1
|
Valenzuela-Fuenzalida JJ, Suazo-Santibañez A, Semmler MG, Cariseo-Avila C, Santana-Machuca E, Orellana-Donoso M. The structural and functional importance of the thalamus in migraine processes with and without aura. A literature review. TRANSLATIONAL RESEARCH IN ANATOMY 2021. [DOI: 10.1016/j.tria.2021.100130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
2
|
Wienholtz NKF, Christensen CE, Zhang DG, Coskun H, Ghanizada H, Al-Karagholi MAM, Hannibal J, Egeberg A, Thyssen JP, Ashina M. Early treatment with sumatriptan prevents PACAP38-induced migraine: A randomised clinical trial. Cephalalgia 2021; 41:731-748. [PMID: 33567890 DOI: 10.1177/0333102420975395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether early treatment with sumatriptan can prevent PACAP38-induced migraine attacks. METHODS A total of 37 patients with migraine without aura were enrolled between July 2018 to December 2019. All patients received an intravenous infusion of 10 picomole/kg/min of PACAP38 over 20 min followed by an intravenous infusion of 4 mg sumatriptan or placebo over 10 min on two study days in a randomised, double-blind, placebo-controlled, crossover study. RESULTS Of 37 patients enrolled, 26 (70.3%) completed the study and were included in analyses. Of the 26 patients, four (15%) developed a PACAP38-induced migraine attack on sumatriptan and 11 patients (42%) on placebo (p = 0.016). There were no differences in area under the curve for headache intensity between sumatriptan (mean AUC 532) and placebo (mean AUC 779) (p = 0.35). Sumatriptan significantly constricted the PACAP38-dilated superficial temporal artery immediately after infusion (T30) compared with infusion of placebo (p < 0.001).Conclusions and relevance: Early treatment with intravenously administered sumatriptan prevented PACAP38-induced migraine. Prevention of migraine attacks was associated with vasoconstriction by sumatriptan in the earliest phases of PACAP provocation. These results suggest that sumatriptan prevents PACAP38-induced migraine by modulation of nociceptive transmission within the trigeminovascular system.Trial Registration: ClinicalTrials.gov (NCT03881644).
Collapse
Affiliation(s)
- Nita Katarina Frifelt Wienholtz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Casper Emil Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Ditte Georgina Zhang
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Bispebjerg, Denmark
| | - Alexander Egeberg
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
3
|
Ghanizada H, Al-Karagholi MAM, Arngrim N, Mørch-Rasmussen M, Metcalf-Clausen M, Larsson HBW, Amin FM, Ashina M. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache. J Headache Pain 2020; 21:19. [PMID: 32093617 PMCID: PMC7038568 DOI: 10.1186/s10194-020-01089-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) induces headache in healthy volunteers but the precise mechanisms by which PACAP38 leads to headache are unclear. We investigated the headache preventive effect of sumatriptan and ketorolac on PACAP38-induced headache in healthy volunteers. In addition, we explored contribution of vascular mechanisms to PACAP38-induced headache using high resolution magnetic resonance angiography. METHODS Thirty-four healthy volunteers were divided in two groups (A and B) and received infusion of PACAP38 (10 picomol/kg/min) over 20 min. Group A was pretreated with intravenous sumatriptan (4 mg) or ketorolac (30 mg) 20 min before infusion of PACAP38. Group B received infusion of sumatriptan or ketorolac as post-treatment 90 min after infusion of PACAP38. In both experiments, we used a randomized, double-blind, cross-over design. We recorded headache characteristics and circumference of extra-intracerebral arteries. RESULTS We found no difference in AUC (0-6 h) of PACAP38-induced headache in group A, pretreated with sumatriptan or ketorolac (p = 0.297). There was no difference between sumatriptan and ketorolac in PACAP38-induced circumference change (AUCBaseline-110 min) of MMA (p = 0.227), STA (p = 0.795) and MCA (p = 0.356). In group B, post-treatment with ketorolac reduced PACAP38-headache compared to sumatriptan (p < 0.001). Post-treatment with sumatriptan significantly reduced the circumference of STA (p = 0.039) and MMA (p = 0.015) but not of MCA (p = 0.981) compared to ketorolac. In an explorative analysis, we found that pre-treatment with sumatriptan reduced PACAP38-induced headache compared to no treatment (AUC0-90min). CONCLUSIONS Post-treatment with ketorolac was more effective in attenuating PACAP38-induced headache compared to sumatriptan. Ketorolac exerted its effect without affecting PACAP38-induced arterial dilation, whereas sumatriptan post-treatment attenuated PACAP38-induced dilation of MMA and STA. Pre-treatment with sumatriptan attenuated PACAP38-induced headache without affecting PACAP38-induced arterial dilation. Our findings suggest that ketorolac and sumatriptan attenuated PACAP38-induced headache in healthy volunteers without vascular effects. TRIAL REGISTRATION Clinicaltrials.gov (NCT03585894). Registered 13 July 2018.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Matias Metcalf-Clausen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark.
| |
Collapse
|
4
|
Al‐Karagholi MA, Ghanizada H, Hansen JM, Skovgaard LT, Olesen J, Larsson HBW, Amin FM, Ashina M. Levcromakalim, an Adenosine Triphosphate‐Sensitive Potassium Channel Opener, Dilates Extracerebral but not Cerebral Arteries. Headache 2019; 59:1468-1480. [DOI: 10.1111/head.13634] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Mohammad Al‐Mahdi Al‐Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Hashmat Ghanizada
- Glostrup Research Park, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jakob M. Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Lene T. Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Glostrup Research Park, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Henrik B. W. Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Faisal M. Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet‐Glostrup, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
5
|
Abstract
Background: Migraine therapy with sumatriptan may cause adverse side effects like pain at the injection site, muscle pain, and transient aggravation of headaches. In animal experiments, sumatriptan excited or sensitized slowly conducting meningeal afferents. We hypothesized that sumatriptan may activate transduction channels of the “irritant receptor,” the transient receptor potential ankyrin type (TRPA1) expressed in nociceptive neurons. Methods: Calcium microfluorometry was performed in HEK293t cells transfected with human TRPA1 (hTRPA1) or a mutated channel (TRPA1-3C) and in dissociated trigeminal ganglion neurons. Membrane currents were recorded in the whole-cell patch clamp configuration. Results: Sumatriptan (10 and 400 µM) evoked calcium transients in hTRPA1-expressing HEK293t cells also activated by the TRPA1 agonist carvacrol (100 µM). In TRPA1-3C-expressing HEK293t cells, sumatriptan had hardly any effect. In rat trigeminal ganglion neurons, sumatriptan, carvacrol, and the transient receptor potential vanillod type 1 agonist capsaicin (1 µM) generated robust calcium signals. All sumatriptan-sensitive neurons (8% of the sample) were also activated by carvacrol (14%) and capsaicin (48%). In HEK293-hTRPA1 cells, sumatriptan (100 µM) evoked outwardly rectifying currents, which were almost completely inhibited by the TRPA1 antagonist HC-030031 (10 µM). Conclusion: Sumatriptan activates TRPA1 channels inducing calcium inflow and membrane currents. TRPA1-dependent activation of primary afferents may explain the painful side effects of sumatriptan.
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Cristian Neacsu
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Michael JM Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Lambert GA, Boers P, Zagami AS. Triptan-Induced Sensitization of Trigeminovascular Sensation. Headache 2017; 57:E17-E18. [DOI: 10.1111/j.1526-4610.2008.01238.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geoffrey A. Lambert
- Institute of Neurological Sciences The Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
| | - Peter Boers
- Institute of Neurological Sciences The Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
| | - Alessandro S. Zagami
- Institute of Neurological Sciences The Prince of Wales Clinical School; University of New South Wales; Sydney New South Wales Australia
| |
Collapse
|
7
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1071] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Kilinc E, Guerrero-Toro C, Zakharov A, Vitale C, Gubert-Olive M, Koroleva K, Timonina A, Luz LL, Shelukhina I, Giniatullina R, Tore F, Safronov BV, Giniatullin R. Serotonergic mechanisms of trigeminal meningeal nociception: Implications for migraine pain. Neuropharmacology 2016; 116:160-173. [PMID: 28025094 DOI: 10.1016/j.neuropharm.2016.12.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Serotonergic mechanisms play a central role in migraine pathology. However, the region-specific effects of serotonin (5-HT) mediated via multiple types of receptors in the nociceptive system are poorly understood. Using extracellular and patch-clamp recordings, we studied the action of 5-HT on the excitability of peripheral and central terminals of trigeminal afferents. 5-HT evoked long-lasting TTX-sensitive firing in the peripheral terminals of meningeal afferents, the origin site of migraine pain. Cluster analysis revealed that in majority of nociceptive fibers 5-HT induced either transient or persistent spiking activity with prevailing delta and theta rhythms. The 5-HT3-receptor antagonist MDL-72222 or 5-HT1B/D-receptor antagonist GR127935 largely reduced, but their combination completely prevented the excitatory pro-nociceptive action of 5-HT. The 5-HT3 agonist mCPBG activated spikes in MDL-72222-dependent manner but the 5HT-1 receptor agonist sumatriptan did not affect the nociceptive firing. 5-HT also triggered peripheral CGRP release in meninges, which was blocked by MDL-72222.5-HT evoked fast membrane currents and Ca2+ transients in a fraction of trigeminal neurons. Immunohistochemistry showed expression of 5-HT3A receptors in fibers innervating meninges. Endogenous release of 5-HT from degranulated mast cells increased nociceptive firing. Low pH but not histamine strongly activated firing. 5-HT reduced monosynaptic inputs from trigeminal Aδ- and C-afferents to the upper cervical lamina I neurons and this effect was blocked by MDL-72222. Consistent with central inhibitory effect, 5-HT reduced CGRP release in the brainstem slices. In conclusion, 5-HT evokes powerful pro-nociceptive peripheral and anti-nociceptive central effects in trigeminal system transmitting migraine pain.
Collapse
Affiliation(s)
- Erkan Kilinc
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Abant Izzet Baysal University, Medical Faculty, Department of Physiology, 14280, Bolu, Turkey.
| | - Cindy Guerrero-Toro
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia; Department of Physiology, Kazan State Medical University, 420012, Kazan, Russia.
| | - Carmela Vitale
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Max Gubert-Olive
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Ksenia Koroleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Arina Timonina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - Irina Shelukhina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia.
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Fatma Tore
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Biruni University, School of Medicine, 34010, Istanbul, Turkey.
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia.
| |
Collapse
|
9
|
Hansen EK, Olesen J. Towards a pragmatic human migraine model for drug testing: 2. Isosorbide-5-mononitrate in healthy individuals. Cephalalgia 2016; 37:11-19. [DOI: 10.1177/0333102416636095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background A model for the testing of novel anti-migraine drugs should preferably use healthy volunteers for ease of recruiting. Isosorbide-5-mononitrate (5-ISMN) provokes headache in healthy volunteers with some migraine features such as pulsating pain quality and aggravation by physical activity. Therefore, this headache might respond to sumatriptan, a requirement for validation of any model. The hypothesis of the present study was that sumatriptan is effective in 5-ISMN-induced headache in healthy individuals. Methods In a double-blind, randomised, crossover design, 30 healthy volunteers of both sexes received 5-ISMN 60 mg on two separate days, each day followed by oral self-administered placebo or sumatriptan 50 mg. Headache response and accompanying symptoms were registered in a questionnaire by the participants themselves. Results 5-ISMN induced a reproducible headache in all 30 participants. The headache had several migraine-like features in all participants and 20 individuals developed a migraine-like attack. Median peak headache score was 5 on both experimental days ( p = 1.00). There was no reduction, but instead an increase in headache intensity 2 hours after sumatriptan ( p = 0.003). Difference in area under the headache score curve (AUC) 0–4 hours between sumatriptan and placebo was not significant ( p = 0.30). Conclusion 5-ISMN is a very powerful inducer of migraine-like headache in healthy individuals but the headache does not respond to sumatriptan. The model is not useful for future drug testing.
Collapse
Affiliation(s)
- Emma Katrine Hansen
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Centre and Department of Neurology, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| |
Collapse
|
10
|
Freitag FG. Sumatriptan needle-free subcutaneous (Sumavel®DosePro™) approved for the acute treatment of migraine, with or without aura, and cluster headaches. Expert Rev Neurother 2014; 11:481-90. [DOI: 10.1586/ern.11.41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Elkind AH, MacGregor EA. Frovatriptan for the acute treatment of migraine and prevention of predictable menstrual migraine. Expert Rev Neurother 2014; 8:723-36. [DOI: 10.1586/14737175.8.5.723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Gupta VK. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev Neurother 2014; 9:1595-614. [DOI: 10.1586/ern.09.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Whyte CA, Tepper SJ. Adverse effects of medications commonly used in the treatment of migraine. Expert Rev Neurother 2014; 9:1379-91. [DOI: 10.1586/ern.09.47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abstract
AIM To test the hypothesis that the clinical efficacy of triptans reflects convergent modulation of ion channels also involved in inflammatory mediator (IM)-induced sensitization of dural afferents. METHODS Acutely dissociated retrogradely labeled rat dural afferents were studied with whole cell and perforated patch techniques in the absence and presence of sumatriptan and/or IM (prostaglandin E2, bradykinin, and histamine). RESULTS Sumatriptan dose-dependently suppressed voltage-gated Ca²⁺ currents. Acute (2 min) sumatriptan application increased dural afferent excitability and occluded further IM-induced sensitization. In contrast, pre-incubation (30 min) with sumatriptan had no influence on dural afferent excitability and partially prevented IM-induced sensitization of dural afferents. The sumatriptan-induced suppression of voltage-gated Ca²⁺ currents and acute sensitization and pre-incubation-induced block of IM-induced sensitization were blocked by the 5-HT(1D) antagonist BRL 15572. Pre-incubation with sumatriptan failed to suppress the IM-induced decrease in action potential threshold and overshoot (which results from modulation of voltage-gated Na⁺ currents) and activation of Cl⁻ current, and had no influence on the Cl⁻ reversal potential. However, pre-incubation with sumatriptan caused a dramatic hyperpolarizing shift in the voltage dependence of K⁺ current activation. DISCUSSION These results indicate that although the actions of sumatriptan on dural afferents are complex, at least two distinct mechanisms underlie the antinociceptive actions of this compound. One of these mechanisms, the shift in the voltage dependence of K⁺ channel activation, may suggest a novel strategy for future development of anti-migraine agents.
Collapse
Affiliation(s)
- Andrea M. Harriott
- Department of Neural and Pain Sciences, Dental School, University of Maryland, Baltimore, MD 21201
- University of Maryland, Baltimore Medical Scientist Training Program, Baltimore, MD 21201
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Nicole N. Scheff
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213
| | - Michael S. Gold
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Neurobiology and Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA 15213
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
15
|
Endogenous Mechanisms Underlying the Activation and Sensitization of Meningeal Nociceptors: The Role of Immuno-Vascular Interactions and Cortical Spreading Depression. Curr Pain Headache Rep 2012; 16:270-7. [PMID: 22328144 DOI: 10.1007/s11916-012-0255-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Classey JD, Bartsch T, Goadsby PJ. Distribution of 5-HT(1B), 5-HT(1D) and 5-HT(1F) receptor expression in rat trigeminal and dorsal root ganglia neurons: relevance to the selective anti-migraine effect of triptans. Brain Res 2010; 1361:76-85. [PMID: 20833155 DOI: 10.1016/j.brainres.2010.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/26/2022]
Abstract
Triptans, acting as serotonin, 5-HT(1B/1D/1F), receptor agonists, provide an effective and established treatment option in migraine and cluster headache. Clinical observations suggest a relatively specific effect of these compounds on primary headache disorders, but not in other pain syndromes. The mechanism of this specificity, however, is not well understood. Hence, we systematically studied primary sensory ganglia in rat to determine if the peripheral distribution of 5HT(1B/1D/1F) receptors showed any anatomical difference that would account for the specificity of clinical effect. Rat primary afferent and sensory ganglia neurons--trigeminal ganglia (Vg), and dorsal root ganglia (DRG): C(2), C(5), T(5), L(5)--were examined using paraffin-embedded, slide-bound tissue sections reacted with specific primary antibodies for rat 5-HT(1B, 1D) and (1F) receptors in a peroxidase-based immunohistochemical method. Immunoreactivity specific for all three serotonergic receptor subtypes was demonstrated in the five peripheral nervous system regions examined and quantitated. There was a good agreement for 5-HT(1B) and 5-HT(1D) receptors to that previously demonstrated in Vg and DRG L(5), while this was the first characterisation for 5-HT(1F) receptor in any of the five regions, as well as for 5-HT(1B) and 5HT(1D) receptors in DRG C(2), C(5) and T(5). In summary, all three 5-HT receptors are equally represented in Vg and the DRGs examined. We conclude that the triptans are theoretically able to bind to receptors at each level of the peripheral neuraxis without any apparent anatomical preference for the head.
Collapse
MESH Headings
- Animals
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Humans
- Immunohistochemistry
- Male
- Migraine Disorders/drug therapy
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1D/metabolism
- Receptors, Serotonin/metabolism
- Sensory Receptor Cells/metabolism
- Serotonin Receptor Agonists/pharmacology
- Trigeminal Ganglion/cytology
- Trigeminal Ganglion/metabolism
- Tryptamines/pharmacology
- Receptor, Serotonin, 5-HT1F
Collapse
Affiliation(s)
- J D Classey
- Headache Group-Department of Neurology, University of California, San Francisco, CA 94115, USA
| | | | | |
Collapse
|
17
|
Waeber C, Hargreaves R. Current and emerging therapies for migraine prevention and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2010; 97:789-809. [PMID: 20816471 DOI: 10.1016/s0072-9752(10)97065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
18
|
Panconesi A, Bartolozzi ML, Guidi L. Migraine pain: reflections against vasodilatation. J Headache Pain 2009; 10:317-25. [PMID: 19499287 PMCID: PMC3452097 DOI: 10.1007/s10194-009-0130-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/09/2009] [Indexed: 12/28/2022] Open
Abstract
The original Wolff’s vascular theory of migraine was supported by the discovery of a class of drugs, the triptans, developed as a selective cephalic vasoconstrictor agents. Even in the neurovascular hypothesis of Moskowitz, that is the neurogenic inflammation of meningeal vessels provoked by peptides released from trigeminal sensory neurons, the vasodilatation provoked by calcitonin gene-related peptide (CGRP) is considered today much more important than oedema. The role of cephalic vasodilatation as a cause of migraine pain was recently sustained by studies showing the therapeutic effect of CGRP receptor antagonists. We discuss the evidence against vasodilatation as migraine pain generator and some findings which we suggest in support of a central (brain) origin of pain.
Collapse
|
19
|
Kaniecki RG, Taylor FR, Stillman MJ. Abstracts and Citations. Headache 2009. [DOI: 10.1111/j.1526-4610.2009.01441.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
|
21
|
Abstract
The paradigm of early treatment of the migraine attack at mild pain intensity has become one alternative to circumventing the problem of compromised oral absorption of symptomatic drugs due to migraine-induced gastrointestinal dysmotility. Early treatment also has been proposed to be advantageous because most migraineurs could be less responsive to delayed treatment, owing to the development of central sensitization of the trigeminal pain transmission. Ranking the underlying principles, it seems that the improved response to an oral triptan formulation at mild migraine symptom intensity has more to do with less impaired gastrointestinal absorption in the early stage of the attack than decreasing the time and preventing chances for central sensitization and development of cutaneous allodynia. Furthermore, parenteral administration of a triptan is always more likely to provide relief of symptoms than conventional tablets, even when it is used later in the course of the migraine attack. Individually tailored use of the available triptan formulations will increase, without any doubt, the within-migraineur consistency of response. It also will reduce the overall proportion of migraine attacks or migraineurs not responding to triptan treatment. Notwithstanding, the recommendation of early treatment during the migraine attack when the pain is mild remains valid.
Collapse
|
22
|
|
23
|
Abstract
Salient aspects of the anatomy and function of the blood-barrier barrier (BBB) are reviewed in relation to migraine pathophysiology and treatment. The main function of the BBB is to limit the access of circulating substances to the neuropile. Smaller lipophilic substances have some access to the central nervous system by diffusion, whereas other substances can cross the BBB by carrier-mediated influx transport, receptor-mediated transcytosis and absorptive-mediated transcytosis. Studies of drugs relevant to migraine pathophysiology and treatment have been examined with the pressurized arteriography method. The drugs, given both luminally and abluminally, provide important notions regarding antimigraine site of action, probably abluminal to the BBB. The problems with the BBB in animal models designed to study the pathophysiology, acute treatment models and preventive treatments are discussed with special emphasize on the triptans and calcitonin gene-related peptide (CGRP). The human experimental headache model, especially the use of glycerol trinitrate (the nitric oxide model), and experiences with CGRP administrations utilize the systemic administration of the agonists with effects on other vascular beds also. We discuss how this can be related to genuine migraine attacks. Our view is that there exists no clear proof of breakdown or leakage of the BBB during migraine attacks, and that antimigraine drugs need to pass the BBB for efficacy.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Internal Medicine, University Hospital, Lund, Sweden.
| | | |
Collapse
|
24
|
Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain 2008; 9:267-76. [PMID: 18668197 PMCID: PMC3452194 DOI: 10.1007/s10194-008-0058-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 07/11/2008] [Indexed: 01/01/2023] Open
Abstract
The 5-hydroxytryptamine (5-HT) has been implicated in migraine pathophysiology for the past 50 years. A low central 5-HT disposition associated with an increase in 5-HT release during attack is the most convincing change of 5-HT metabolism implicated in migraine. Peripheral studies on plasma/platelet have not generally shown low 5-HT levels. Studies on 5-HT reactivity showed hypersensitivity, also expressed as reduced tachyphylaxis (habituation), which successively was evidenced as the most characteristic marker of an altered sensory neurotransmission. Even the gender and seasonal variations of 5-HT parameters seem to agree with a low 5-HT turnover with receptoral hypersensitivity. The interpretation of the effects of some serotonergic drugs and recent neuroimaging studies give major evidence for this cascade of events. Although the exact mechanism that links abnormal 5-HT neurotransmission to the manifestation of head pain has yet to be fully understood, a deficit on 5-HT descending pain inhibitory system is still probably today the most implicated in migraine pathophysiology. This short review focuses and discusses the alteration of peripheral and central 5-HT parameters in migraine patients.
Collapse
|
25
|
Lampl C, Huber G, Haas S, Rittberger E, Diener HC. Difference in triptan effect in patients with migraine and early allodynia. Cephalalgia 2008; 28:1031-8. [PMID: 18624801 DOI: 10.1111/j.1468-2982.2008.01642.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine whether in migraine patients with and without aura early treatment with various triptans leads to differences in pain reduction after 1 h and in modulating cutaneous allodynia. Thirty-six patients with early manifestation of a clinically recognizable allodynia of the face and non-responders to earlier treatment with sumatriptan 100 mg were included. Patients were randomized to six triptan treatment groups. Significant pain reduction was seen only in the group receiving zolmitriptan nasal spray 5 mg with a mean visual analogue scale (VAS) score of 3.8 (s.d. 1.2) at baseline and 2.4 (s.d. 1.3; P = 0.015) at 1 h after using the triptan and was thus a predictor of a VAS score 3 within 1 h. The study results indicate that migraine headache intensity can be reduced within 1 h by using zolmitriptan 5 mg nasal spray in spite of the presence of early cutaneous allodynia.
Collapse
Affiliation(s)
- C Lampl
- Department of Neurology and Pain Medicine, Konventhospital Barmherzige Brüder, Linz, Austria.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Subcutaneous sumatriptan is superior to placebo in achieving headache relief. Some commonly reported adverse events are paresthesias, tingling, and transient worsening of headache. Why do patients develop these symptoms? Our unique case may shed light on its actions.
Collapse
Affiliation(s)
- Stephanie J Nahas
- Thomas Jefferson University Hospital-Neurology, Philadelphia, PA 19107-5092, USA
| | | |
Collapse
|
27
|
Headaches related to triptans therapy in patients of migrainous vertigo. J Headache Pain 2008; 9:185-8. [PMID: 18427727 PMCID: PMC3476202 DOI: 10.1007/s10194-008-0035-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/31/2008] [Indexed: 12/02/2022] Open
Abstract
Dizziness and vertigo are frequently reported by patients with migraine. In migrainous vertigo (MV), vertigo is causally related to migraine. Patients of MV usually have an attenuated or absent headache with their vertigo as compared with their usual headache of migraine. Here we report three female patients of MV in which administration of triptan was associated with induction (two patients) or exacerbation (one patient) of headache with disappearance of vertigo. We suggest that headache and vertigo of migraine may be inversely related to each other and suppression of one may induce or aggravate the other.
Collapse
|
28
|
Oshinsky ML, Gomonchareonsiri S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache 2007; 47:1026-36. [PMID: 17635594 PMCID: PMC4029495 DOI: 10.1111/j.1526-4610.2007.00871.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To model, in rats, the development of chronic trigeminal nociceptive hypersensitivity seen in patients with recurrent headache. BACKGROUND Pathophysiology studies suggest that patients with recurrent migraine headache experience repeated bouts of dural nociceptor activation. In some patients, the severity and frequency of headache attacks increase over time. Patients with recurrent headache are hypersensitive to nitric oxide donors, such as glyceryl trinitrate (GTN). Current trigeminal pain models do not reflect the repeated episodic nature of dural nociceptor activation in patients with recurrent headache. Repeated nociceptor activation creates long-lasting changes in the periphery and brain due to activity-dependent neuronal plasticity. An animal model of repeated activation of dural nociceptors will facilitate the study of the physiological changes caused by repeated, episodic pain and the factors important for the transition of episodic to chronic migraine. METHODS We induced dural inflammation by infusing an inflammatory soup (IS) through a cannula on the dura in awake behaving rats. This was repeated 3 times per week for up to 4 weeks. Periorbital pressure sensory testing was used to monitor the change in trigeminal sensitivity. Rats were challenged with GTN to test the hypothesis that many dural stimulations are required to model the hypersensitivity of migraine patients. Quantitative trigeminal sensory testing and microdialysis in the trigeminal nucleus caudalis (TNC) were used to measure GTN hypersensitivity. RESULTS Multiple infusions of IS (>8), over weeks, induced a long-lasting decrease in periorbital pressure thresholds that lasted >3 weeks after the last infusion. In contrast, IS infusion in IS-naive rats and those that received 3 IS infusions produced only short-lasting decreases in periorbital pressure thresholds. Rats that received more than 8 IS infusions showed a marked increase in their neurochemical and behavioral responses to GTN. In these rats, GTN induced a decrease in periorbital von Frey thresholds that lasted >5 hours. In contrast, in rats that received only 3 IS infusions, GTN caused a threshold decrease for 1.5 hour. In vivo microdialysis in the TNC showed that GTN increased extracellular glutamate levels in rats with more than 8 IS infusions to 7.7 times the basal levels. In IS-naive rats and those that received only 3 IS infusions, the extracellular glutamate levels rose to only 1.7 and 1.9 times the basal level, respectively. CONCLUSIONS Repeated IS stimulation of the dura produces a chronic state of trigeminal hypersensitivity and potentiates the response to GTN. This hyperresponsiveness outlasts the last IS infusion and is the basis of our rat model of recurrent headache. This model can be used to study the changes in the brain and periphery induced by repeated trigeminovascular nociceptor activation and has the potential to elucidate the mechanisms for the transition of episodic to chronic headache.
Collapse
Affiliation(s)
- Michael L Oshinsky
- Department of Neurology, Jefferson Headache Center, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
29
|
Zhang XC, Strassman AM, Burstein R, Levy D. Sensitization and Activation of Intracranial Meningeal Nociceptors by Mast Cell Mediators. J Pharmacol Exp Ther 2007; 322:806-12. [PMID: 17483291 DOI: 10.1124/jpet.107.123745] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracranial headaches such as migraine are thought to result from activation of sensory trigeminal pain neurons that supply intracranial blood vessels and the meninges, also known as meningeal nociceptors. Although the mechanism underlying the triggering of such activation is not completely understood, our previous work indicates that the local activation of the inflammatory dural mast cells can provoke a persistent sensitization of meningeal nociceptors. Given the potential importance of mast cells to the pain of migraine it is important to understand which mast cell-derived mediators interact with meningeal nociceptors to promote their activation and sensitization. In the present study, we have used in vivo electrophysiological single-unit recording of meningeal nociceptors in the trigeminal ganglion of anesthetized rats to examine the effect of a number of mast cell mediators on the activity level and mechanosensitivity of meningeal nociceptors. We have found that that serotonin (5-HT), prostaglandin I(2) (PGI(2)), and to a lesser extent histamine can promote a robust sensitization and activation of meningeal nociceptors, whereas the inflammatory eicosanoids PGD(2) and leukotriene C(4) are largely ineffective. We propose that dural mast cells could promote headache by releasing 5-HT, PGI(2), and histamine.
Collapse
Affiliation(s)
- Xi-Chun Zhang
- Headache Research Laboratory, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Room 856, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Abstract
An understanding of the pathophysiology and pharmacology of migraine has been driven by astute clinical observations, elegant experimental medicine studies and importantly by the introduction of highly effective selective anti-migraine agents such as the Triptan 5-HT(1B/1D) agonists. New investigational migraine therapies such CGRP antagonists target key components of the trigeminal sensory neuroinflammatory response and show promise for the future. Cutting edge molecular profiling studies looking at gene expression during chronic pain are now being used to reveal the cell biology of pain and new potential therapeutic targets. Translational neuroimaging research can link the laboratory and the clinic and is now being used to help understand the neural systems biology of migraine. Research into migraine has generated sophisticated hypotheses that encompass primary CNS dysfunction, trigeminovascular activation, pain perception and activation of associated neural circuits involved in affective functions providing a rich framework within which to design and test future migraine treatment strategies.
Collapse
|
31
|
Abstract
Sumatriptan is the first of a novel class of medications referred to as triptans. Since its approval for migraine in the 1990s, six other triptan products have received FDA approval. Despite the proliferation of triptans, sumatriptan remains the most frequently prescribed product in this therapeutic class. Sumatriptan has been instrumental in defining a biological basis for migraine. It is effective in treating migraine with or without aura, well tolerated and, when properly prescribed, safe. Sumatriptan injection is the only member of the triptan class approved for treatment of cluster headache. Studies with sumatriptan have also advanced the therapeutic intervention paradigm that permits patients to treat earlier and avoid substantial disability. Numerous pharmacoeconomic studies have demonstrated that sumatriptan decreases work loss productivity and improves quality of life.
Collapse
Affiliation(s)
- Roger Cady
- Headache Care Center, 3805 S. Kansas Expressway, Springfield, MO 65804, USA
| | | |
Collapse
|
32
|
Abstract
Single-unit electrophysiological recording studies have examined the activity of sensory neurons in the trigeminal ganglion that innervate the intracranial meninges to better understand their possible role in headache. A key question is whether the meningeal sensory neurons are similar to nociceptive neurons in other tissues or, alternatively, whether they have unique properties that might be of significance for headache pathogenesis and drug therapy. Such studies have indeed found that the intracranial dura is innervated by neurons that exhibit properties characteristic of nociceptors in other tissues, including chemosensitivity and sensitization. This sensitization, consisting of an enhanced responsiveness to mechanical stimuli, might be relevant to symptoms that are characteristic of certain headaches that indicate the presence of an exaggerated intracranial mechanosensitivity. Studies that examined whether the anti-migraine agent sumatriptan might inhibit this sensitization (in addition to its well-known inhibition of neurotransmitter release) found that it had no inhibitory effect but rather produced a calcium-dependent discharge, which might account for the initial worsening of headache that can follow sumatriptan administration. In studies that examined the effects of vasodilator agents, nitroprusside produced mixed effects on mechanosensitivity, whereas calciton gene-related peptide (CGRP) had no effect on either spontaneous or mechanically evoked discharge. These results call into question the role of vasodilation in headache and suggest that the role of CGRP in headache may be through its action as a central neurotransmitter rather than through vasodilation and activation of meningeal nociceptors. In general, studies of meningeal sensory neurons have not found evidence of unique properties that distinguish them from nociceptive neurons in other tissues. Ultimately the distinctive clinical characteristics of headache may prove to be related not so much to any differences in the intrinsic molecular or cellular properties of the meningeal sensory neurons but rather to the distinctive properties of the tissue that they innervate.
Collapse
Affiliation(s)
- Andrew M Strassman
- Dept. of Anesthesia, DA-717, Beth Israel Deaconess Med. Ctr., 330 Brookline Ave., Boston, MA 02215, USA.
| | | |
Collapse
|
33
|
Striessnig J. Pathophysiology of migraine headache: Insight from pharmacology and genetics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.ddmec.2005.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Abstract
The basic CNS neuropharmacology of naratriptan is reviewed here. Naratriptan is a second-generation triptan antimigraine drug, developed at a time when CNS activity was thought not to be relevant to its therapeutic effect in migraine. It was, however, developed to be a more lipid-soluble, more readily absorbed and less readily metabolized variant on preexisting triptans and these variations conferred on it a higher CNS profile. Naratriptan is a 5-HT(1B/1D) receptor agonist with a highly selective action on migraine pain and nausea, without significant effect on other pain or even other trigeminal pain. Probable sites of therapeutic action of naratriptan include any or all of: the cranial vasculature; the peripheral terminations of trigeminovascular sensory nerves; the first-order synapses of the trigeminovascular sensory system; the descending pain control system; and the nuclei of the thalamus. Naratriptan may prevent painful dilatation of intracranial vessels or reverse such painful dilatation. Naratriptan can prevent the release of sensory peptides and inhibit painful neurogenic vasodilatation of intracranial blood vessels. At the first order synapse of the trigeminal sensory system, naratriptan can selectively suppress neurotransmission from sensory fibers from dural and vascular tissue, while sparing transmission from other trigeminal fibers, probably through inhibition of neuropeptide transmitter release. In the periaqueductal gray matter and in the nucleus raphe magnus, naratriptan selectively activates inhibitory neurons which project to the trigeminal nucleus and spinal cord and which exert inhibitory influences on trigeminovascular sensory input. Naratriptan has also a therapeutic effect on the nausea of migraine, possibly exerting its action at the level of the nucleus tractus solitarius via the same mechanisms by which it inhibits trigeminovascular nociceptive input. The incidence of naratriptan-induced adverse effects in the CNS is low and it is not an analgesic for pain other than that of vascular headache. In patients receiving selective serotonin uptake inhibitors (SSRIs) naratriptan may cause serotonin syndrome-like behavioral side effects. The mechanism of action involved in the production of behavioral and other CNS side effects of naratriptan is unknown.
Collapse
Affiliation(s)
- Geoffrey A Lambert
- Institute of Neurological Sciences, The Prince of Wales Hospital, Randwick NSW 2031, Australia.
| |
Collapse
|