gelation without chemical cross-linking. Without soluble differentiation inducers, CNF hydrogels decreased the expression of BMSC transcription factors (Oct4 and Klf4) and concomitantly induced their differentiation into the angiogenic cells and fibroblasts, which are indispensable for wound regeneration. In vivo, rat full-thickness cutaneous wounds treated with BMSC hydrogel exhibited better viability of the cells than did local BMSC injection-treated wounds. Similar to that of the in vitro result, CNF hydrogels induced BMSCs to differentiate into beneficial cell types, resulting in accelerated wound repair characterized by granulation tissue formation. Our data suggest that three-dimensional CNF hydrogel may not only serve as a 'protection' to improve the viability of exogenous BMSCs, but also provide a functional scaffold capable of enhancing BMSC regenerative potential to promote wound healing. This may help to overcome the current limitations to stem cell therapy that are faced in the field of wound regeneration. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kangquan Shou
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Huang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Baiwen Qi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhanjun Ma
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ang Lu
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Chao Jian
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lina Zhang
- College of Chemistry and Molecule Sciences of Wuhan University, Wuhan, Hubei, China
| | - Aixi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Waryasz GR, Marcaccio S, Gil JA, Owens BD, Fadale PD. Anterior Cruciate Ligament Repair and Biologic Innovations. JBJS Rev 2017; 5:e2. [DOI: 10.2106/jbjs.rvw.16.00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Chailakhyan RK, Shekhter AB, Ivannikov SV, Tel'pukhov VI, Suslin DS, Gerasimov YV, Tonenkov AM, Grosheva AG, Panyushkin PV, Moskvina IL, Vorob'eva NN, Bagratashvili VN. Reconstruction of Ligament and Tendon Defects Using Cell Technologies. Bull Exp Biol Med 2017; 162:563-568. [PMID: 28243921 DOI: 10.1007/s10517-017-3660-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 12/14/2022]
Abstract
We studied the possibility of restoring the integrity of the Achilles tendon in rabbits using autologous multipotent stromal cells. Collagen or gelatin sponges populated with cells were placed in a resorbable Vicryl mesh tube and this tissue-engineered construct was introduced into a defect of the middle part of the Achilles tendon. In 4 months, histological analysis showed complete regeneration of the tendon with the formation of parallel collagen fibers, spindle-shaped tenocytes, and newly formed vessels.
Collapse
Affiliation(s)
- R K Chailakhyan
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A B Shekhter
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S V Ivannikov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V I Tel'pukhov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - D S Suslin
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu V Gerasimov
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A M Tonenkov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A G Grosheva
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - P V Panyushkin
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I L Moskvina
- N. F. Gamaleya Research Centre of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N N Vorob'eva
- Institute of Photonics Technologies, Russian Academy of Sciences, Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - V N Bagratashvili
- Institute of Photonics Technologies, Russian Academy of Sciences, Federal Research Center "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1363902. [PMID: 27419126 PMCID: PMC4932172 DOI: 10.1155/2016/1363902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/19/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc+ transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 106 BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway.
Collapse
|
13
|
Cui X, Liu M, Wang J, Zhou Y, Xiang Q. Electrospun scaffold containing TGF-β1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia. IET Nanobiotechnol 2015; 9:76-84. [PMID: 25829173 DOI: 10.1049/iet-nbt.2014.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The study was aimed at evaluating the effect of electrospun scaffold containing TGF-β1 on promoting human mesenchymal stem cells (MSCs) differentiation towards a nucleus pulposus-like phenotype under hypoxia. Two kinds of nanofibrous scaffolds containing TGF-β1 were fabricated using uniaxial electrospinning (Group I) and coaxial electrospinning (Group II). Human MSCs were seeded on both kinds of scaffolds and cultured in a hypoxia chamber (2% O2), and then the scaffolds were characterised. Cell proliferation and differentiation were also evaluated after 3 weeks of cell culture. Results showed that both kinds of scaffolds shared similar diameter distributions and protein release. However, Group I scaffolds were more hydrophilic than that of Group II. Both kinds of scaffolds induced the MSCs to differentiate towards the nucleus pulposus-type phenotype in vitro. In addition, the expression of nucleus pulposus-associated genes (aggrecan, type II collagen, HIF-1α and Sox-9) in Group I increased more than that of Group II. These results indicate that electrospinning nanofibrous scaffolds containing TGF-β1 supports the differentiation of MSCs towards the pulposus-like phenotype in a hypoxia chamber, which would be a more appropriate choice for nucleus pulposus regeneration.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Jiaxu Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
14
|
Brown JP, Galassi TV, Stoppato M, Schiele NR, Kuo CK. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors. Stem Cell Res Ther 2015; 6:89. [PMID: 25956970 PMCID: PMC4425922 DOI: 10.1186/s13287-015-0043-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/07/2014] [Accepted: 03/05/2015] [Indexed: 01/14/2023] Open
Abstract
Introduction Advances in tendon engineering with mesenchymal stem cells (MSCs) are hindered by a need for cues to direct tenogenesis, and markers to assess tenogenic state. We examined the effects of factors involved in embryonic tendon development on adult MSCs, and compared MSC responses to that of embryonic tendon progenitor cells (TPCs), a model system of tenogenically differentiating cells. Methods Murine MSCs and TPCs subjected to cyclic tensile loading, transforming growth factor-β2 (TGFβ2), and fibroblast growth factor-4 (FGF4) in vitro were assessed for proliferation and mRNA levels of scleraxis, TGFβ2, tenomodulin, collagen type I and elastin. Results Before treatment, scleraxis and elastin levels in MSCs were lower than in TPCs, while other tendon markers expressed at similar levels in MSCs as TPCs. TGFβ2 alone and combined with loading were tenogenic based on increased scleraxis levels in both MSCs and TPCs. Loading alone had minimal effect. FGF4 downregulated tendon marker levels in MSCs but not in TPCs. Select tendon markers were not consistently upregulated with scleraxis, demonstrating the importance of characterizing a profile of markers. Conclusions Similar responses as TPCs to specific treatments suggest MSCs have tenogenic potential. Potentially shared mechanisms of cell function between MSCs and TPCs should be investigated in longer term studies.
Collapse
Affiliation(s)
- Jeffrey P Brown
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Thomas V Galassi
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Matteo Stoppato
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Nathan R Schiele
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA.
| | - Catherine K Kuo
- Department of Biomedical Engineering Tufts University, Science and Technology Center, 4 Colby Street , Medford, MA, 02155, USA. .,Cell, Molecular & Developmental Biology Program Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 145 Harrison Avenue, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Ngo MA, Müller A, Li Y, Neumann S, Tian G, Dixon IMC, Arora RC, Freed DH. Human mesenchymal stem cells express a myofibroblastic phenotype in vitro: comparison to human cardiac myofibroblasts. Mol Cell Biochem 2014; 392:187-204. [PMID: 24691634 DOI: 10.1007/s11010-014-2030-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/14/2014] [Indexed: 01/12/2023]
Abstract
Cardiac fibrosis accompanies a variety of myocardial disorders, and is induced by myofibroblasts. These cells may be composed of a heterogeneous population of parent cells, including interstitial fibroblasts and circulating progenitor cells. Direct comparison of human bone marrow-derived mesenchymal stem cells (BM-MSCs) and cardiac myofibroblasts (CMyfbs) has not been previously reported. We hypothesized that BM-MSCs readily adopt a myofibroblastic phenotype in culture. Human primary BM-MSCs and human CMyfbs were isolated from patients undergoing open heart surgery and expanded under standard culture conditions. We assessed and compared their phenotypic and functional characteristics by examining their gene expression profile, their ability to contract collagen gels and synthesize collagen type I. In addition, we examined the role of non-muscle myosin II (NMMII) in modulating MSC myogenic function using NMMII siRNA knockdown and blebbistatin, a specific small molecule inhibitor of NMMII. We report that, while human BM-MSCs retain pluripotency, they adopt a myofibroblastic phenotype in culture and stain positive for the myofibroblast markers α-SMA, vimentin, NMMIIB, ED-A fibronectin, and collagen type 1 at each passage. In addition, they contract collagen gels in response to TGF-β1 and synthesize collagen similar to human CMyfbs. Moreover, inhibition of NMMII activity with blebbistatin completely attenuates gel contractility without affecting cell viability. Thus, human BM-MSCs share and exhibit similar physiological and functional characteristics as human CMyfbs in vitro, and their propensity to adopt a myofibroblast phenotype in culture may contribute to cardiac fibrosis.
Collapse
Affiliation(s)
- Melanie A Ngo
- Department of Physiology, Faculty of Medicine, Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Injury to the anterior cruciate ligament (ACL) is one of the most devastating and frequent injuries of the knee. Surgical reconstruction is the current standard of care for treatment of ACL injuries in active patients. The widespread adoption of ACL reconstruction over primary repair was based on early perception of the limited healing capacity of the ACL. Although the majority of ACL reconstruction surgeries successfully restore gross joint stability, post-traumatic osteoarthritis is commonplace following these injuries, even with ACL reconstruction. The development of new techniques to limit the long-term clinical sequelae associated with ACL reconstruction has been the main focus of research over the past decades. The improved knowledge of healing, along with recent advances in tissue engineering and regenerative medicine, has resulted in the discovery of novel biologically augmented ACL-repair techniques that have satisfactory outcomes in preclinical studies. This instructional review provides a summary of the latest advances made in ACL repair. Cite this article: Bone Joint Res 2014;3:20-31.
Collapse
Affiliation(s)
- A M Kiapour
- Boston Children's Hospital, Harvard MedicalSchool, Sports Medicine Research Laboratory, Departmentof Orthopaedic Surgery, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
17
|
Colenci R, da Silva Assunção LR, Mogami Bomfim SR, de Assis Golim M, Deffune E, Penha Oliveira SH. Bone marrow mesenchymal stem cells stimulated by bFGF up-regulated protein expression in comparison with periodontal fibroblasts in vitro. Arch Oral Biol 2013; 59:268-76. [PMID: 24581848 DOI: 10.1016/j.archoralbio.2013.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/14/2013] [Accepted: 11/30/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate, in vitro, the role of bFGF in the proliferation and expression of collagen type I and fibronectin of dog bone marrow mesenchymal stem cells (dBMMSCs) in comparison with the expression of the same proteins in dog periodontal fibroblasts (dPLFs). DESIGN dBMMSCs from the iliac crest were cultivated in Dulbecco's Modified Eagle's Medium (DMEM). Flow cytometry analysis (FCA) was used to characterize dBMMSC. Cells were stimulated with bFGF (1, 5 and 10 ng/mL) after 24 and 48 h. Real time RT-PCR was performed to verify collagen type I and fibronectin expressions. MTT assay was used to confirm cellular proliferation. Statistical analyses were performed (ANOVA and Kruskal-Wallis tests; p<0.05). RESULTS FCA showed 55.98% of CD34+ and 32.67% of CD90+ after bone marrow aspiration; 3.33% of CD34+ and 33.0% of CD90+ before P1. After P2, 10.54% of dBMMSCs expressed CD90, whereas after P3, this number decreased to 1.58%. dPLFs presented 4.04% of CD90+ and 1.05% of CD34+ after P3. MTT evaluation showed increase in dBMSC proliferation with 5 ng/mL bFGF-stimulus after 24-h. Both collagen I and fibronectin expression were very similar between the two cells groups after 24-h stimulation with 1 ng/mL bFGF concentration. Fibronectin and collagen I expressions were higher after 24-h stimulation with 5 ng/mL bFGF. CONCLUSION dBMMSCs (1 ng/mL-bFGF stimulus after 24 h) are very similar to dPLFs as regards morphological and immunostaining characteristics, and collagen and/or fibronectin production. The dBMMSCs presented the highest protein expression rates with 5 ng/mL-bFGF stimulus after 24-h.
Collapse
Affiliation(s)
- Renato Colenci
- DDS, School of Dentistry, UNESP - Univ. Estadual Paulista, São Paulo, Brazil
| | | | - Suely Regina Mogami Bomfim
- Department of Clinics, Surgery and Animal Reproduction, School of Veterinary Medicine, UNESP - Univ. Estadual Paulista, São Paulo, Brazil
| | - Marjorie de Assis Golim
- Laboratory of Flow Cytometry, Botucatu Blood Center, School of Medicine, UNESP - Univ. Estadual Paulista, São Paulo, Brazil
| | - Elenice Deffune
- Laboratory of Cellular Engineering, Botucatu Blood Center, School of Medicine, UNESP - Univ. Estadual Paulista, São Paulo, Brazil
| | | |
Collapse
|
18
|
Brown JP, Finley VG, Kuo CK. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin. J Biomech 2013; 47:214-22. [PMID: 24231248 DOI: 10.1016/j.jbiomech.2013.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/03/2023]
Abstract
Stem cell-based engineering strategies for tendons have yet to yield a normal functional tissue, due in part to a need for tenogenic factors. Additionally, the ability to evaluate differentiation has been challenged by a lack of markers for differentiation. We propose to inform tendon regeneration with developmental cues involved in normal tissue formation and with phenotypic markers that are characteristic of differentiating tendon progenitor cells (TPCs). Mechanical forces, fibroblast growth factor (FGF)-4 and transforming growth factor (TGF)-β2 are implicated in embryonic tendon development, yet the isolated effects of these factors on differentiating TPCs are unknown. Additionally, developmental mechanisms vary between limb and axial tendons, suggesting the respective cell types are programmed to respond uniquely to exogenous factors. To characterize developmental cues and benchmarks for differentiation toward limb vs. axial phenotypes, we dynamically loaded and treated TPCs with growth factors and assessed gene expression profiles as a function of developmental stage and anatomical origin. Based on scleraxis expression, TGFβ2 was tenogenic for TPCs at all stages, while loading was for late-stage cells only, and FGF4 had no effect despite regulation of other genes. When factors were combined, TGFβ2 continued to be tenogenic, while FGF4 appeared anti-tenogenic. Various treatments elicited distinct responses by axial vs. limb TPCs of specific stages. These results identified tenogenic factors, suggest tendon engineering strategies should be customized for tissues by anatomical origin, and provide stage-specific gene expression profiles of limb and axial TPCs as benchmarks with which to monitor tenogenic differentiation of stem cells.
Collapse
Affiliation(s)
- Jeffrey P Brown
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Violet G Finley
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
19
|
Subramony SD, Su A, Yeager K, Lu HH. Combined effects of chemical priming and mechanical stimulation on mesenchymal stem cell differentiation on nanofiber scaffolds. J Biomech 2013; 47:2189-96. [PMID: 24267271 DOI: 10.1016/j.jbiomech.2013.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/12/2013] [Indexed: 12/22/2022]
Abstract
Functional tissue engineering of connective tissues such as the anterior cruciate ligament (ACL) remains a significant clinical challenge, largely due to the need for mechanically competent scaffold systems for grafting, as well as a reliable cell source for tissue formation. We have designed an aligned, polylactide-co-glycolide (PLGA) nanofiber-based scaffold with physiologically relevant mechanical properties for ligament regeneration. The objective of this study is to identify optimal tissue engineering strategies for fibroblastic induction of human mesenchymal stem cells (hMSC), testing the hypothesis that basic fibroblast growth factor (bFGF) priming coupled with tensile loading will enhance hMSC-mediated ligament regeneration. It was observed that compared to the unloaded, as well as growth factor-primed but unloaded controls, bFGF stimulation followed by physiologically relevant tensile loading enhanced hMSC proliferation, collagen production and subsequent differentiation into ligament fibroblast-like cells, upregulating the expression of types I and III collagen, as well as tenasin-C and tenomodulin. The results of this study suggest that bFGF priming increases cell proliferation, while mechanical stimulation of the hMSCs on the aligned nanofiber scaffold promotes fibroblastic induction of these cells. In addition to demonstrating the potential of nanofiber scaffolds for hMSC-mediated functional ligament tissue engineering, this study yields new insights into the interactive effects of chemical and mechanical stimuli on stem cell differentiation.
Collapse
Affiliation(s)
- Siddarth D Subramony
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Amanda Su
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Keith Yeager
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| |
Collapse
|
20
|
Rizzello G, Longo UG, Petrillo S, Lamberti A, Khan WS, Maffulli N, Denaro V. Growth factors and stem cells for the management of anterior cruciate ligament tears. Open Orthop J 2012; 6:525-30. [PMID: 23248722 PMCID: PMC3522096 DOI: 10.2174/1874325001206010525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/14/2012] [Accepted: 09/22/2012] [Indexed: 12/27/2022] Open
Abstract
The anterior cruciate ligament (ACL) is fundamental for the knee joint stability. ACL tears are frequent, especially during sport activities, occurring mainly in young and active patients. Nowadays, the gold standard for the management of ACL tears remains the surgical reconstruction with autografts or allografts. New strategies are being developed to resolve the problems of ligament grafting and promote a physiological healing process of ligamentous tissue without requiring surgical reconstruction. Moreover, these strategies can be applicable in association surgical reconstruction and may be useful to promote and accelerate the healing process. The use of growth factors and stem cells seems to offer a new and fascinating solution for the management of ACL tears. The injection of stem cell and/or growth factors in the site of ligamentous injury can potentially enhance the repair process of the physiological tissue. These procedures are still at their infancy, and more in vivo and in vitro studies are required to clarify the molecular pathways and effectiveness of growth factors and stem cells therapy for the management of ACL tears. This review aims to summarize the current knowledge in the field of growth factors and stem cells for the management of ACL tears.
Collapse
Affiliation(s)
- Giacomo Rizzello
- Department of Orthopaedic and Trauma Surgery. Campus Bio-Medico University, Via Alvaro del Portillo, 200, 00128 Trigoria, Rome, Italy ; Centro Integrato di Ricerca (CIR) Campus Bio-Medico University, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Kang MN, Yoon HH, Seo YK, Park JK. Human umbilical cord-derived mesenchymal stem cells differentiate into ligament-like cells with mechanical stimulation in various media. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0333-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
Chen K, Sahoo S, He P, Ng KS, Toh SL, Goh JC. A Hybrid Silk/RADA-Based Fibrous Scaffold with Triple Hierarchy for Ligament Regeneration. Tissue Eng Part A 2012; 18:1399-409. [DOI: 10.1089/ten.tea.2011.0376] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Kelei Chen
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Sambit Sahoo
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Pengfei He
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Kian Siang Ng
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
| | - Siew Lok Toh
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - James C.H. Goh
- Department of Bioengineering, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Han Y, Chai J, Sun T, Li D, Tao R. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro. Biochem Biophys Res Commun 2011; 413:561-5. [DOI: 10.1016/j.bbrc.2011.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 09/01/2011] [Indexed: 11/26/2022]
|
24
|
Ma J, Smietana MJ, Kostrominova TY, Wojtys EM, Larkin LM, Arruda EM. Three-dimensional engineered bone-ligament-bone constructs for anterior cruciate ligament replacement. Tissue Eng Part A 2011; 18:103-16. [PMID: 21902608 DOI: 10.1089/ten.tea.2011.0231] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The anterior cruciate ligament (ACL), a major stabilizer of the knee, is commonly injured. Because of its intrinsic poor healing ability, a torn ACL is usually reconstructed by a graft. We developed a multi-phasic, or bone-ligament-bone, tissue-engineered construct for ACL grafts using bone marrow stromal cells and sheep as a model system. After 6 months in vivo, the constructs increased in cross section and exhibited a well-organized microstructure, native bone integration, a functional enthesis, vascularization, innervation, increased collagen content, and structural alignment. The constructs increased in stiffness to 52% of the tangent modulus and 95% of the geometric stiffness of native ACL. The viscoelastic response of the explants was virtually indistinguishable from that of adult ACL. These results suggest that our constructs after implantation can obtain physiologically relevant structural and functional characteristics comparable to those of adult ACL. They present a viable option for ACL replacement.
Collapse
Affiliation(s)
- Jinjin Ma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
25
|
Eagan MJ, Zuk PA, Zhao KW, Bluth BE, Brinkmann EJ, Wu BM, McAllister DR. The suitability of human adipose-derived stem cells for the engineering of ligament tissue. J Tissue Eng Regen Med 2011; 6:702-9. [PMID: 21953999 DOI: 10.1002/term.474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/19/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
Abstract
Rupture of the anterior cruciate ligament (ACL) is the one of the most common sports-related injuries. With its poor healing capacity, surgical reconstruction using either autografts or allografts is currently required to restore function. However, serious complications are associated with graft reconstructions and the number of such reconstructions has steadily risen over the years, necessitating the search for an alternative approach to ACL repair. Such an approach may likely be tissue engineering. Recent engineering approaches using ligament-derived fibroblasts have been promising, but the slow growth rate of such fibroblasts in vitro may limit their practical application. More promising results are being achieved using bone marrow mesenchymal stem cells (MSCs). The adipose-derived stem cell (ASC) is often proposed as an alternative choice to the MSC and, as such, may be a suitable stem cell for ligament engineering. However, the use of ASCs in ligament engineering still remains relatively unexplored. Therefore, in this study, the potential use of human ASCs in ligament tissue engineering was initially explored by examining their ability to express several ligament markers under growth factor treatment. ASC populations treated for up to 4 weeks with TGFβ1 or IGF1 did not show any significant and consistent upregulation in the expression of collagen types 1 and 3, tenascin C and scleraxis. While treatment with EGF or bFGF resulted in increased tenascin C expression, increased expression of collagens 1 and 3 were never observed. Therefore, simple in vitro treatment of human ASC populations with growth factors may not stimulate their ligament differentiative potential.
Collapse
Affiliation(s)
- Michael J Eagan
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Center for Health Sciences, Los Angeles, CA, USA
| | - Patricia A Zuk
- Division of Plastic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Center for Health Sciences, Los Angeles, CA, USA
| | - Ke-Wei Zhao
- VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, Orthopedic Tissue Engineering Laboratory Los Angeles, CA, USA
| | - Benjamin E Bluth
- Division of Plastic Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Center for Health Sciences, Los Angeles, CA, USA
| | - Elyse J Brinkmann
- Department of Biomedical Engineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, CA, USA
| | - Benjamin M Wu
- Department of Biomedical Engineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, CA, USA
| | - David R McAllister
- Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Center for Health Sciences, Los Angeles, CA, USA.,VA Greater Los Angeles Healthcare System, West Los Angeles Healthcare Center, Orthopedic Tissue Engineering Laboratory Los Angeles, CA, USA
| |
Collapse
|
26
|
Sahoo S, Ang LT, Goh JCH, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A 2010; 93:1539-50. [PMID: 20014288 DOI: 10.1002/jbm.a.32645] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tissue engineering scaffolds should ideally mimic the natural ECM in structure and function. Electrospun nanofibrous scaffolds are easily fabricated and possess a biomimetic nanostructure. Scaffolds can mimic ECM function by acting as a depot for sustained release of growth factors. bFGF, an important growth factor involved in tissue repair and mesenchymal stem cell proliferation and differentiation, is a suitable candidate for sustained delivery from scaffolds. In this study, we present two types of PLGA nanofibers incorporated with bFGF, fabricated using the facile technique of blending and electrospinning (Group I) and by the more complex technique of coaxial electrospinning (Group II). bFGF was randomly dispersed in Group I and distributed as a central core within Group II nanofibers; both scaffolds showed similar protein encapsulation efficiency and release over 1-2 weeks. Although both scaffold groups favored bone marrow stem cell attachment and subsequent proliferation, cells cultured on Group I scaffolds demonstrated increased collagen production and upregulated gene expression of specific ECM proteins, indicating fibroblastic differentiation. The study shows that the electrospinning technique could be used to prolong growth factor release from scaffolds and an appropriately sustained growth factor release profile in combination with a nanofibrous substrate could positively influence stem cell behavior and fate.
Collapse
Affiliation(s)
- Sambit Sahoo
- Tissue Repair Laboratory, Division of Bioengineering, National University of Singapore, Singapore 117574, Singapore
| | | | | | | |
Collapse
|
27
|
Calarco A, Petillo O, Bosetti M, Torpedine A, Cannas M, Perrone L, Galderisi U, Melone MAB, Peluso G. Controlled delivery of the heparan sulfate/FGF-2 complex by a polyelectrolyte scaffold promotes maximal hMSC proliferation and differentiation. J Cell Biochem 2010; 110:903-9. [PMID: 20564189 DOI: 10.1002/jcb.22602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growth factors and other regulatory molecules are required to direct differentiation of bone marrow-derived human mesenchymal stem cells (hMSC) along specific lineages. However, the therapeutic use of growth factors is limited by their susceptibility to degradation, and the need to maintain prolonged local release of growth factor at levels sufficient to stimulate hMSC. The aim of this study was to investigate whether a device containing heparan sulfate (HS), which is a co-factor in growth factor-mediated cell proliferation and differentiation, could potentiate and prolong the delivery of fibroblast growth factor-2 (FGF-2) and thus enhance hMSC stimulation. To this aim, we synthesized cationic polyelectrolyte polymers covalently and non-covalently anchored to HS and evaluated their effect on hMSC proliferation. Polymers non-covalently bound to HS resulted in the release of an HS/FGF-2 complex rather than FGF-2 alone. The release of this complex significantly restored hMSC proliferation, which was abolished in serum-free medium and only partially restored by the release of FGF-2 alone as occurred with polymer covalently bound to HS. We also demonstrate that exposure to HS/FGF-2 during early growth but not during post-confluence is essential for hMSC differentiation down the fibroblast lineage, which suggests that both factors are required to establish the correct stem cell commitment that is necessary to support subsequent differentiation. In conclusion, the delivery platform described here is a step towards the development of a new class of biomaterial that enables the prolonged, non-covalent binding and controlled delivery of growth factors and cofactors without altering their potency.
Collapse
Affiliation(s)
- Anna Calarco
- Institute of Protein Biochemistry-CNR, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Little D, Guilak F, Ruch DS. Ligament-derived matrix stimulates a ligamentous phenotype in human adipose-derived stem cells. Tissue Eng Part A 2010; 16:2307-19. [PMID: 20406104 DOI: 10.1089/ten.tea.2009.0720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p <or= 0.05). Increased seeding density increased DNA content incrementally over 28 days in culture for LDM but not COL constructs (p <or= 0.05). These findings suggest that LDM can stimulate a ligament phenotype by hASCs, and may provide a novel scaffold material for ligament engineering applications.
Collapse
Affiliation(s)
- Dianne Little
- Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
29
|
Cheng MT, Liu CL, Chen TH, Lee OK. Comparison of potentials between stem cells isolated from human anterior cruciate ligament and bone marrow for ligament tissue engineering. Tissue Eng Part A 2010; 16:2237-53. [PMID: 20163211 DOI: 10.1089/ten.tea.2009.0664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have previously isolated and identified stem cells from human anterior cruciate ligament (ACL). The purpose of this study was to evaluate the differences in proliferation, differentiation, and extracellular matrix (ECM) formation abilities between bone marrow stem cells (BMSCs) and ACL-derived stem cells (LSCs) from the same donors when cultured with different growth factors, including basic fibroblast growth factor (bFGF), epidermal growth factor, and transforming growth factor-beta 1 (TGF-beta1). Ligament tissues and bone marrow aspirate were obtained from patients undergoing total knee arthroplasty and ACL reconstruction surgeries. Proliferation, colony formation, and population doubling capacity as well as multilineage differentiation potentials of LSCs and BMSCs were compared. Gene expression and ECM production for ligament engineering were also evaluated. It was found that BMSCs possessed better osteogenic differentiation potential than LSCs, while similar adipogenic and chondrogenic differentiation abilities were observed. Proliferation rates of both LSCs and BMSCs were enhanced by bFGF and TGF-beta1. TGF-beta1 treatment significantly increased the expression of type I collagen, type III collagen, fibronectin, and alpha-smooth muscle actin in LSCs, but TGF-beta1 only upregulated type I collagen and tenascin-c in BMSCs. Protein quantification further confirmed the results of differential gene expression and suggested that LSCs and BMSCs increase ECM production upon TGF-beta1 treatment. In summary, in comparison with BMSCs, LSCs proliferate faster and maintain an undifferentiated state with bFGF treatment, whereas under TGF-beta1 treatment, LSCs upregulate major tendinous gene expression and produce a robust amount of ligament ECM protein, making LSCs a potential cell source in future applications of ACL tissue engineering.
Collapse
Affiliation(s)
- Ming-Te Cheng
- Department of Surgery, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
30
|
Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 2010; 120:3340-9. [PMID: 20679726 DOI: 10.1172/jci43230] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/16/2010] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts are ubiquitous cells that demonstrate remarkable diversity. However, their origin and pathways of differentiation remain poorly defined. Here, we show that connective tissue growth factor (CTGF; also known as CCN2) is sufficient to induce human bone marrow mesenchymal stem/stromal cells (MSCs) to differentiate into fibroblasts. CTGF-stimulated MSCs lost their surface mesenchymal epitopes, expressed broad fibroblastic hallmarks, and increasingly synthesized collagen type I and tenacin-C. After fibroblastic commitment, the ability of MSCs to differentiate into nonfibroblastic lineages - including osteoblasts, chondrocytes, and adipocytes - was diminished. To address inherent heterogeneity in MSC culture, we established 18 single MSC-derived clones by limiting dilution. CTGF-treated MSCs were alpha-SMA-, differentiating into alpha-SMA+ myofibroblasts only when stimulated subsequently with TGF-beta1, suggestive of stepwise processes of fibroblast commitment, fibrogenesis, and pathological fibrosis. In rats, in vivo microencapsulated delivery of CTGF prompted postnatal connective tissue to undergo fibrogenesis rather than ectopic mineralization. The knowledge that fibroblasts have a mesenchymal origin may enrich our understanding of organ fibrosis, cancer stroma, ectopic mineralization, scarring, and regeneration.
Collapse
Affiliation(s)
- Chang H Lee
- Tissue Engineering and Regenerative Medicine Laboratory, College of Dental Medicine, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
31
|
Yin Z, Chen X, Chen JL, Ouyang HW. Stem cells for tendon tissue engineering and regeneration. Expert Opin Biol Ther 2010; 10:689-700. [PMID: 20367125 DOI: 10.1517/14712591003769824] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD Tendon injuries are common especially in sports activities, but tendon is a unique connective tissue with poor self-repair capability. With advances in stem cell biology, tissue engineering is becoming increasingly powerful for tissue regeneration. Stem cells with capacity of multipotency and self-renewal are an ideal cell source for tissue engineering. AREAS COVERED IN THIS REVIEW This review focus on discussing the potential strategies including inductive growth factors, bio-scaffolds, mechanical stimulation, genetic modification and co-culture techniques to direct tendon-lineage differentiation of stem cells for complete tendon regeneration. Attempting to use embryonic stem cells as seed cells for tendon tissue engineering have achieved encouraging results. The combination of chemical and physical signals in stem cell microenvironment could be regulated to induce differentiation of the embryonic stem cells into tendon. WHAT THE READER WILL GAIN We summarize fundamental questions, as well as future directions in tendon biology and tissue engineering. TAKE HOME MESSAGE Multifaceted technologies are increasingly required to control stem cell differentiation, to develop novel stem cell-based therapy, and, ultimately, to achieve more effective repair or regeneration of injured tendons.
Collapse
Affiliation(s)
- Zi Yin
- Zhejiang University, School of Medicine, Center for Stem Cell and Tissue Engineering, Mailbox #39, 388 Yu Hang Tang Road, Hangzhou 310058, China
| | | | | | | |
Collapse
|
32
|
Funakoshi T, Spector M. Chondrogenic differentiation and lubricin expression of caprine infraspinatus tendon cells. J Orthop Res 2010; 28:716-25. [PMID: 20058273 DOI: 10.1002/jor.21053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reparative strategies for the treatment of injuries to tendons, including those of the rotator cuff of the shoulder, need to address the formation of the cartilage which serves as the attachment apparatus to bone and which forms at regions undergoing compressive loading. Moreover, recent work indicates that cells employed for rotator cuff repair may need to synthesize a lubricating glycoprotein, lubricin, which has recently been found to play a role in tendon tribology. The objective of the present study was to investigate the chondrogenic differentiation and lubricin expression of caprine infraspinatus tendon cells in monolayer and three-dimensional culture, and to compare the behavior with bone marrow-derived mesenchymal stem cells (MSCs). The results demonstrated that while tendon cells in various media, including chondrogenic medium, expressed lubricin, virtually none of the MSCs synthesized this important lubricating molecule. Also of interest was that the cartilage formation capacity of the tendon cells grown in pellet culture in chondrogenic medium was comparable with MSCs. These data inform the use of tendon cells for rotator cuff repair, including for fibrocartilaginous zones.
Collapse
Affiliation(s)
- Tadanao Funakoshi
- Tissue Engineering, VA Boston Healthcare System, Boston, Massachusetts 02130, USA
| | | |
Collapse
|
33
|
Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation 2010; 79:102-10. [DOI: 10.1016/j.diff.2009.11.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 10/24/2009] [Accepted: 11/11/2009] [Indexed: 11/20/2022]
|
34
|
Sahoo S, Toh SL, Goh JCH. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 2010; 31:2990-8. [PMID: 20089300 DOI: 10.1016/j.biomaterials.2010.01.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 01/03/2010] [Indexed: 11/15/2022]
Abstract
An ideal scaffold that provides a combination of suitable mechanical properties along with biological signals is required for successful ligament/tendon regeneration in mesenchymal stem cell-based tissue engineering strategies. Among the various fibre-based scaffolds that have been used, hybrid fibrous scaffolds comprising both microfibres and nanofibres have been recently shown to be particularly promising. This study developed a biohybrid fibrous scaffold system by coating bioactive bFGF-releasing ultrafine PLGA fibres over mechanically robust slowly-degrading degummed knitted microfibrous silk scaffolds. On the ECM-like biomimetic architecture of ultrafine fibres, sustained release of bFGF mimicked the ECM in function, initially stimulating mesenchymal progenitor cell (MPC) proliferation, and subsequently, their tenogeneic differentiation. The biohybrid scaffold system not only facilitated MPC attachment and promoted cell proliferation, with cells growing both on ultrafine PLGA fibres and silk microfibres, but also stimulated tenogeneic differentiation of seeded MPCs. Upregulated gene expression of ligament/tendon-specific ECM proteins and increased collagen production likely contributed to enhancing mechanical properties of the constructs, generating a ligament/tendon analogue that has the potential to be used to repair injured ligaments/tendons.
Collapse
Affiliation(s)
- Sambit Sahoo
- Department of Orthopaedic Surgery, National University of Singapore, Singapore
| | | | | |
Collapse
|
35
|
Silk protein as a fascinating biomedical polymer: Structural fundamentals and applications. Macromol Res 2009. [DOI: 10.1007/bf03218639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Bashur CA, Shaffer RD, Dahlgren LA, Guelcher SA, Goldstein AS. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng Part A 2009; 15:2435-45. [PMID: 19292650 DOI: 10.1089/ten.tea.2008.0295] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Effective strategies to guide cell alignment and the deposition of an oriented extracellular matrix are critical for the development of anisotropic engineered tissues suitable for the repair of ligament defects. Electrospinning is a promising means to create meshes that can align adherent cells, but the effect of fiber mesh architecture on differentiation has not been examined closely. Therefore, the goal of this study was to determine the effect of fiber diameter and the degree of fiber alignment on mesenchymal progenitor cell morphology, proliferation, and ligament gene expression. Specifically, a poly(ester urethane)urea elastomer was electrospun onto rigid supports under conditions designed to independently vary the mean fiber diameter (from 0.28 to 2.3 microm) and the degree of fiber alignment. Bone marrow stromal cells--seeded onto supported meshes--adhered to and proliferated on all surfaces. Cells assumed a more spindle-shaped morphology with increasing fiber diameter and degree of fiber alignment, and oriented parallel to fibers on aligned meshes. Expression of the ligament markers collagen 1alpha1, decorin, and tenomodulin appeared to be sensitive to fiber diameter and greatest on the smallest fibers. Concurrently, expression of the transcription factor scleraxis appeared to decrease with increasing fiber alignment. These results suggest that the formation of a ligament-like tissue on electrospun scaffolds is enhanced when the scaffolds consist of aligned submicron fibers.
Collapse
Affiliation(s)
- Chris A Bashur
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0211, USA
| | | | | | | | | |
Collapse
|
37
|
Syed-Picard FN, Larkin LM, Shaw CM, Arruda EM. Three-dimensional engineered bone from bone marrow stromal cells and their autogenous extracellular matrix. Tissue Eng Part A 2009; 15:187-95. [PMID: 18759662 DOI: 10.1089/ten.tea.2007.0140] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most bone tissue-engineering research uses porous three-dimensional (3D) scaffolds for cell seeding. In this work, scaffold-less 3D bone-like tissues were engineered from rat bone marrow stromal cells (BMSCs) and their autogenous extracellular matrix (ECM). The BMSCs were cultured on a 2D substrate in medium that induced osteogenic differentiation. After reaching confluence and producing a sufficient amount of their own ECM, the cells contracted their tissue monolayer around two constraint points, forming scaffold-less cylindrical engineered bone-like constructs (EBCs). The EBCs exhibited alizarin red staining for mineralization and alkaline phosphatase activity and contained type I collagen. The EBCs developed a periosteum characterized by fibroblasts and unmineralized collagen on the periphery of the construct. Tensile tests revealed that the EBCs in culture had a tangent modulus of 7.5 +/- 0.5 MPa at 7 days post-3D construct formation and 29 +/- 9 MPa at 6 weeks after construct formation. Implantation of the EBCs into rats 7 days after construct formation resulted in further bone development and vascularization. Tissue explants collected at 4 weeks contained all three cell types found in native bone: osteoblasts, osteocytes, and osteoclasts. The resulting engineered tissues are the first 3D bone tissues developed without the use of exogenous scaffolding.
Collapse
Affiliation(s)
- Fatima N Syed-Picard
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
38
|
Moreau JE, Bramono DS, Horan RL, Kaplan DL, Altman GH. Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng Part A 2008. [PMID: 18380592 DOI: 10.1089/tea.2007.0147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Application of stimuli in sequence to developing cultures in vitro offers the potential to intricately direct cell development and differentiation by following the template of native tissue behavior. We hypothesize that administration of mechanical stimulation at the peak of growth factor-induced cell activity will differentiate bone marrow stromal cells (BMSCs) along a fibroblast lineage and enhance in vitro ligament development through enhanced matrix ingrowth, matrix metalloproteinase-2 (MMP-2) production, collagen type I production, and extracellular matrix (ECM) alignment. BMSC-seeded silk matrices were cultured in a static growth-factor-free environment for 5 days prior to loading into bioreactor vessels to first establish an appropriate dynamic rotational regime, as determined through assessment of cell activity, histology, and surface topography. Once the regime was determined, seeded matrices initially cultured in basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), or growth-factor-free control medium for 5 days were loaded into the bioreactor for 9 days of mechanical stimulation. Our findings indicated that the sequential application of mechanical stimulation following growth factor supplemented static culture-induced cell differentiation toward a fibroblast lineage, enhancing matrix ingrowth, cell and ECM alignment, and total collagen type I produced compared to respective static cultures. The current results suggest a dynamic culturing regime in the development of engineered tissues.
Collapse
Affiliation(s)
- Jodie E Moreau
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | | | | | | | | |
Collapse
|
39
|
Farng E, Urdaneta AR, Barba D, Esmende S, McAllister DR. The effects of GDF-5 and uniaxial strain on mesenchymal stem cells in 3-D culture. Clin Orthop Relat Res 2008; 466:1930-7. [PMID: 18535869 PMCID: PMC2584265 DOI: 10.1007/s11999-008-0300-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 04/29/2008] [Indexed: 01/31/2023]
Abstract
Recent endeavors in tissue engineering have attempted to identify the optimal parameters to create an artificial ligament. Both mechanical and biochemical stimulation have been used by others to independently modulate growth and differentiation, although few studies have explored their interactions. We applied previously described fabrication techniques to create a highly porous (90%-95% porosity, 212-300 microm), 3-D, bioabsorbable polymer scaffold (polycaprolactone). Scaffolds were coated with bovine collagen, and growth and differentiation factor 5 (GDF-5) was added to half of the scaffolds. Scaffolds were seeded with mesenchymal stem cells and cultured in a custom bioreactor under static or cyclic strain (10% strain, 0.33 Hz) conditions. After 48 hours, both mechanical stimulation and GDF-5 increased mRNA production of collagen I, II, and scleraxis compared to control; tenascin C production was not increased. Combining stimuli did not change gene expression; however, cellular metabolism was 1.7 times higher in scaffolds treated with both stimuli. We successfully grew a line of mesenchymal stem cells in 3-D culture, and our initial data indicate mechanical stimulation and GDF-5 influenced cellular activity and mRNA production; we did not, however, observe additive synergism with the mechanical and biological stimuli.
Collapse
Affiliation(s)
- Eugene Farng
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Medical Center, 10833 Le Conte Avenue, Room 16-155 CHS, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
40
|
Moreau JE, Bramono DS, Horan RL, Kaplan DL, Altman GH. Sequential Biochemical and Mechanical Stimulation in the Development of Tissue-Engineered Ligaments. Tissue Eng Part A 2008; 14:1161-72. [DOI: 10.1089/ten.tea.2007.0147] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jodie E. Moreau
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Diah S. Bramono
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | | |
Collapse
|
41
|
Lee CH, Moioli EK, Mao JJ. Fibroblastic differentiation of human mesenchymal stem cells using connective tissue growth factor. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:775-8. [PMID: 17946857 DOI: 10.1109/iembs.2006.259866] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was designed to explore an ex vivo culturing protocol for fibroblastic differentiation of human mesenchymal stem cells (hMSCs) using connective tissue growth factor (CTGF). Fibroblastic differentiation from stem cells is of widespread significance in the engineering of virtually all tissues including tendons, ligaments, periodontal ligament, cranial sutures and as interstitial filler of all organs. The treatment with 100 ng/ml of recombinant human CTGF and 50 mug/ml ascorbic acids on monolayer cultured hMSCs showed significant increases in type I collagen and tenascin-C (Tn-C) contents by 2 and 4 wks. In addition, CTGF-treated hMSCs failed to show osteogenic or chondrogenic differentiation. The present data show that CTGF is an effective induction factor for fibroblastic differentiation of hMSCs. These findings have implications for engineering fibrous tissue by providing the initial evidence of a reproducible protocol for fibroblastic differentiation of hMSCs.
Collapse
Affiliation(s)
- Chang H Lee
- Department of Orthodontics, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
42
|
Fan H, Liu H, Toh SL, Goh JC. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials 2008; 29:1017-27. [DOI: 10.1016/j.biomaterials.2007.10.048] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/30/2007] [Indexed: 01/12/2023]
|
43
|
Petrigliano FA, English CS, Barba D, Esmende S, Wu BM, McAllister DR. The effects of local bFGF release and uniaxial strain on cellular adaptation and gene expression in a 3D environment: implications for ligament tissue engineering. ACTA ACUST UNITED AC 2008; 13:2721-31. [PMID: 17727336 DOI: 10.1089/ten.2006.0434] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The objectives of this investigation were (1) to characterize the growth factor release profile of a basic fibroblast growth factor (bFGF)-coated three-dimensional (3D) polymer scaffold under static and cyclically strained conditions, and (2) to delineate the individual and collective contributions of locally released bFGF and mechanical strain on cellular morphology and gene expression in this 3D system. Scaffolds were treated with I(125)-bFGF and subjected to mechanical strain or maintained in a static environment and the media sampled for factor release over a period of 6 days. Over the first 10 hours, a burst release of 25% of the incorporated growth factor into the surrounding media was noted. At 24 hours, approximately 40% of the bFGF was released into the media, after which steady state was achieved and minimal subsequent release was noted. Mechanical stimulation had no effect on growth factor release from the scaffold in this system. To test the concerted effects of bFGF and mechanical stimulation on bone marrow stromal cells (BMSCs), scaffolds were loaded with 0, 100, or 500 ng of bFGF, seeded with cells, and subjected to mechanical strain or maintained in a static environment. Scaffolds were harvested at 1, 7, and 21 days for RT-PCR and histomorphometry. All scaffolds subjected to growth factor and/or mechanical stimulation demonstrated cellular adherence and spreading at 21 days. Conversely, in the absence of both bFGF and mechanical stimulation, cells demonstrated minimal cytoplasmic spread. Moreover, at 21 days, cells subjected to both mechanical stimulation and bFGF (500 ng) demonstrated the highest upregulation of stress-resistive (collagen I, III) and stress-responsive proteins (tenascin-C). The effect of growth factor may be dose sensitive, however, as unstrained scaffolds treated with 100 ng of bFGF demonstrated upregulation of gene expression comparable to strained scaffolds treated with lower doses of bFGF (0 or 100 ng). In conclusion, results from this study suggest that the stimulatory effects of bFGF are dose sensitive and appear to be influenced by the addition of mechanical strain. The concurrent application of biochemical and mechanical stimuli may be important in promoting the adaptation of BMSCs and driving the transcription of genes essential for synthesis of a functional ligament replacement tissue.
Collapse
Affiliation(s)
- Frank A Petrigliano
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Medical Center, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Johns DE, Athanasiou KA. Design characteristics for temporomandibular joint disc tissue engineering: learning from tendon and articular cartilage. Proc Inst Mech Eng H 2007; 221:509-26. [PMID: 17822153 DOI: 10.1243/09544119jeim158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tissue engineering of chondrocytic or fibroblastic musculoskeletal tissues has been relatively well studied compared with that of the temporomandibular joint (TMJ) disc. Early attempts at tissue engineering the disc have been misguided owing to a lack of understanding of the composition and function of the TMJ disc. The objective of this review is to compare the TMJ disc with a chondrocytic tissue (hyaline articular cartilage) and a fibroblastic tissue (tendon) to understand better the properties of this fibrocartilaginous tissue. The TMJ disc has 25 times more glycosaminoglycan (GAG) per dry weight than tendon but half that of articular cartilage. The disc's tensile modulus is six times more than cartilage but orders less than tendon. The GAG content and tensile modulus suggest that the TMJ disc is characterized as a tissue between hyaline cartilage and tendon, but the disc appears more tendon like when considering its collagen make-up and cell content. Like tendon, the TMJ disc contains primarily collagen type I at 85 per cent per dry weight, while articular cartilage has 30 per cent less collagen, which is type II. Knowledge of quantitative comparisons between joint tissues can give extensive insight into how to improve tissue engineering of the TMJ disc.
Collapse
Affiliation(s)
- D E Johns
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
45
|
Johns DE, Athanasiou KA. Improving culture conditions for temporomandibular joint disc tissue engineering. Cells Tissues Organs 2007; 185:246-57. [PMID: 17587799 DOI: 10.1159/000102173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) is extremely important for activities like eating and talking, which can become painful and difficult for patients with TMJ dysfunction. Tissue engineering is a potential alternative to current surgical interventions through replacement of diseased or injured tissue with a functional construct. Since research with TMJ disc cells began relatively recently, optimal culturing conditions must be determined. METHODS Metabolic additives, L-glutamine, L-alanyl-L-glutamine, sodium pyruvate, and insulin, were examined for their effects on TMJ disc cells in monolayer. Effects of L-proline were examined in three-dimensional (3-D) culture at concentrations of 0, 25 and 100 mg/l. RESULTS The combination of L-glutamine, sodium pyruvate, and insulin improved cell proliferation rates without affecting collagen production or gene expression. No differences were observed in mechanical properties of the engineered constructs; however, collagen and glycosaminoglycan quantities normalized to cell number decreased at the highest concentration of L-proline. CONCLUSION This work identified supplements for 2-D monolayer expansion. Other supplements or culture conditions still need to be investigated for 3-D tissue production. This work improves upon porcine TMJ disc cell culturing conditions, taking us closer to being able to engineer the TMJ disc.
Collapse
Affiliation(s)
- D E Johns
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|
46
|
Moreau J, Chen J, Kaplan D, Altman G. Sequential growth factor stimulation of bone marrow stromal cells in extended culture. ACTA ACUST UNITED AC 2007; 12:2905-12. [PMID: 17518658 DOI: 10.1089/ten.2006.12.2905] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The sequence of applied biochemical stimulation in developing ligament tissue cultures in vitro offers the potential to intricately control cell behavior following the template of native tissue development. Previous studies have identified and enhanced ligament tissue development as defined by matrix in-growth, upregulation of mRNA transcripts for metalloproteinase-2 (MMP-2), collagen types I and III, and collagen type I production. We hypothesize that sequential application of growth factors through extended culture will reinforce the effectiveness of basic fibroblast growth factor and transforming growth factor beta (bFGF/TGF-beta) as the optimal growth factor regimen. Bone marrow stromal cells (BMSCs) were seeded on RGD-coupled silk fiber matrices and cultured in bFGF, epidermal growth factor (EGF), or growth factor-free control for the first 5 days of culture. On day 5, cultures were stimulated with TGF-beta supplemented medium for a total of 28 days. Results indicated enhanced matrix in-growth and collagen type I produced with extended culture, most notably in mitogen / TGF-beta-stimulated cultures. Matrix development attained through extended static culture will support future study leading to the transition and addition of mechanical stimulation for optimized ligament tissue production.
Collapse
Affiliation(s)
- Jodie Moreau
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
47
|
Heckmann L, Schlenker HJ, Fiedler J, Brenner R, Dauner M, Bergenthal G, Mattes T, Claes L, Ignatius A. Human mesenchymal progenitor cell responses to a novel textured poly(L-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B Appl Biomater 2007; 81:82-90. [PMID: 16924614 DOI: 10.1002/jbm.b.30640] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Biocompatibility and cell seeding capability of a new cell scaffold made of textured polylactic acid (PLA) fibers was investigated as a new material for tissue engineering of anterior cruciate ligaments (ACL). Adhesion and proliferation of human mesenchymal progenitor cells (MPC) was investigated after 15 days by scanning electron microscopy and standard histology. Expression of collagen type I and III, fibronectin, tenascin C, decorin, smooth muscle actin, and the matrix metalloproteinases MMP-1 and MMP-2, as well as their tissue inhibitors TIMP-1 and TIMP-2 was analyzed using real-time PCR. Protein expression of collagen I and III, tenascin C, and proliferating nuclear antigen (PCNA) was determined by immunohistology. Apoptosis was analyzed by detection of p53 expression and TUNEL staining. MPC seeded the scaffold homogeneously and showed good cell growth and no increased rate of apoptosis. After 15 days, the matrix forming genes collagen type I, tenascin C, and decorin were upregulated, indicating the formation of a ligament-like matrix. MMP-1 and TIMP-1 were also significantly increased, suggesting initial matrix remodeling. It was concluded that the new porous PLA scaffold allowed homogeneous cell seeding, a fibroblastic phenotype and the production of a ligament-like matrix and, therefore, might be a suitable cell carrier for ACL tissue engineering.
Collapse
Affiliation(s)
- Leslie Heckmann
- Department of Orthopaedics, Division for Biochemistry of Joint and Connective Tissue Diseases, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d,l-lactic-co-glycolic acid) meshes. Biomaterials 2006; 27:5681-8. [PMID: 16914196 DOI: 10.1016/j.biomaterials.2006.07.005] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/11/2006] [Indexed: 11/24/2022]
Abstract
Engineered ligament tissues are promising materials for the repair of tears and ruptures, but require the development of biomaterial scaffolds that not only support physiologically relevant loads, but also possess architectures capable of orienting cell adhesion and extracellular matrix deposition. Based on evidence that micron-scale topographic features induce cell orientation through a contact guidance phenomenon, we postulate that oriented micron-scale fiber meshes-formed by the electrospinning process-can regulate cell morphology. To test this, fused fiber meshes of poly(d,l-lactic-co-glycolic acid) (PLGA) were electrospun onto rigid supports under conditions that produced mean fiber diameters of 0.14-3.6 microm, and angular standard deviations of 31-60 degrees . Analysis of the morphology of adherent NIH 3T3 fibroblasts indicated that projected cell area and aspect ratio increased systematically with both increasing fiber diameter and degree of fiber orientation. Importantly, cell morphology on 3.6 microm fibers was similar to that on spincoated PLGA films. Finally, cell densities on electrospun meshes were not significantly different from spincoated PLGA, indicating that cell proliferation is not sensitive to fiber diameter or orientation.
Collapse
Affiliation(s)
- Chris A Bashur
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
49
|
Chen J, Horan RL, Bramono D, Moreau JE, Wang Y, Geuss LR, Collette AL, Volloch V, Altman GH. Monitoring Mesenchymal Stromal Cell Developmental Stage to Apply On-Time Mechanical Stimulation for Ligament Tissue Engineering. ACTA ACUST UNITED AC 2006; 12:3085-95. [PMID: 17518624 DOI: 10.1089/ten.2006.12.3085] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To evaluate the appropriate time frame for applying mechanical stimuli to induce mesenchymal stromal cell (MSC) differentiation for ligament tissue engineering, developmental cell phenotypes were monitored during a period of in vitro culture. MSCs were seeded onto surface-modified silk fibroin fiber matrices and cultured in Petri dishes for 15 days. Cell metabolic activity, morphology, and gene expression of extracellular matrix (ECM) proteins (collagen type I and III and fibronectin), ECM receptors (integrins alpha-2, alpha-5, and beta-1), and heat-shock protein 70 (HSP-70) were monitored during the culture of MSC. MSCs showed fluctuations in cell metabolic activity, ECM, integrin, and HSP-70 transcription potentially correlating to innate developmental processes. Cellular response to mechanical stimulation was dependent on the stage of cell development. At day 9, when levels of cell metabolic activity, ECM, integrin, and HSP-70 transcription peaked, mechanical stimulation increased MSC metabolic activity, alignment, and collagen production. Mechanical stimulation applied at day 1 and 3 showed detrimental effects on MSCs seeded on silk matrices. The results presented in this study identify a unique correlation between innate MSC development processes on a surface-modified silk matrix and dynamic environmental signaling.
Collapse
Affiliation(s)
- Jingsong Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Firth A, Aggeli A, Burke JL, Yang X, Kirkham J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine (Lond) 2006; 1:189-99. [PMID: 17716108 DOI: 10.2217/17435889.1.2.189] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The production of bone-, dentine- and enamel-like biomaterials for the engineering of mineralized (hard) tissues is a high-priority in regenerative medicine and dentistry. An emerging treatment approach involves the use of short biomimetic peptides that self-assemble to form micrometer-long nanofibrils with well defined surface chemistry and periodicity that display specific arrays of functional groups capable of mineral nucleation. The fibrils also give rise to dynamically stable 3D scaffold gels for the potential control of crystal disposition and growth. Peptides can also be injected in their monomeric fluid state, with subsequent self-assembly and gelation in situ triggered by physiological conditions. In this way, they can infiltrate and self-assemble within irregular or microscopic cavities, for restorative treatment of bone defects, dentinal hypersensitivity or dental decay. Cell adhesion and proliferation is also supported by these scaffolds, offering further advantages for applications in hard tissue engineering. These self-assembling matrices also provide well defined model systems that can contribute greatly to the elucidation of the biological mechanisms of protein-mediated biomineralization.
Collapse
Affiliation(s)
- Ashley Firth
- Centre for Self-Organising Molecular Systems (SOMS Centre), Dept of Chemistry, Faculty of Mathematics & Physical Sciences, Leeds, UK
| | | | | | | | | |
Collapse
|