1
|
Wang Y, Liu N, Ma L, Yue L, Cui S, Liu FY, Yi M, Wan Y. Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information. Neurosci Bull 2024; 40:201-217. [PMID: 37440103 PMCID: PMC10838882 DOI: 10.1007/s12264-023-01086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 07/14/2023] Open
Abstract
As a main structure of the limbic system, the hippocampus plays a critical role in pain perception and chronicity. The ventral hippocampal CA1 (vCA1) is closely associated with negative emotions such as anxiety, stress, and fear, yet how vCA1 neurons encode nociceptive information remains unclear. Using in vivo electrophysiological recording, we characterized vCA1 pyramidal neuron subpopulations that exhibited inhibitory or excitatory responses to plantar stimuli and were implicated in encoding stimuli modalities in naïve rats. Functional heterogeneity of the vCA1 pyramidal neurons was further identified in neuropathic pain conditions: the proportion and magnitude of the inhibitory response neurons paralleled mechanical allodynia and contributed to the confounded encoding of innocuous and noxious stimuli, whereas the excitatory response neurons were still instrumental in the discrimination of stimulus properties. Increased theta power and theta-spike coupling in vCA1 correlated with nociceptive behaviors. Optogenetic inhibition of vCA1 pyramidal neurons induced mechanical allodynia in naïve rats, whereas chemogenetic reversal of the overall suppressed vCA1 activity had analgesic effects in rats with neuropathic pain. These results provide direct evidence for the representations of nociceptive information in vCA1.
Collapse
Affiliation(s)
- Yue Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Naizheng Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
2
|
Arcangeli G, Lulli LG, Traversini V, De Sio S, Cannizzaro E, Galea RP, Mucci N. Neurobehavioral Alterations from Noise Exposure in Animals: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:591. [PMID: 36612911 PMCID: PMC9819367 DOI: 10.3390/ijerph20010591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Ecosystems are increasingly involved and influenced by human activities, which are ever-increasing. These activities are mainly due to vehicular, air and sea transportation, thus causing possible repercussions on the fauna that exists there. The aim of this systematic review is to investigate the possible consequences that these activities may have in the field of animal neurobehavior, with special emphasis on the species involved, the most common environment concerned, the noise source and the disturbance that is caused. This research includes articles published in the major databases (PubMed, Cochrane Library, Scopus, Embase, Web of Sciences); the online search yielded 1901 references. After selection, 49 articles (14 reviews and 35 original articles) were finally scrutinized. The main problems that were reported were in relation to movement, reproduction, offspring care and foraging. In live experiments carried out, the repercussions on the marine environment mainly concerned altered swimming, shallower descents, less foraging and an escape reaction for fear of cetaceans and fish. In birds, alterations in foraging, vocalizations and nests were noted; laboratory studies, on the other hand, carried out on small mammals, highlighted spatio-temporal cognitive alterations and memory loss. In conclusion, it appears that greater attention to all ecosystems should be given as soon as possible so as to try to achieve a balance between human activity and the well-being of terrestrial fauna.
Collapse
Affiliation(s)
- Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Simone De Sio
- R.U. of Occupational Medicine, “Sapienza” University of Rome, 00100 Rome, Italy
| | | | - Raymond Paul Galea
- Department of Obstetrics & Gynaecology, University of Malta, MSD 2080 Msida, Malta
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
3
|
Zhan TT, Dong ZY, Yi LS, Zhang Y, Sun HH, Zhang HQ, Wang JW, Chen Y, Huang Y, Xu SC. Tandospirone prevents stress-induced anxiety-like behavior and visceral hypersensitivity by suppressing theta oscillation enhancement via 5-HT1A receptors in the anterior cingulate cortex in rats. Front Cell Neurosci 2022; 16:922750. [PMID: 36072567 PMCID: PMC9441562 DOI: 10.3389/fncel.2022.922750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Tandospirone, a third-generation of antianxiety agent with fewer side effects, has been widely used in the treatment of anxiety. Moreover, it is interesting that tandospirone has been found to relieve gastrointestinal symptoms in patients with refractory irritable bowel syndrome who also have psychological dysfunctions. However, the underlying mechanism remains unclear. In this study, using a visceral hypersensitivity rat model induced by chronic water avoidance stress to mimic the symptoms of irritable bowel syndrome, we found that tandospirone relieved anxiety-like behavior and visceral hypersensitivity induced by stress. Meanwhile, stressed rats had increased 5-HT concentration, less 5-HT1A receptor expression, and enhanced theta oscillations in the anterior cingulate cortex (ACC). Furthermore, the power of the theta band in ACC is positively correlated with the level of visceral sensitivity. Activation of 5-HT1A receptors by its agonist, 8-OH-DPAT, to compensate for their effect in ACC reduced the enhancement of theta oscillations in ACC slices in stressed rats, whereas 5-HT1A receptor antagonist, WAY100135, facilitates theta oscillations in slices of normal rats. Tandospirone reduced the enhancement of theta band power in ACC in vitro and in vivo, thus alleviating anxiety-like behavior and visceral hypersensitivity through 5-HT1A receptors in stressed rats. These results suggest a novel mechanism by which tandospirone activates 5-HT1A receptors to relieve stress-induced anxiety and visceral hypersensitivity by suppressing theta oscillation enhancement in ACC.
Collapse
Affiliation(s)
- Ting-Ting Zhan
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi-Yu Dong
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Yi
- Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yan Zhang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui-Hui Sun
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hai-Qin Zhang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun-Wen Wang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Chen
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Ying Huang,
| | - Shu-Chang Xu
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shu-Chang Xu,
| |
Collapse
|
4
|
Ng SY, Ariffin MZ, Khanna S. Neurokinin receptor mechanisms in forebrain medial septum modulate nociception in the formalin model of inflammatory pain. Sci Rep 2021; 11:24358. [PMID: 34934106 PMCID: PMC8692436 DOI: 10.1038/s41598-021-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
The present study has explored the hypothesis that neurokinin1 receptors (NK1Rs) in medial septum (MS) modulate nociception evoked on hind paw injection of formalin. Indeed, the NK1Rs in MS are localized on cholinergic neurons which have been implicated in nociception. In anaesthetized rat, microinjection of L-733,060, an antagonist at NK1Rs, into MS antagonized the suppression of CA1 population spike (PS) evoked on peripheral injection of formalin or on intraseptal microinjection of substance P (SP), an agonist at NK1Rs. The CA1 PS reflects the synaptic excitability of pyramidal cells in the region. Furthermore, microinjection of L-733,060 into MS, but not LS, attenuated formalin-induced theta activation in both anaesthetized and awake rat, where theta reflects an oscillatory information processing by hippocampal neurons. The effects of L-733,060 on microinjection into MS were nociceptive selective as the antagonist did not block septo-hippocampal response to direct MS stimulation by the cholinergic receptor agonist, carbachol, in anaesthetized animal or on exploration in awake animal. Interestingly, microinjection of L-733,060 into both MS and LS attenuated formalin-induced nociceptive flinches. Collectively, the foregoing novel findings highlight that transmission at NK1R provide an affective valence to septo-hippocampal information processing and that peptidergic transmission in the septum modulates nociceptive behaviours.
Collapse
Affiliation(s)
- Si Yun Ng
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mohammed Zacky Ariffin
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593, Singapore. .,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Ibrahim KM, Ariffin MZ, Khanna S. Modulation of Septo-Hippocampal Neural Responses in Anesthetized and Behaving Rats by Septal AMPA Receptor Mechanisms. Front Neural Circuits 2021; 15:663633. [PMID: 34177470 PMCID: PMC8220821 DOI: 10.3389/fncir.2021.663633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/06/2021] [Indexed: 01/14/2023] Open
Abstract
This study explored the effects of septal glutamatergic transmission on septal-hippocampal theta activity via intraseptal microinjection of antagonist at AMPA receptors (AMPAR). The current results showed that microinjection of AMPAR antagonist, NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, 20 μg/μl, 0.5 μl), evoked a decrease in the frequency of theta activity evoked by various means in anesthetized and behaving rat. Theta wave activity was induced on: (a) intraseptal microinjection of carbachol, an agonist at cholinergic receptors, (b) reticular stimulation, (c) exploration in novel open field (OF), and (d) hind paw (HP) injection of the algogen, formalin. The effect on frequency in the formalin test was observed in an early period on injection of formalin, which was novel to the animal, but not in the later more sustained phase of the formalin test. The effect of NBQX, being seen in both anesthetized and behaving animals, suggests that the modulation of theta wave frequency, including in novelty, is a function of AMPAR in MS. The effect of the antagonist on theta power was less apparent, being observed only in anesthetized animals. In addition to theta power and frequency, intraseptal NBQX also attenuated suppression of CA1 population spike (PS) induced by intraseptal carbachol, thus suggesting that septal glutamate neurotransmission is involved in the spectrum of MS-mediated network responses. Indeed, in the context of behavior, formalin injection induced an increase in the level of septal glutamate, while NBQX attenuated nociceptive behaviors. Notably, MS is involved in the modulation of formalin nociception. These findings suggest that AMPA receptors are a key modulator of septal physiological function.
Collapse
Affiliation(s)
- Khairunisa Mohamad Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Forebrain medial septum sustains experimental neuropathic pain. Sci Rep 2018; 8:11892. [PMID: 30089875 PMCID: PMC6082830 DOI: 10.1038/s41598-018-30177-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The present study explored the role of the medial septal region (MS) in experimental neuropathic pain. For the first time, we found that the MS sustains nociceptive behaviors in rodent models of neuropathic pain, especially in the chronic constriction injury (CCI) model and the paclitaxel model of chemotherapy-induced neuropathic pain. For example, inactivation of the MS with intraseptal muscimol (2 μg/μl, 0.5 μl), a GABA mimetic, reversed peripheral hypersensitivity (PH) in the CCI model and induced place preference in a conditioned place preference task, a surrogate measure of spontaneous nociception. The effect of intraseptal muscimol on PH was comparable to that seen with microinjection of the local anesthetic, lidocaine, into rostral ventromedial medulla which is implicated in facilitating experimental chronic nociception. Cellular analysis in the CCI model showed that the MS region sustains nociceptive gain with CCI by facilitating basal nociceptive processing and the amplification of stimulus-evoked neural processing. Indeed, consistent with the idea that excitatory transmission through MS facilitates chronic experimental pain, intraseptal microinjection of antagonists acting at AMPA and NMDA glutamate receptors attenuated CCI-induced PH. We propose that the MS is a central monitor of bodily nociception which sustains molecular plasticity triggered by persistent noxious insult.
Collapse
|
7
|
Moazen P, Taherianfard M, Ahmadi Soleimani M, Norozpor M. Synergistic effect of spexin and progesterone on pain sensitivity attenuation in ovariectomized rats. Clin Exp Pharmacol Physiol 2017; 45:349-354. [PMID: 28949407 DOI: 10.1111/1440-1681.12862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 11/30/2022]
Abstract
Spexin is a central modulator of nociception. The aim of the present study was to investigate the effect of intra-hippocampal CA3 (IHCA3) injection of spexin and spexin-progesterone co-administration on pain sensitivity in ovariectomized rat. Thirty-five adult female rats were divided into five groups. Sham: the animals received injection of 0.5 μL ACSF by IHCA3. Experiments 1 and 2: the animals received injection of 0.5 μL of spexin bilaterally (10 and 30 nmol/rat respectively). Experiments 3 and 4: the animals received injection of 0.5 μL of spexin bilaterally (10 and 30 nmol/rat respectively) + subcutaneous (s.c.) injection of progesterone (5 mg/kg). Ovariectomy was performed in all groups to eliminate the effects of cyclic changes in the female rats. The formalin test (formalin 2.5%) was performed following the administration of spexin and progesterone. Results showed that bilateral injection of spexin in IHCA3 at both concentrations a significant (P < .05) decrease in the pain sensitivity in the two phases of formalin test. Similarly, the bilateral injection of spexin in IHCA3 at both concentrations following the s.c. injection of progesterone significantly (P < .05) decreases pain sensitivity in two phases of the formalin test. This pain attenuation due to the co-administration of spexin and progesterone was more potent than spexin-induced analgesia. According to the present results, spexin has a modulatory effect on pain sensitivity, which becomes more pronounced by progesterone administration.
Collapse
Affiliation(s)
- Parisa Moazen
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahnaz Taherianfard
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Mitra Norozpor
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Abstract
Pain modulates rhythmic neuronal activity recorded by Electroencephalography (EEG) in humans. Our laboratory previously showed that rat models of acute and neuropathic pain manifest increased power in primary somatosensory cortex (S1) recorded by electrocorticography (ECoG). In this study, we hypothesized that pain increases EEG power and corticocortical coherence in different rat models of pain, whereas treatments with clinically effective analgesics reverse these changes. Our results show increased cortical power over S1 and prefrontal cortex (PFC) in awake, freely behaving rat models of acute, inflammatory and neuropathic pain. Coherence between PFC and S1 is increased at a late, but not early, time point during the development of neuropathic pain. Electroencephalography power is not affected by ibuprofen in the acute pain model. However, pregabalin and mexiletine reverse the changes in power and S1-PFC coherence in the inflammatory and neuropathic pain models. These data suggest that quantitative EEG might be a valuable predictor of pain and analgesia in rodents.
Collapse
|
9
|
Ariffin MZ, Low CM, Khanna S. Medial Septum Modulates Cellular Response Induced in Hippocampus on Microinjection of Cholinergic Agonists into Hypothalamic Lateral Supramammillary Nucleus. Front Neuroanat 2017; 11:79. [PMID: 28966579 PMCID: PMC5605574 DOI: 10.3389/fnana.2017.00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Cholinergic mechanisms in supramammillary nucleus (SuM), especially the lateral SuM (lSuM) modulates septo-hippocampal neural activity. The lSuM, as compared to the contiguous medial SuM (mSuM) has relatively dense projections to hippocampus and cingulate cortex (Cg). In the present study, we have investigated whether the effects of cholinergic activation of SuM on hippocampal and cortical neural activities involve a cooperative interaction with the medial septum (MS). Microinjection of the broad-spectrum cholinergic agonist, carbachol, or the cholinergic-nicotinic receptor agonist, nicotine, into the lSuM and the mSuM in urethane anesthetized rat evoked a similar pattern of hippocampal theta rhythm. Despite that, only the lSuM microinjections resulted in an increase in expression of c-Fos-like immunoreactivity (c-Fos-ir) in neurons, including interneurons, of the ipsilateral hippocampus with a very dense expression in dentate gyrus. Likewise, a robust induction of c-Fos-ir was also observed in the ipsilateral Cg. Inhibition of the MS with muscimol pre-treatment attenuated both carbachol-evoked c-Fos-ir and theta activation. The findings indicate that cholinergic–nicotinic mechanisms in lSuM evoke not only neural activation via the ascending synchronizing pathway but also an MS-modulated expression of the plasticity-related molecule c-Fos in cortical regions that are strongly innervated by the lSuM.
Collapse
Affiliation(s)
- Mohammed Z Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Department of Anesthesia, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Neurobiology Program, Life Science Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
10
|
Ang ST, Ariffin MZ, Khanna S. The forebrain medial septal region and nociception. Neurobiol Learn Mem 2016; 138:238-251. [PMID: 27444843 DOI: 10.1016/j.nlm.2016.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
The forebrain medial septum, which is an integral part of the septo-hippocampal network, is implicated in sensorimotor integration, fear and anxiety, and spatial learning and memory. A body of evidence also suggests that the septal region affects experimental pain. Indeed, some explorations in humans have raised the possibility that the region may modulate clinical pain as well. This review explores the evidence that implicates the medial septum in nociception and suggests that non-overlapping circuits in the region facilitate acute nociceptive behaviors and defensive behaviors that reflect affect and cognitive appraisal, especially in relation to persistent nociception. In line with a role in nociception, the region modulates nociceptive responses in the neuraxis, including the hippocampus and the anterior cingulate cortex. The aforementioned forebrain regions have also been implicated in persistent/long-lasting nociception. The review also weighs the effects of the medial septum on nociception vis-à-vis the known roles of the region and emphasizes the fact that the region is a part of network of forebrain structures which have been long associated with reward, cognition and affect-motivation and are now implicated in persistent/long-lasting nociception.
Collapse
Affiliation(s)
- Seok Ting Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Program, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
11
|
Woodbury A, Yu SP, Chen D, Gu X, Lee JH, Zhang J, Espinera A, García PS, Wei L. Honokiol for the Treatment of Neonatal Pain and Prevention of Consequent Neurobehavioral Disorders. JOURNAL OF NATURAL PRODUCTS 2015; 78:2531-6. [PMID: 26539813 PMCID: PMC6133305 DOI: 10.1021/acs.jnatprod.5b00225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This study examined the short- and long-term neuroprotective and analgesic activity of honokiol (a naturally occurring lignan isolated from Magnolia) on developing brains in neonates exposed to inflammatory pain, known to cause neuronal cell death. Postnatal day 4 (P4) neonatal rat pups were subjected to intraplantar formalin injection to four paws as a model of severe neonatal pain. Intraperitoneal honokiol (10 mg/kg) or corn oil vehicle control was administered 1 h prior to formalin insult, and animals were maintained on honokiol through postnatal day 21 (P21). Behavioral tests for stress and pain were performed after the painful insult, followed by morphological examinations of the brain sections at P7 and P21. Honokiol significantly attenuated acute pain responses 30 min following formalin insult and decreased chronic thermal hyperalgesia later in life. Honokiol-treated rats performed better on tests of exploratory behavior and performed significantly better in tests of memory. Honokiol treatment normalized hippocampal and thalamic c-Fos and hippocampal alveus substance P receptor expression relative to controls at P21. Together, these findings support that (1) neonatal pain experiences predispose rats to the development of chronic behavioral changes and (2) honokiol prevents and reduces both acute and chronic pathological pain-induced deteriorations in neonatal rats.
Collapse
Affiliation(s)
- Anna Woodbury
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
- Research Division, Veterans Affairs Medical Center–Atlanta, 1670 Clairmont Road, Decatur, Georgia 30033, United States
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
- Research Division, Veterans Affairs Medical Center–Atlanta, 1670 Clairmont Road, Decatur, Georgia 30033, United States
| | - Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
| | - Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
| | - James Zhang
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
| | - Alyssa Espinera
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
| | - Paul S. García
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
- Research Division, Veterans Affairs Medical Center–Atlanta, 1670 Clairmont Road, Decatur, Georgia 30033, United States
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, 1648 Pierce Drive NE, Atlanta, Georgia 30307, United States
| |
Collapse
|
12
|
Ang ST, Lee ATH, Foo FC, Ng L, Low CM, Khanna S. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect. Sci Rep 2015; 5:15419. [PMID: 26487082 PMCID: PMC4614072 DOI: 10.1038/srep15419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/25/2015] [Indexed: 02/03/2023] Open
Abstract
The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task.
Collapse
Affiliation(s)
- Seok Ting Ang
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Andy Thiam Huat Lee
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Fang Chee Foo
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Lynn Ng
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
| | - Chian-Ming Low
- Departments of Pharmacology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Departments of Anaesthesia, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Sanjay Khanna
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| |
Collapse
|
13
|
Theta-frequency phase-locking of single anterior cingulate cortex neurons and synchronization with the medial thalamus are modulated by visceral noxious stimulation in rats. Neuroscience 2015; 298:200-10. [DOI: 10.1016/j.neuroscience.2015.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 01/19/2023]
|
14
|
Zhang Y, Liu FY, Liao FF, Wan Y, Yi M. Exacerbation of tonic but not phasic pain by entorhinal cortex lesions. Neurosci Lett 2014; 581:137-42. [PMID: 24840135 DOI: 10.1016/j.neulet.2014.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023]
Abstract
The hippocampus is actively involved in pain modulation. Previous studies have shown that inhibition, resection or pharmacological interference of the hippocampus or its subcortical afferent sources such as the medial septum and amygdala produce anti-nociceptive effects. But how the cortical connections of the hippocampus modulate pain remains unexplored. The entorhinal cortex (EC) constitutes the major gateway between the hippocampus and the neocortex. In the present study, rats with medial (MEC), lateral (LEC) or sham EC lesions and received the hot plate and the intra-plantar formalin injection tests. Neither MEC nor LEC lesions affected the hot plate test and the first phase of the formalin test. In contrast, paw licking responses in the second phase of the formalin test significantly increased with both MEC and LEC lesions. These results suggested that that the hippocampal-cortical interactions channeled by the EC were involved in tonic but not phasic pain conditions, and that cortical and sub-cortical connections of the hippocampus played independent roles in pain modulation.
Collapse
Affiliation(s)
- Yu Zhang
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China
| | - Fei-Fei Liao
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, 38 Xueyuan Road, Beijing 100191, PR China
| | - You Wan
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, 38 Xueyuan Road, Beijing 100191, PR China; Department of Neurobiology, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Ming Yi
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
15
|
Hafeshjani ZK, Karami M, Biglarnia M. Nitric oxide in the hippocampal cortical area interacts with naloxone in inducing pain. Indian J Pharmacol 2013; 44:443-7. [PMID: 23087502 PMCID: PMC3469944 DOI: 10.4103/0253-7613.99299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/21/2012] [Accepted: 04/30/2012] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Role of nitric oxide (NO) in reversing morphine anti-nociception has been shown. However, the interaction between NO and naloxone-induced pain in the hippocampus is unknown. The present study aimed to investigate the involvement of molecule NO in naloxone-induced pain and its possible interaction with naloxone into cortical area 1 (CA1) of hippocampus. MATERIALS AND METHODS Male Wistar rats (250-350 g), provided by Pasteur Institute of Iran, were housed two per cage with food and water ad libitum. The animals' skulls were cannulated bilaterally at coordinates adjusted for CA1 of hippocampus (AP: -3.8; L: ±1.8- 2.2: V: 3) by using stereotaxic apparatus. Each experimental group included 6-8 rats. To induce inflammation pain, the rats received subcutaneous (s.c.) injections of formalin (50 μL at 2.5%) once prior to testing. To evaluate the nociceptive effect of naloxone, the main narcotic antagonist of morphine (0.1-0.4 mg/kg) was injected intraperitoneally (i.p.) 10 min before injection of formalin. Injections of L-arginine, a precursor of NO, and N(G)-Nitro-L-arginine Methyl Ester (L-NAME), an inhibitor of NO synthase (NOS), intra-CA1, were conducted orderly prior to the administration of naloxone. The pain induction was analyzed by analysis of variance (ANOVA). RESULTS Naloxone at the lower doses caused a significant (P<0.01) pain in the naloxone-treated animals. However, pre-administration (1-2 min) of L-arginine (0.04, 0.08, 0.15, 0.3, 1.0, and 3.0 μg/rat, intra-CA1) reversed the response to naloxone. But, the response to L-arginine was blocked by pre-microinjection (1-2 min) of L-NAME (0.15, 0.3, 1.0, and 3.0 μg/rat), whilst, L-arginine or L-NAME alone did not induce pain behavior. CONCLUSION NO in the rat hippocampal CA1 area is involved in naloxone-induced nociception.
Collapse
|
16
|
Leung LS, Ma J, Shen B, Nachim I, Luo T. Medial septal lesion enhances general anesthesia response. Exp Neurol 2013; 247:419-28. [DOI: 10.1016/j.expneurol.2013.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/30/2012] [Accepted: 01/09/2013] [Indexed: 12/01/2022]
|
17
|
Forebrain medial septum region facilitates nociception in a rat formalin model of inflammatory pain. Pain 2011; 152:2528-2542. [DOI: 10.1016/j.pain.2011.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/16/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022]
|
18
|
Johnston IN, Maier SF, Rudy JW, Watkins LR. Post-conditioning experience with acute or chronic inflammatory pain reduces contextual fear conditioning in the rat. Behav Brain Res 2011; 226:361-8. [PMID: 21920390 DOI: 10.1016/j.bbr.2011.08.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 11/26/2022]
Abstract
There is evidence that pain can impact cognitive function in people. The present study evaluated whether Pavlovian fear conditioning in rats would be reduced if conditioning were followed by persistent inflammatory pain induced by a subcutaneous injection of dilute formalin or complete Freund's adjuvant (CFA) on the dorsal lumbar surface of the back. Formalin-induced pain specifically impaired contextual fear conditioning but not auditory cue conditioning (Experiment 1A). Moreover, formalin pain only impaired contextual fear conditioning if it was initiated within 1h of conditioning and did not have a significant effect if initiated 2, 8 or 32 h after (Experiments 1A and 1B). Experiment 2 showed that formalin pain initiated after a session of context pre-exposure reduced the ability of that pre-exposure to facilitate contextual fear when the rat was limited to a brief exposure to the context during conditioning. Similar impairments in context- but not CS-fear conditioning were also observed if the rats received an immediate post-conditioning injection with CFA (Experiment 3). Finally, we confirmed that formalin and CFA injected s.c. on the back induced pain-indicative behaviours, hyperalgesia and allodynia with a similar timecourse to intraplantar injections (Experiment 4). These results suggest that persistent pain impairs learning in a hippocampus-dependent task, and may disrupt processes that encode experiences into long-term memory.
Collapse
Affiliation(s)
- Ian N Johnston
- School of Psychology, The University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
19
|
Cardoso-Cruz H, Lima D, Galhardo V. Instability of spatial encoding by CA1 hippocampal place cells after peripheral nerve injury. Eur J Neurosci 2011; 33:2255-64. [PMID: 21615562 DOI: 10.1111/j.1460-9568.2011.07721.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several authors have shown that the hippocampus responds to painful stimulation and suggested that prolonged painful conditions could lead to abnormal hippocampal functioning. The aim of the present study was to evaluate whether the induction of persistent peripheral neuropathic pain would affect basic hippocampal processing such as the spatial encoding performed by CA1 place cells. These place cells fire preferentially in a certain spatial position in the environment, and this spatial mapping remains stable across multiple experimental sessions even when the animal is removed from the testing environment. To address the effect of prolonged pain on the stability of place cell encoding, we chronically implanted arrays of electrodes in the CA1 hippocampal region of adult rats and recorded the multichannel neuronal activity during a simple food-reinforced alternation task in a U-shaped runway. The activity of place cells was followed over a 3-week period before and after the establishment of an animal model of neuropathy, spared nerve injury. Our results show that the nerve injury increased the number of place fields encoded per cell and the mapping size of the place fields. In addition, there was an increase in in-field coherence while the amount of spatial information content that a single spike conveyed about the animal location decreased over time. Other measures of spatial tuning (in-field firing rate, firing peak and number of spikes) were unchanged between the experimental groups. These results demonstrate that the functioning of spatial place cells is altered during neuropathic pain conditions.
Collapse
Affiliation(s)
- Helder Cardoso-Cruz
- Instituto de Biologia Molecular e Celular (IBMC), Grupo de Morfofisiologia do Sistema Somatosensitivo, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
20
|
Liu CC, Shi CQ, Franaszczuk PJ, Crone NE, Schretlen D, Ohara S, Lenz FA. Painful laser stimuli induce directed functional interactions within and between the human amygdala and hippocampus. Neuroscience 2011; 178:208-17. [PMID: 21256929 DOI: 10.1016/j.neuroscience.2011.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
The pathways by which painful stimuli are signaled within the human medial temporal lobe are unknown. Rodent studies have shown that nociceptive inputs are transmitted from the brainstem or thalamus through one of two pathways to the central nucleus of the amygdala. The indirect pathway projects from the basal and lateral nuclei of the amygdala to the central nucleus, while the direct pathway projects directly to the central nucleus. We now test the hypothesis that the human ventral amygdala (putative basal and lateral nuclei) exerts a causal influence upon the dorsal amygdala (putative central nucleus), during the application of a painful laser stimulus. Local field potentials (LFPs) were recorded from depth electrode contacts implanted in the medial temporal lobe for the treatment of epilepsy, and causal influences were analyzed by Granger causality (GRC). This analysis indicates that the dorsal amygdala exerts a pre-stimulus causal influence upon the hippocampus, consistent with an attention-related response to the painful laser. Within the amygdala, the analysis indicates that the ventral contacts exert a causal influence upon dorsal contacts, consistent with the human (putative) indirect pathway. Potentials evoked by the laser (LEPs) were not recorded in the ventral nuclei, but were recorded at dorsal amygdala contacts which were not preferentially those receiving causal influences from the ventral contacts. Therefore, it seems likely that the putative indirect pathway is associated with causal influences from the ventral to the dorsal amygdala, and is distinct from the human (putative) indirect pathway which mediates LEPs in the dorsal amygdala.
Collapse
Affiliation(s)
- C C Liu
- Department of Neurosurgery, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 2105, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Ariffin MZ, Jiang F, Low CM, Khanna S. Nicotinic receptor mechanism in supramammillary nucleus mediates physiological regulation of neural activity in dorsal hippocampal field CA1 of anaesthetized rat. Hippocampus 2010; 20:852-65. [PMID: 19655318 DOI: 10.1002/hipo.20687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence suggests that stimulation of the region of the rostral pontine oralis (RPO) nucleus and the peripheral application of a noxious stimulus activates an ascending system that also modulates hippocampal neural responses during behavioral arousal. Indeed, the two stimuli and behavioral arousal elicit theta activation and the suppression of population spikes (PS) in dorsal hippocampus field CA1. Interestingly, such neural responses in CA1 are also elicited by microinjection of the cholinergic agonist carbachol into the hypothalamic supramammillary nucleus (SuM). In the present in vivo electrophysiological study, we tested the hypothesis that cholinergic neural elements in the SuM modulate the neural drive to CA1 on RPO stimulation or the peripheral application of a noxious stimulus. Pharmacological investigation showed that intra-SuM microinjection of either a muscarinic or a nicotinic receptor antagonist attenuated the SuM carbachol-induced neural effects in CA1, namely, theta activation and PS suppression. However, neither antagonist attenuated the CA1 effects of intra-SuM microinjection of the excitatory neurotransmitter glutamate. Subsequent investigations revealed that microinjection of only the nicotinic antagonist, mecamylamine, into the lateral SuM selectively attenuated the responses elicited in CA1 by stimulation of the RPO or on nociceptive stimulation with hind paw injection of formalin (5%, 0.05 ml); whereas, microinjection of mecamylamine into the medial SuM did not affect the hippocampal responses elicited by either type of stimulation. Furthermore, application of mecamylamine into the lateral SuM attenuated the CA1 responses induced by injection of formalin into the contralateral, but not the ipsilateral hind paw. The lateralization of drug effect is consistent with the predominant unilateral anatomical connections between the SuM and the septohippocampal region. These findings provide novel evidence that nicotinic cholinoceptive neurons in the lateral SuM are common elements of the neural drive(s) to the hippocampus on RPO activation and noxious stimulation.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
22
|
Heinrichs SC. Neurobehavioral consequences of stressor exposure in rodent models of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:808-15. [PMID: 19913590 DOI: 10.1016/j.pnpbp.2009.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/22/2009] [Accepted: 11/03/2009] [Indexed: 12/20/2022]
Abstract
Both normal, non-epileptic as well as seizure-prone rodents exhibit a spectrum of anxiogenic-like behaviors in response to stressor exposure. Comparative analysis reveals that the same set of emotionality dependent measures is sensitive to both stress reactivity in normal rodents as well as stress hyperreactivity typically seen in seizure-prone rodents. A variety of unconditioned, exploratory tasks reflect global sensitivity to stressor exposure in the form of behavioral inhibition of locomotor output. Moreover, well chosen stressors can trigger de novo seizures with or without a history of seizure incidence. Seizures may be elicited in response to stressful environmental stimuli such as noxious noises, tail suspension handling, or home cage disturbance. Stress reactivity studies in rodents with a genetic predisposition to seizures have yielded important clues regarding brain substrates that mediate seizure ontogeny and modulate ictogenesis. Brains of seizure susceptible rodents reflect elevated content of the stress-related neuropeptide, corticotropin-releasing factor (CRF) in several nuclei relative to non-susceptible controls and neutralization of brain CRF attenuates seizure sensitivity. Findings outlined in this review support a diathesis-stress hypothesis in which behavioral- and neuro-pathologies of genetically seizure susceptible rodents arise in part due to multifaceted hyperreactivity to noxious environmental stimuli.
Collapse
Affiliation(s)
- Stephen C Heinrichs
- Regis College, Psychology Department, Science Building 103, 235 Wellesley Street, Weston, MA 02493, United States.
| |
Collapse
|
23
|
Abstract
Pain is a complex experience consisting of sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Now it has been gradually known that noxious information is processed by a widely-distributed, hierarchically- interconnected neural network, referred to as neuromatrix, in the brain. Thus, identifying the multiple neural networks subserving these functional aspects and harnessing this knowledge to manipulate the pain response in new and beneficial ways are challenging tasks. Albeit with elaborate research efforts on the cortical responses to painful stimuli or clinical pain, involvement of the hippocampal formation (HF) in pain is still a matter of controversy. Here, we integrate previous animal and human studies from the viewpoint of HF and pain, sequentially representing anatomical, behavioral, electrophysiological, molecular/biochemical and functional imaging evidence supporting the role of HF in pain processing. At last, we further expound on the relationship between pain and memory and present some unresolved issues.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, China
| | | |
Collapse
|
24
|
Liu CC, Ohara S, Franaszczuk P, Zagzoog N, Gallagher M, Lenz FA. Painful stimuli evoke potentials recorded from the medial temporal lobe in humans. Neuroscience 2009; 165:1402-11. [PMID: 19925853 DOI: 10.1016/j.neuroscience.2009.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
Abstract
The role of human medial temporal structures in fear conditioning has led to the suggestion that neurons in these structures might respond to painful stimuli. We have now tested the hypothesis that recordings from these structures will demonstrate potentials related to the selective activation of cutaneous nociceptors by a painful laser stimulus (laser evoked potential, LEP) (Kenton B, Coger R, Crue B, Pinsky J, Friedman Y, Carmon A (1980) Neurosci Lett 17:301-306). Recordings were carried out through electrodes implanted bilaterally in these structures for the investigation of intractable epilepsy. Reproducible LEPs were commonly recorded both bilaterally and unilaterally, while LEPs were recorded at contacts on the left (9/14, P=0.257) as commonly as on the right (5/14), independent of the hand stimulated. Along electrodes traversing the amygdala the majority of LEPs were recorded from dorsal contacts near the central nucleus of the amygdala and the nucleus basalis. Stimulus evoked changes in theta activity were observed at contacts on the right at which isolated early negative LEPs (N2*) responses could be recorded. Contacts at which LEPs could be recorded were as commonly located in medial temporal structures with evidence of seizure activity as on those without. These results demonstrate the presence of pain-related inputs to the medial temporal lobe where they may be involved in associative learning to produce anxiety and disability related to painful stimuli.
Collapse
Affiliation(s)
- C C Liu
- Department of Neurosurgery, Meyer 5-181, Johns Hopkins University, Baltimore, MD 21287-7713, USA
| | | | | | | | | | | |
Collapse
|
25
|
Zhao XY, Liu MG, Yuan DL, Wang Y, He Y, Wang DD, Chen XF, Zhang FK, Li H, He XS, Chen J. Nociception-induced spatial and temporal plasticity of synaptic connection and function in the hippocampal formation of rats: a multi-electrode array recording. Mol Pain 2009; 5:55. [PMID: 19772643 PMCID: PMC2759921 DOI: 10.1186/1744-8069-5-55] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/22/2009] [Indexed: 12/12/2022] Open
Abstract
Background Pain is known to be processed by a complex neural network (neuromatrix) in the brain. It is hypothesized that under pathological state, persistent or chronic pain can affect various higher brain functions through ascending pathways, leading to co-morbidities or mental disability of pain. However, so far the influences of pathological pain on the higher brain functions are less clear and this may hinder the advances in pain therapy. In the current study, we studied spatiotemporal plasticity of synaptic connection and function in the hippocampal formation (HF) in response to persistent nociception. Results On the hippocampal slices of rats which had suffered from persistent nociception for 2 h by receiving subcutaneous bee venom (BV) or formalin injection into one hand paw, multisite recordings were performed by an 8 × 8 multi-electrode array probe. The waveform of the field excitatory postsynaptic potential (fEPSP), induced by perforant path electrical stimulation and pharmacologically identified as being activity-dependent and mediated by ionotropic glutamate receptors, was consistently positive-going in the dentate gyrus (DG), while that in the CA1 was negative-going in shape in naïve and saline control groups. For the spatial characteristics of synaptic plasticity, BV- or formalin-induced persistent pain significantly increased the number of detectable fEPSP in both DG and CA1 area, implicating enlargement of the synaptic connection size by the injury or acute inflammation. Moreover, the input-output function of synaptic efficacy was shown to be distinctly enhanced by the injury with the stimulus-response curve being moved leftward compared to the control. For the temporal plasticity, long-term potentiation produced by theta burst stimulation (TBS) conditioning was also remarkably enhanced by pain. Moreover, it is strikingly noted that the shape of fEPSP waveform was drastically deformed or split by a TBS conditioning under the condition of persistent nociception, while that in naïve or saline control state was not affected. All these changes in synaptic connection and function, confirmed by the 2-dimentional current source density imaging, were found to be highly correlated with peripheral persistent nociception since pre-blockade of nociceptive impulses could eliminate all of them. Finally, the initial pharmacological investigation showed that AMPA/KA glutamate receptors might play more important roles in mediation of pain-associated spatiotemporal plasticity than NMDA receptors. Conclusion Peripheral persistent nociception produces great impact upon the higher brain structures that lead to not only temporal plasticity, but also spatial plasticity of synaptic connection and function in the HF. The spatial plasticity of synaptic activities is more complex than the temporal plasticity, comprising of enlargement of synaptic connection size at network level, deformed fEPSP at local circuit level and, increased synaptic efficacy at cellular level. In addition, the multi-synaptic model established in the present investigation may open a new avenue for future studies of pain-related brain dysfunctions at the higher level of the neuromatrix.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Long JJ, Shen B, Luo T, Stewart L, McMurran TJ, Leung LS. Pilocarpine model of temporal lobe epilepsy shows enhanced response to general anesthetics. Exp Neurol 2009; 219:308-18. [DOI: 10.1016/j.expneurol.2009.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/23/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
|
27
|
Zheng F, Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull 2008; 77:374-81. [PMID: 18852032 DOI: 10.1016/j.brainresbull.2008.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/12/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
It has been hypothesized that intra-hippocampal GABAergic inhibitory interneurons mediate formalin pain-induced suppression of dorsal hippocampal CA1 pyramidal cell discharge. The present study performed on anaesthetized rats tested the hypothesis by disrupting GABAergic mechanisms with intra-hippocampal administration of the GABA(A) receptor antagonist bicuculline methiodide, applied either dorsally into the pyramidal cell layer and stratum oriens (dorsal-bicuculline) or ventrally into the region of apical dendrites (ventral-bicuculline). It was found that ventral-, but not dorsal-bicuculline attenuated formalin-induced suppression of pyramidal cell extracellular discharge. The antagonism was selective in such a way that the excitation of pyramidal cell was unaffected. Interestingly, ventral-bicuculline strongly disinhibited CA1 pyramidal cells and shifted the distribution of their spontaneous discharge to values higher than the control group. However, dorsal-bicuculline disinhibited the local CA1 interneurons that were strongly excited on injection of formalin. Overall, the findings favour the notion that tonic GABA(A) receptor mechanisms located in the region of apical dendrites facilitate formalin-induced pyramidal cell suppression by masking the background excitatory drive impinging on the pyramidal cells. Interestingly, both the attenuation of formalin-induced inhibition and facilitation of basal discharge of CA1 pyramidal cells by ventral-bicuculline are similar to the effects seen previously with the destruction of medial septal cholinergic neurons. This convergence of effects strengthens the proposal that the network of medial septal cholinergic neurons and hippocampal GABAergic interneurons influence formalin pain-induced CA1 pyramidal cell suppression. In addition, the data point to a non-overlapping excitatory drive whose strength is unaffected by the inhibitory drive that underpins formalin suppression.
Collapse
Affiliation(s)
- F Zheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD9, 2 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
28
|
Sakiyama Y, Sujaku T, Furuta A. A novel automated method for measuring the effect of analgesics on formalin-evoked licking behavior in rats. J Neurosci Methods 2007; 167:167-75. [PMID: 17881061 DOI: 10.1016/j.jneumeth.2007.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/02/2007] [Accepted: 08/02/2007] [Indexed: 11/25/2022]
Abstract
The behavioral assessment of pain is essential for the analysis of pain mechanisms and the evaluation of analgesic drugs. The formalin test is one of such methods widely used as a model of injury-induced pain in rodents. This test is manually demanding and the recording of results is left to the subjectivity of the experimenters. Thus we developed a novel automated method to estimate the pharmacological response in formalin-induced licking behavior in rats using a multicolor detection technique. Two color markers were preliminarily applied to rats-yellow dye on the mouth and fluorescent green tape on the right hind paw. Behaviors of the animals were recorded from both above and below the subject, by a dual-view digital video camera system. After injection with formalin into the hind paw, rats exhibited a biphasic display of licking behavior. Licking time was measured by the sum of frames where the distance between these markers was less than an appropriate threshold of distance (TD). The split-plot analysis of variance demonstrated that the sum of squares of differences in licking time between manual and automated measurement was minimized when TD = 20mm. In addition, frames in which moving velocity of these markers is less than 2.5mm/s was neglected for calculation in order to eliminate sedative effect on the recorded data. On these conditions, subcutaneous administration of morphine in rats dose-dependently decreased formalin-elicited nociceptive responses. These results suggest that under optimal conditions the automated technique when applied to pharmacological studies are more reliable and efficient than if they are manually recorded.
Collapse
Affiliation(s)
- Yojiro Sakiyama
- Research Planning and Coordination, Nagoya Laboratories, Pfizer Global Research and Development, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan.
| | | | | |
Collapse
|
29
|
Tejada S, Rial RV, Coenen AML, Gamundi A, Esteban S. Effects of pilocarpine on the cortical and hippocampal theta rhythm in different vigilance states in rats. Eur J Neurosci 2007; 26:199-206. [PMID: 17596191 DOI: 10.1111/j.1460-9568.2007.05647.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
It has been suggested that theta rhythm gates the flow of information between the hippocampus and cortex during memory processes. The cholinergic system plays an important role in regulating vigilance states and in generating theta rhythm. This study aims to analyse the effects of the muscarinic agonist pilocarpine (120 and 360 microg, i.c.v.) on hippocampal and frontal cortical theta rhythm during several vigilance states in rats. Pilocarpine injection increased the duration and number of episodes with theta activity, particularly when theta rhythm appeared during waking states in the cortex and hippocampus simultaneously. It seems that the effects of pilocarpine are related to the appearance of cortical theta activity in waking states, and suggest that pilocarpine could modify the transference rate of information from the hippocampus to cortex in rats during wakefulness states, in relation to the postulated effect of cholinergic system modulating memory consolidation.
Collapse
Affiliation(s)
- S Tejada
- Laboratori de Neurofisiologia, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, IUNICS, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|