1
|
Martins DO, Marques DP, Chacur M. Enhancing nerve regeneration in infraorbital nerve injury rat model: effects of vitamin B complex and photobiomodulation. Lasers Med Sci 2024; 39:119. [PMID: 38679671 DOI: 10.1007/s10103-024-04067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.
Collapse
Affiliation(s)
- Daniel Oliveira Martins
- Division of Neuroscience/Hospital Sírio-Libânes, Street Daher Cutait 69, São Paulo, SP, 01308-060, Brazil.
- Departmento de Anatomia, Laboratory of Functional Neuroanatomy of Pain, Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo, SP, Brazil.
| | - Daniel Pereira Marques
- Departmento de Anatomia, Laboratory of Functional Neuroanatomy of Pain, Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo, SP, Brazil
| | - Marucia Chacur
- Departmento de Anatomia, Laboratory of Functional Neuroanatomy of Pain, Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Baggio DF, da Luz FMR, Zortea JM, Lejeune VBP, Chichorro JG. Sex differences in carbamazepine effects in a rat model of trigeminal neuropathic pain. Eur J Pharmacol 2024; 967:176386. [PMID: 38311280 DOI: 10.1016/j.ejphar.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Carbamazepine (CBZ) represents the first-line treatment for trigeminal neuralgia, a condition of facial pain that affects mainly women. The chronic constriction of the infraorbital nerve (CCI-ION) is a widely used model to study this condition, but most studies do not include females. Thus, this study aimed to characterize sensory and affective changes in female rats after CCI-ION and compare the effect of CBZ in both sexes. Mechanical allodynia was assessed 15 days after CCI-ION surgery in rats treated with CBZ (10 and 30 mg/kg, i.p.) or vehicle, together with the open-field test. Independent groups were tested on the Conditioned Place Preference (CPP) paradigm and ultrasonic vocalization (USV) analysis. Blood samples were collected for dosage of the main CBZ metabolite. CBZ at 30 mg/kg impaired locomotion of CCI-ION male and sham and CCI-ION female rats and resulted in significantly higher plasma concentrations of 10-11-EPX-CBZ in the latter. Only male CCI-ION rats showed increased facial grooming which was significantly reduced by CBZ at 10 mg/kg. CBZ at 10 mg/kg significantly reduced mechanical allodynia and induced CPP only in female CCI-ION rats. Also, female CCI-ION showed reduced emission of appetitive USV but did not show anxiety-like behavior. In conclusion, male and female CCI-ION rats presented differences in the expression of the affective-motivational pain component and CBZ was more effective in females than males. Further studies using both sexes in trigeminal neuropathic pain models are warranted for a better understanding of potential differences in the pathophysiological mechanisms and efficacy of pharmacological treatments.
Collapse
Affiliation(s)
- Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Julia Maria Zortea
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Seyed-Razavi Y, Kenyon BM, Qiu F, Harris DL, Hamrah P. A novel animal model of neuropathic corneal pain-the ciliary nerve constriction model. Front Neurosci 2023; 17:1265708. [PMID: 38144209 PMCID: PMC10749205 DOI: 10.3389/fnins.2023.1265708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Neuropathic pain arises as a result of peripheral nerve injury or altered pain processing within the central nervous system. When this phenomenon affects the cornea, it is referred to as neuropathic corneal pain (NCP), resulting in pain, hyperalgesia, burning, and photoallodynia, severely affecting patients' quality of life. To date there is no suitable animal model for the study of NCP. Herein, we developed an NCP model by constriction of the long ciliary nerves innervating the eye. Methods Mice underwent ciliary nerve constriction (CNC) or sham procedures. Safety was determined by corneal fluorescein staining to assess ocular surface damage, whereas Cochet-Bonnet esthesiometry and confocal microscopy assessed the function and structure of corneal nerves, respectively. Efficacy was assessed by paw wipe responses within 30 seconds of applying hyperosmolar (5M) saline at Days 3, 7, 10, and 14 post-constriction. Additionally, behavior was assessed in an open field test (OFT) at Days 7, 14, and 21. Results CNC resulted in significantly increased response to hyperosmolar saline between groups (p < 0.0001), demonstrating hyperalgesia and induction of neuropathic pain. Further, animals that underwent CNC had increased anxiety-like behavior in an open field test compared to controls at the 14- and 21-Day time-points (p < 0.05). In contrast, CNC did not result in increased corneal fluorescein staining or decreased sensation as compared to sham controls (p > 0.05). Additionally, confocal microscopy of corneal whole-mounts revealed that constriction resulted in only a slight reduction in corneal nerve density (p < 0.05), compared to naïve and sham groups. Discussion The CNC model induces a pure NCP phenotype and may be a useful model for the study of NCP, recapitulating features of NCP, including hyperalgesia in the absence of ocular surface damage, and anxiety-like behavior.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Fangfang Qiu
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Departments of Neuroscience and Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Ma X, Zhu T, Ke J. Progress in animal models of trigeminal neuralgia. Arch Oral Biol 2023; 154:105765. [PMID: 37480619 DOI: 10.1016/j.archoralbio.2023.105765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
OBJECTIVE This review aims to systematically summarize the methods of establishing various models of trigeminal neuralgia (TN), the scope of application, and current animals used in TN research and the corresponding pain measurements, hoping to provide valuable reference for researchers to select appropriate TN animal models and make contributions to the research of pathophysiology and management of the disease. DESIGN The related literatures of TN were searched through PubMed database using different combinations of the following terms and keywords including but not limited: animal models, trigeminal neuralgia, orofacial neuropathic pain. To find the maximum number of eligible articles, no filters were used in the search. The references of eligible studies were analyzed and reviewed comprehensively. RESULTS This study summarized the current animal models of TN, categorized them into the following groups: chemical induction, photochemical induction, surgery and genetic engineering, and introduced various measurement methods to evaluate animal pain behaviors. CONCLUSIONS Although a variety of methods are used to establish disease models, there is no ideal TN model that can reflect all the characteristics of the disease. Therefore, there is still a need to develop more novel animal models in order to further study the etiology, pathological mechanism and potential treatment of TN.
Collapse
Affiliation(s)
- Xiaohan Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Taomin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, China; Department of Oral and Maxillofacial Trauma and Temporomandibular Joint Surgery, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
5
|
Marques DP, Chacur M, Martins DO. Photobiomodulation and vitamin B treatment alleviate both thermal and mechanical orofacial pain in rats. Photochem Photobiol Sci 2023; 22:2315-2327. [PMID: 37340216 DOI: 10.1007/s43630-023-00452-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The present study investigates the efficacy of Photobiomodulation (PBM) and Vitamin B Complex (VBC) to relieve pain, both in separately and combined (PBM and VBC). METHODS Rats with chronic constriction injury of the right infraorbital nerve (CCI-IoN) or Sham surgery were used. PBM was administered at a wavelength of 904 nm and energy density of 6.23 J/cm2 and VBC (containing B1, B6 and B12) subcutaneously, both separately and combined. Behavioral tests were performed to assess mechanical and thermal hypersensitivity before and after CCI and after PBM, VBC, or PBM + VBC. The expression of inflammatory proteins in the trigeminal ganglion and the immunohistochemical alterations of Periaqueductal Gray (PAG) astrocytes and microglia were examined following CCI and treatments. RESULTS All testeds treatments reversed the painful behavior. The decrease in pain was accompanied by a decrease of Glial Fibrillary Acidic Protein (GFAP), a specific astrocytic marker, and Ionized calcium-binding adaptor molecule 1 (Iba-1), a marker of microglia, and decreased expression of Transient Receptor Potential Vanilloid 1 (TRPV1), Substance P, and Calcitonin Gene-Related Peptide (CGRP) induced by CCI-IoN in PAG and Trigeminal ganglion. Furthermore, both treatments showed a higher expression of Cannabinoid-type 1 (CB1) receptor in the trigeminal ganglion compared to CCI-IoN rats. Our results show that no difference was observed between groups. CONCLUSION We showed that PBM or VBC regulates neuroinflammation and reduces inflammatory protein expression. However, the combination of PBM and VBC did not enhance the effectiveness of both therapies alone.
Collapse
Affiliation(s)
- Daniel Pereira Marques
- Departamento de Anatomia, Laboratory of Functional Neuroanatomy of Pain, Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo, São Paulo, Brazil
| | - Marucia Chacur
- Departamento de Anatomia, Laboratory of Functional Neuroanatomy of Pain, Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo, São Paulo, Brazil
| | - Daniel Oliveira Martins
- Departamento de Anatomia, Laboratory of Functional Neuroanatomy of Pain, Universidade de São Paulo Instituto de Ciências Biomédicas, São Paulo, São Paulo, Brazil.
- Division of Neuroscience/Hospital Sírio-Libânes, Street Daher Cutait, 69, São Paulo, São Paulo, 01308-060, Brazil.
| |
Collapse
|
6
|
Baggio DF, da Luz FMR, Lopes RV, Ferreira LEN, Araya EI, Chichorro JG. Sex Dimorphism in Resolvin D5-induced Analgesia in Rat Models of Trigeminal Pain. THE JOURNAL OF PAIN 2022; 24:717-729. [PMID: 36584931 DOI: 10.1016/j.jpain.2022.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Resolvin D5 (RvD5) is a specialized pro-resolving lipid mediator with potent anti-inflammatory and analgesic properties. Orofacial pain conditions, especially those that are chronic, present clinical challenges in terms of pharmacological management. Thus, new therapeutic options are clearly warranted. Herein, we investigated the antinociceptive effect of RvD5 in the chronic constriction injury of the infraorbital nerve (CCI-ION) model and in the orofacial formalin test in female and male Wistar rats. Our results indicated that repeated subarachnoid medullary injections of RvD5 at 10 ng resulted in a significant reduction of heat and mechanical hyperalgesia induced by the CCI-ION in male and female rats, but males were more sensitive to RvD5 effects. In addition, after CCI-ION, interleukin-6 (IL-6) level was increased in the trigeminal nucleus caudalis of male, but not female rats, which was reduced by RvD5 repeated treatment. No changes in the levels of IL-1β were found. Minocycline blocked the effect of RvD5 in male rats but failed to affect RvD5 antinociceptive effect in females. Moreover, a single medullary injection of RvD5 caused a significant reduction of formalin-induced facial grooming, in phases I and II of the test, but only in male rats. This study demonstrated for the first time the analgesic effect of RvD5 in trigeminal pain models, and corroborated previous evidence of sex dichotomy, with a greater effect in males. This article presents a translational potential of RvD5 for targeted therapies aiming at the control of acute and chronic trigeminal pain, but further studies are needed to elucidate its sex-related mechanisms. PERSPECTIVE: This study demonstrated that RvD5 may provide the benefits for trigeminal neuropathic pain treatment in male and female rats, but its effect on inflammatory orofacial pain seems to be restricted only to males. Also, it provided the evidence for sex dichotomy in the mechanisms related to the antinociceptive effect of RvD5.
Collapse
Affiliation(s)
- Darciane F Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Fernanda M R da Luz
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Raphael V Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| | | | - Erika I Araya
- Departament de Medicina, Headache and Neurological Pain Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Paraná, Brazil
| |
Collapse
|
7
|
Yuasa GH, Costa NLVK, Lopes RV, Baggio DF, Rae GA, Chichorro JG. Role of endothelin in the pathophysiology of migraine: A new view on an old player. Neuropeptides 2022; 96:102286. [PMID: 36108557 DOI: 10.1016/j.npep.2022.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
There is cumulating evidence that endothelin-1 (ET-1) may play a role in migraine, however controversial findings still impede a conclusion to be drawn. Herein we tested the hypothesis that endothelin ETB receptors are major contributors to migraine-like responses. ET-1, IRL-1620 (selective ETB receptor agonist) or CGRP were injected into the trigeminal ganglion (TG) of female Wistar rats, and the development of periorbital mechanical allodynia was assessed hourly with von Frey hairs. Twenty-four hours later, rats were exposed to an aversive light for 1 h, after which the reactivation of periorbital mechanical allodynia (indicating photic sensitivity) was assessed up to 4 h. Moreover, the effect of systemic Bosentan (ETA/ETB receptors antagonist) or the selective antagonists of ETA (BQ-123) and ETB (BQ-788) receptors injected into the TG were evaluated against CGRP-induced responses. ET-1 and IRL-1620 injection into the TG induced periorbital mechanical allodynia and photic sensitivity. Bosentan attenuated periorbital mechanical allodynia but failed to affect photic sensitivity induced by CGRP. Selective blockade of ETB receptors in the TG fully prevented the development of periorbital mechanical allodynia and photic sensitivity induced by CGRP, but ETA receptor blockade caused only a slight reduction of periorbital mechanical allodynia without affecting photic sensitivity. ETB receptor-operated mechanisms in the TG may contribute to migraine-like responses in female rats.
Collapse
Affiliation(s)
- Gianna Hissae Yuasa
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | | | - Raphael Vieira Lopes
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Darciane Favero Baggio
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Giles Alexander Rae
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil.
| |
Collapse
|
8
|
Araya EI, Carvalho EC, Andreatini R, Zamponi GW, Chichorro JG. Trigeminal neuropathic pain causes changes in affective processing of pain in rats. Mol Pain 2022; 18:17448069211057750. [PMID: 35042377 PMCID: PMC8777332 DOI: 10.1177/17448069211057750] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Trigeminal neuropathic pain has been modeled in rodents through the constriction of the
infraorbital nerve (CCI-ION). Sensory alterations, including spontaneous pain, and thermal
and mechanical hyperalgesia are well characterized, but there is a notable lack of
evidence about the affective pain component in this model. Evaluation of the emotional
component of pain in rats has been proposed as a way to optimize potential translational
value of non-clinical studies. In rats, 22 and 50 kHz ultrasonic vocalizations (USVs) are
considered well-established measures of negative and positive emotional states,
respectively. Thus, this study tested the hypothesis that trigeminal neuropathic pain
would result, in addition to the sensory alterations, in a decrease of 50 kHz USV, which
may be related to altered function of brain areas involved in emotional pain processing.
CCI-ION surgery was performed on 60-day-old male Wistar rats. 15 days after surgery, von
Frey filaments were applied to detect mechanical hyperalgesia, and USV was recorded. At
the same timepoint, systemic treatment with d,l-amphetamine (1 mg/kg) allowed
investigation of the involvement of the dopaminergic system in USV emission. Finally,
brain tissue was collected to assess the change in tyrosine hydroxylase (TH) expression in
the nucleus accumbens (NAc) and c-Fos expression in brain areas involved in emotional pain
processing, including the prefrontal cortex (PFC), amygdala, and NAc. The results showed
that CCI-ION rats presented mechanical hyperalgesia and a significant reduction of
environmental-induced 50 kHz USV. Amphetamine caused a marked increase in 50 kHz USV
emission in CCI-ION rats. In addition, TH expression was lower in constricted animals and
c-Fos analysis revealed an increase in neuronal activation. Taken together, these data
indicate that CCI-ION causes a reduction in the emission of environmental-induced
appetitive calls concomitantly with facial mechanical hyperalgesia and that both changes
may be related to a reduction in the mesolimbic dopaminergic activity.
Collapse
Affiliation(s)
- Erika I Araya
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Eduardo C Carvalho
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Roberto Andreatini
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, 70401University of Calgary, Calgary, AB, Canada
| | - Juliana G Chichorro
- Department of Pharmacology, Biological Sciences Building, 232174Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
9
|
Nagakura Y, Nagaoka S, Kurose T. Potential Molecular Targets for Treating Neuropathic Orofacial Pain Based on Current Findings in Animal Models. Int J Mol Sci 2021; 22:ijms22126406. [PMID: 34203854 PMCID: PMC8232571 DOI: 10.3390/ijms22126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/25/2023] Open
Abstract
This review highlights potential molecular targets for treating neuropathic orofacial pain based on current findings in animal models. Preclinical research is currently elucidating the pathophysiology of the disease and identifying the molecular targets for better therapies using animal models that mimic this category of orofacial pain, especially post-traumatic trigeminal neuropathic pain (PTNP) and primary trigeminal neuralgia (PTN). Animal models of PTNP and PTN simulate their etiologies, that is, trauma to the trigeminal nerve branch and compression of the trigeminal root entry zone, respectively. Investigations in these animal models have suggested that biological processes, including inflammation, enhanced neuropeptide-mediated pain signal transmission, axonal ectopic discharges, and enhancement of interactions between neurons and glial cells in the trigeminal pathway, are underlying orofacial pain phenotypes. The molecules associated with biological processes, whose expressions are substantially altered following trigeminal nerve damage or compression of the trigeminal nerve root, are potentially involved in the generation and/or exacerbation of neuropathic orofacial pain and can be potential molecular targets for the discovery of better therapies. Application of therapeutic candidates, which act on the molecular targets and modulate biological processes, attenuates pain-associated behaviors in animal models. Such therapeutic candidates including calcitonin gene-related peptide receptor antagonists that have a reasonable mechanism for ameliorating neuropathic orofacial pain and meet the requirements for safe administration to humans seem worth to be evaluated in clinical trials. Such prospective translation of the efficacy of therapeutic candidates from animal models to human patients would help develop better therapies for neuropathic orofacial pain.
Collapse
Affiliation(s)
- Yukinori Nagakura
- School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa-city, Fukuoka 831-8501, Japan
- Correspondence:
| | - Shogo Nagaoka
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| | - Takahiro Kurose
- Basic Research Development Division, Rohto Pharmaceutical Co., Ltd., 6-5-4 Kunimidai, Kizugawa, Kyoto 619-0216, Japan; (S.N.); (T.K.)
| |
Collapse
|
10
|
The opposing contribution of neurotrophin-3 and nerve growth factor to orofacial heat hyperalgesia in rats. Behav Pharmacol 2020; 31:27-33. [PMID: 31577558 DOI: 10.1097/fbp.0000000000000503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been proposed that neurotrophin-3 acts in a manner that is opposed to nerve growth factor, especially in the modulation of heat hyperalgesia. Injury to the constriction of the infraorbital nerve (CION) is a well-established model of trigeminal neuropathic pain that leads to robust heat, cold, and mechanical hyperalgesia. Here, we assessed the effect of local neurotrophin-3 treatment on CION-induced hyperalgesia, and we examined some mechanisms related to the effect of neurotrophin-3. Neurotrophin-3 (1 µg/50 µl) injected into the upper lip of CION rats caused a significant and long-lasting reduction of CION-induced heat hyperalgesia, but failed to affect cold and mechanical hyperalgesia. Increased levels of neurotrophin-3 were detected in the injured nerve at the time point that represents the peak of heat hyperalgesia. The anti-hyperalgesic effect of neurotrophin-3 was markedly reduced in the presence of an antagonist of TrkA receptors (K-252a, 1 μg/50 μl). Moreover, association of lower doses of neurotrophin-3 with an antibody anti-nerve growth factor resulted in a synergistic anti-hyperalgesic effect in CION rats. Local injection of nerve growth factor (3 µg/50 µl) or the TRPV1 agonist capsaicin (1 μg/50 μl), but not neurotrophin-3 injection (1 µg/50 µl), resulted in long-lasting facial heat hyperalgesia, which was both significantly reduced by previous neurotrophin-3 local treatment. In conclusion, we suggest that neurotrophin-3 is a potent modulator of facial heat hyperalgesia, which may exert an inhibitory influence on the trkA pathway. Neurotrophin-3 treatment may represent a promising approach, especially in pain conditions associated with increased levels of nerve growth factor.
Collapse
|
11
|
Analgesic effects of the CTK 01512-2 toxin in different models of orofacial pain in rats. Pharmacol Rep 2020; 72:600-611. [PMID: 32399819 DOI: 10.1007/s43440-020-00108-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Orofacial pain is clinically challenging, having therapeutic failures and side effects. This study evaluated the antinociceptive activities of the CTK 01512-2 toxin, the TRPA1 channel antagonist, and the selective inhibitor of the N-type voltage-gated calcium channels (N-type VGCC), in different pain models. MATERIALS AND METHODS The trigeminal ganglia were stimulated in vitro with capsaicin. The in vivo models received subcutaneous (sc) injections of formalin into the upper lip of the rats, Freund's Complete Adjuvant (FCA) into the temporomandibular joint (TMJ), and infraorbital nerve constrictions (IONC). CTK 01512-2 at concentrations of 30, 100, and 300 pmol/site, intrathecally (ith), and MVIIA at 10, 30, and 100 pmol/site in the formalin test, guided the doses for the models. The glutamate levels in the CSF of the rats that were submitted to IONC were analyzed. RESULTS CTK 01512-2 decreased the nociceptive behavior in the inflammatory phase of the formalin test (65.94 ± 7.35%) and MVIIA in the neurogenic phase (81.23 ± 3.36%). CTK 01512-2 reduced facial grooming with FCA in the TMJ (96.7 ± 1.6%), and in the IONC neuropathy model, it decreased heat hyperalgesia (100%) and cold hyperalgesia (81.61 ± 9.02%). The levels of glutamate in the trigeminal ganglia in vitro (81.40 ± 8.59%) and in the CSF in vivo (70.0 ± 9.2%) were reduced. CONCLUSIONS The roles of TRPA1 in pain transduction and the performance of CTK 01512-2 in the inhibition of the N-type VGCCs were reinforced. This dual activity may represent an advantage in clinical treatments.
Collapse
|
12
|
Martins DO, Marques DP, Venega RAG, Chacur M. Photobiomodulation and B vitamins administration produces antinociception in an orofacial pain model through the modulation of glial cells and cytokines expression. Brain Behav Immun Health 2020; 2:100040. [PMID: 34589831 PMCID: PMC8474295 DOI: 10.1016/j.bbih.2020.100040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic constriction injury (CCI) of infraorbital nerve (IoN) results in whisker pad mechanical allodynia in rats and activation glial cells contributing to the development of orofacial pain. Whisker pad mechanical allodynia (von Frey stimuli) was tested pre and postoperatively and conducted during the treatment time. Photobiomodulation (PBM) and vitamins B complex (VBC) has been demonstrated therapeutic efficacy in ameliorate neuropathic pain. The aim of this study was to evaluate the antinociceptive effect of PBM, VBC or the combined treatment VBC + PBM on orofacial pain due to CCI-IoN. Behavioral and molecular approaches were used to analyses nociception, cellular and neurochemical alterations. CCI-IoN caused mechanical allodynia and cellular alterations including increased expression of glial fibrillary acid protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba-1), administration of VBC (B1/B6/B12 at 180/180/1.8 mg/kg, s.c., 5 times all long 10 sessions) and PBM therapy (904 nm, power of 75Wpico, average power of 0.0434 W, pulse frequency of 9500 Hz, area of the beam 0.13 cm2, 18 s duration, energy density 6 J/cm2, with an energy per point of 0.78 J for 10 sessions) or their combination presented improvement of the nociceptive behavior and decreased expression of GFAP and Iba-1. Additionally, CCI-IoN rats exhibited an upregulation of IL1β, IL6 and TNF-α expression and all treatments prevented this upregulation and also increased IL10 expression. Overall, the present results highlight the pain reliever effect of VBC or PBM alone or in combination, through the modulation of glial cells and cytokines expression in the spinal trigeminal nucleus of rats.
Collapse
Affiliation(s)
- D O Martins
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - D P Marques
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - R A G Venega
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| | - M Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415, SP, Brazil
| |
Collapse
|
13
|
Endothelin Signaling Contributes to Modulation of Nociception in Early-stage Tongue Cancer in Rats. Anesthesiology 2019; 128:1207-1219. [PMID: 29461271 DOI: 10.1097/aln.0000000000002139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Patients with early stage tongue cancer do not frequently complain of tongue pain. Endothelin-1 signaling is upregulated in the cancerous tongue at the early stage. We tested the hypothesis that endothelin-1 signaling contributes to the modulation of tongue nociception. METHODS Squamous cell carcinoma cells were inoculated into the tongue under general anesthesia. Lingual mechanical sensitivity under light anesthesia using forceps from days 1 to 21 (n = 8) and the amounts of endothelin-1 and β-endorphin in the tongue on days 6, 14, and 21 (n = 5 to 7) were examined after the inoculation. The effect of endothelin-A or µ-opioid receptor antagonism on the mechanical sensitivity was examined (n = 5 to 7). RESULTS Lingual mechanical sensitivity did not change at the early stage (days 5 to 6) but increased at the late stage (days 13 to 14). The amount of endothelin-1 increased (25.4 ± 4.8 pg/ml vs. 15.0 ± 5.2 pg/ml; P = 0.008), and endothelin-A receptor antagonism in the tongue induced mechanical hypersensitivity at the early stage (51 ± 9 g vs. 81 ± 6 g; P = 0.0001). The µ-opioid receptor antagonism enhanced mechanical hypersensitivity (39 ± 7 g vs. 81 ± 6 g; P < 0.0001), and the amount of β-endorphin increased at the early stage. CONCLUSIONS β-Endorphin released from the cancer cells via endothelin-1 signaling is involved in analgesic action in mechanical hypersensitivity at the early stage.
Collapse
|
14
|
Pontes RB, Lisboa MRP, Pereira AF, Lino JA, de Oliveira FFB, de Mesquita AKV, de Freitas Alves BW, Lima-Júnior RCP, Vale ML. Involvement of Endothelin Receptors in Peripheral Sensory Neuropathy Induced by Oxaliplatin in Mice. Neurotox Res 2019; 36:688-699. [PMID: 31228092 DOI: 10.1007/s12640-019-00074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study was to evaluate the participation of the endothelin ETA and ETB receptors and the effects of bosentan in oxaliplatin-induced peripheral sensory neuropathy (OIN) in mice. Adult male Swiss mice received 1 mg/kg of oxaliplatin intravenously, twice a week for 5 weeks. Dorsal root ganglia (DRG) and spinal cords were removed for evaluation of the endothelin ETA and ETB receptor expression. Afterwards, selective (BQ-123 and BQ-788; 10 nmol in 30 μL, intraplantarly) and non-selective (bosentan, 100 mg/kg, orally) antagonists were administered in order to evaluate the involvement of the endothelin receptors in OIN. Mechanical and thermal nociception tests were performed once a week for 56 days. Oxaliplatin induced mechanical and thermal hypersensitivity and increased the endothelin ETA receptor expression in both the DRG and spinal cord (P < 0.05). Endothelin ETB receptor expression was increased in the DRG (P < 0.05) but not in the spinal cord. Both endothelin ETA and ETB receptor selective antagonists partially prevented mechanical hyperalgesia in mice with OIN (P < 0.05). Moreover, bosentan prevented mechanical and thermal hypersensitivity in oxaliplatin-treated mice (P < 0.05). In conclusion, both endothelin ETA and ETB receptors seem to be involved in the OIN in mice and they should be considered possible targets for the management of this clinical feature.
Collapse
Affiliation(s)
- Renata Bessa Pontes
- Department of Physical Therapy, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-160, Brazil
| | - Mario Roberto Pontes Lisboa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Juliana Arcanjo Lino
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-140, Brazil
| | - Francisco Fábio Bezerra de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | | | | | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil
| | - Mariana Lima Vale
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, 60430-170, Brazil.
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará (UFC), R. Cel. Nunes de Melo, 1127, Rodolfo Teófilo, Fortaleza, CE, 60430-270, Brazil.
| |
Collapse
|
15
|
Araújo-Filho HG, Pereira EWM, Campos AR, Quintans-Júnior LJ, Quintans JSS. Chronic orofacial pain animal models - progress and challenges. Expert Opin Drug Discov 2018; 13:949-964. [PMID: 30220225 DOI: 10.1080/17460441.2018.1524458] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic orofacial pain is one of the most common pain conditions experienced by adults. Animal models are often selected as the most useful scientific methodology to explore the pathophysiology of the disorders that cause this disabling pain to facilitate the development of new treatments. The creation of new models or the improvement of existing ones is essential for finding new ways to approach the complex neurobiology of this type of pain. Areas covered: The authors describe and discuss a variety of animal models used in chronic orofacial pain (COFP). Furthermore, they examine in detail the mechanisms of action involved in orofacial neuropathic pain and orofacial inflammatory pain. Expert opinion: The use of animal models has several advantages in chronic orofacial pain drug discovery. Choosing an animal model that most closely represents the human disease helps to increase the chances of finding effective new therapies and is key to the successful translation of preclinical research to clinical practice. Models using genetically modified animals seem promising but have not yet been fully developed for use in chronic orofacial pain research. Although animal models have provided significant advances in the pharmacological treatment of orofacial pain, several barriers still need to be overcome for better treatment options.
Collapse
Affiliation(s)
- Heitor G Araújo-Filho
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Erik W M Pereira
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Adriana Rolim Campos
- b Experimental Biology Centre (NUBEX) , University of Fortaleza (UNIFOR) , Fortaleza , Brazil
| | - Lucindo J Quintans-Júnior
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| | - Jullyana S S Quintans
- a Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology , Federal University of Sergipe , São Cristóvão , Brazil
| |
Collapse
|
16
|
Gomes LO, Chichorro JG, Araya EI, de Oliveira J, Rae GA. Facial hyperalgesia due to direct action of endothelin-1 in the trigeminal ganglion of mice. J Pharm Pharmacol 2018; 70:893-900. [DOI: 10.1111/jphp.12905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022]
Abstract
Abstract
Objective
This study assessed the ability of endothelin-1 (ET-1) to evoke heat hyperalgesia when injected directly into the trigeminal ganglia (TG) of mice and determined the receptors implicated in this effect. The effects of TG ETA and ETB receptor blockade on alleviation of heat hyperalgesia in a model of trigeminal neuropathic pain induced by infraorbital nerve constriction (CION) were also examined.
Methods
Naive mice received an intraganglionar (i.g.) injection of ET-1 (0.3–3 pmol) or the selective ETBR agonist sarafotoxin S6c (3–30 pmol), and response latencies to ipsilateral heat stimulation were assessed before the treatment and at 1-h intervals up to 5 h after the treatment. Heat hyperalgesia induced by i.g. ET-1 or CION was assessed after i.g. injections of ETAR and ETBR antagonists (BQ-123 and BQ-788, respectively, each at 0.5 nmol).
Key findings
Intraganglionar ET-1 or sarafotoxin S6c injection induced heat hyperalgesia lasting 4 and 2 h, respectively. Heat hyperalgesia induced by ET-1 was attenuated by i.g. BQ-123 or BQ-788. On day 5 after CION, i.g. BQ-788 injection produced a more robust antihyperalgesic effect compared with BQ-123.
Conclusions
ET-1 injection into the TG promotes ETAR/ETBR-mediated facial heat hyperalgesia, and both receptors are clearly implicated in CION-induced hyperalgesia in the murine TG system.
Collapse
Affiliation(s)
- Lenyta Oliveira Gomes
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Erika Ivanna Araya
- Department of Pharmacology, Biological Sciences Sector, Federal University of Parana, Curitiba, Parana, Brazil
| | - Jade de Oliveira
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Giles Alexander Rae
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
17
|
Blockade of endothelin receptors reduces tumor-induced ongoing pain and evoked hypersensitivity in a rat model of facial carcinoma induced pain. Eur J Pharmacol 2018; 818:132-140. [DOI: 10.1016/j.ejphar.2017.10.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022]
|
18
|
Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats. Behav Pharmacol 2017; 27:528-35. [PMID: 27392124 DOI: 10.1097/fbp.0000000000000246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is preclinical evidence that nerve growth factor (NGF) contributes toward inflammatory hyperalgesia in the orofacial region, but the mechanisms underlying its hyperalgesic effect as well as its role in trigeminal neuropathic pain require further investigation. This study investigated the ability of NGF to induce facial heat hyperalgesia and the involvement of tyrosine kinase receptor A, transient receptor potential vanilloid 1, and mast cells in NGF pronociceptive effects. In addition, the role of NGF in heat hyperalgesia in a model of trigeminal neuropathic pain was evaluated. NGF injection into the upper lip of naive rats induced long-lasting heat hyperalgesia. Pretreatment with an antibody anti-NGF, antagonists of tyrosine kinase receptor A, and transient receptor potential vanilloid 1 receptors or compound 48/80, to induce mast-cell degranulation, all attenuated NGF-induced hyperalgesia. In a rat model of trigeminal neuropathic pain, local treatment with anti-NGF significantly reduced heat hyperalgesia. In addition, increased NGF levels were detected in the ipsilateral infraorbital nerve branch at the time point that represents the peak of heat hyperalgesia. The results suggest that NGF is a prominent hyperalgesic mediator in the trigeminal system and it may represent a potential therapeutic target for the management of painful orofacial conditions, including trigeminal neuropathic pain.
Collapse
|
19
|
Souza RFD, Oliveira LLD, Nones CFM, dos Reis RC, Araya EI, Kopruszinski CM, Rae GA, Chichorro JG. Mechanisms involved in facial heat hyperalgesia induced by endothelin-1 in female rats. Arch Oral Biol 2017; 83:297-303. [DOI: 10.1016/j.archoralbio.2017.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 08/17/2017] [Accepted: 08/27/2017] [Indexed: 01/29/2023]
|
20
|
Moon HC, Heo WI, Kim YJ, Lee D, Won SY, Kim HR, Ha SM, Lee YJ, Park YS. Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve. J Pain Res 2017; 10:2355-2364. [PMID: 29042811 PMCID: PMC5633286 DOI: 10.2147/jpr.s138626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose The anterior cingulate cortex (ACC) plays a critical role in the initiation, development, and maintenance of neuropathic pain. Recently, the effects of optical stimulation on pain have been investigated, but the therapeutic effects of optical stimulation on trigeminal neuralgia (TN) have not been clearly shown. Here, we investigated the effects of optical inhibition of the ACC on TN lesions to determine whether the alleviation of pain affects behavior performance and thalamic neuron signaling. Materials and methods TN lesions were established in animals by generating a chronic constriction injury of the infraorbital nerve, and the animals received injections of AAV-hSyn-eNpHR3.0-EYFP or a vehicle (phosphate-buffered saline [PBS]) in the ACC. The optical fiber was fixed into the ipsilateral ACC after the injection of adeno-associated virus plasmids or vehicle. Behavioral testing, consisting of responses to an air puff and cold allodynia, was performed, and thalamic neuronal activity was monitored following optical stimulation in vivo. Optical stimulation experiments were executed in three steps: during pre-light-off, stimulation-light-on, and post-light-off states. The role of the optical modulation of the ACC in response to pain was shown using a combination of optical stimulation and electrophysiological recordings in vivo. Results Mechanical thresholds and facial cold allodynia scores were significantly improved in the TN lesion group during optical stimulation compared to those in the control group. Thalamic neuronal activity, consisting of the firing rate (spikes/s) and burst rate (bursts/s), was also decreased during optical stimulation. Conclusion Reciprocal optical inhibition of the ACC can alleviate pain-associated behavior and decrease abnormal thalamic sensory neuron activity in the trigeminal neuropathic rat model. The descending pain pathway can modulate thalamic neurons from the ACC following optical stimulation.
Collapse
Affiliation(s)
- Hyeong Cheol Moon
- Department of Medical Neuroscience and Neurosurgery, College of Medicine
| | - Won Ik Heo
- Department of Veterinary, College of Veterinary Medicine
| | - Yon Ji Kim
- Department of Biology, College of Natural Sciences
| | - Daae Lee
- Department of Advanced Material Engineering, College of Engineering
| | - So Yoon Won
- Biochemistry and Medical Research Center, Chungbuk National University, Cheongju
| | - Hong Rae Kim
- Department of Medical Neuroscience and Neurosurgery, College of Medicine
| | - Seung Man Ha
- Department of Medical Neuroscience and Neurosurgery, College of Medicine
| | - Youn Joo Lee
- Department of Radiology, Daejoen St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Seok Park
- Department of Medical Neuroscience and Neurosurgery, College of Medicine
| |
Collapse
|
21
|
Piovesan EJ, Oshinsky M, Silberstein S, Kowacs PA, Novak EM, Werneck LC. Botulinum neurotoxin type-A when utilized in animals with trigeminal sensitization induced a antinociceptive effect. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 74:462-9. [PMID: 27332071 DOI: 10.1590/0004-282x20160067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/01/2016] [Indexed: 01/03/2023]
Abstract
METHOD Neuropathic pain was induced by surgical constriction of the infraorbital nerve in rats. A control group underwent a sham procedure consisting of surgical exposure of the nerve. Subgroups of each group received either BoNT/A or isotonic saline solution. The clinical response was assessed with the -20°C test. Animals that underwent nerve constriction developed sensitization; the sham group did not. RESULTS The sensitization was reversed by BoNT/A treatment evident 24 hours following application. Pronociceptive effect was observed in the sham group following BoNT/A. CONCLUSION BoNT/A has an antinociceptive effect in sensitized animals and a pronociceptive effect in non-sensitized animals.
Collapse
Affiliation(s)
- Elcio J Piovesan
- Universidade Federal do Paraná, Universidade Federal do Paraná, Curitiba PR , Brasil, Universidade Federal do Paraná, Hospital das Clínicas, Serviço de Neurologia, Curitiba PR, Brasil;,Universidade Federal do Paraná, Universidade Federal do Paraná, Curitiba PR , Brasil, Universidade Federal do Paraná, Departmento de Ciências da Saúde, Laboratório Experimental, Curitiba PR, Brasil
| | - Michael Oshinsky
- Thomas Jefferson University, Thomas Jefferson University, Philadephia PA , USA, Thomas Jefferson University, Jefferson Headache Center, Philadephia PA, USA
| | - Stephen Silberstein
- Thomas Jefferson University, Thomas Jefferson University, Philadephia PA , USA, Thomas Jefferson University, Jefferson Headache Center, Philadephia PA, USA
| | - Pedro Andre Kowacs
- Universidade Federal do Paraná, Universidade Federal do Paraná, Curitiba PR , Brasil, Universidade Federal do Paraná, Hospital das Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| | - Edison Matos Novak
- Universidade Federal do Paraná, Universidade Federal do Paraná, Curitiba PR , Brasil, Universidade Federal do Paraná, Hospital das Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| | - Lineu Cesar Werneck
- Universidade Federal do Paraná, Universidade Federal do Paraná, Curitiba PR , Brasil, Universidade Federal do Paraná, Hospital das Clínicas, Serviço de Neurologia, Curitiba PR, Brasil
| |
Collapse
|
22
|
Pozza DH, Castro-Lopes JM, Neto FL, Avelino A. Spared nerve injury model to study orofacial pain. Indian J Med Res 2017; 143:297-302. [PMID: 27241642 PMCID: PMC4892075 DOI: 10.4103/0971-5916.182619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND & OBJECTIVES There are many difficulties in generating and testing orofacial pain in animal models. Thus, only a few and limited models that mimic the human condition are available. The aim of the present research was to develop a new model of trigeminal pain by using a spared nerve injury (SNI) surgical approach in the rat face (SNI-face). METHODS Under anaesthesia, a small incision was made in the infraorbital region of adult male Wistar rats. Three of the main infraorbital nerve branches were tightly ligated and a 2 mm segment distal to the ligation was resected. Control rats were sham-operated by exposing the nerves. Chemical hyperalgesia was evaluated 15 days after the surgery by analyzing the time spent in face grooming activity and the number of head withdrawals in response to the orofacial formalin test. RESULTS SNI-face rats presented a significant increase of the formalin-induced pain-related behaviours evaluated both in the acute and tonic phases (expected biphasic pattern), in comparison to sham controls. INTERPRETATION & CONCLUSIONS The SNI-face model in the rat appears to be a valid approach to evaluate experimental trigeminal pain. Ongoing studies will test the usefulness of this model to evaluate therapeutic strategies for the treatment of orofacial pain.
Collapse
Affiliation(s)
- Daniel Humberto Pozza
- Department of Experimental Biology, Faculty of Medicine and Faculty of Nutrition and Food Science of Porto University and I3s, Porto, Portugal
| | - José Manuel Castro-Lopes
- Department of Experimental Biology, Faculty of Medicine of Porto University and I3s, Porto, Portugal
| | - Fani Lourenca Neto
- Department of Experimental Biology, Faculty of Medicine of Porto University and I3s, Porto, Portugal
| | - António Avelino
- Department of Experimental Biology, Faculty of Medicine of Porto University and I3s, Porto, Portugal
| |
Collapse
|
23
|
Guo QH, Tong QH, Lu N, Cao H, Yang L, Zhang YQ. Proteomic Analysis of the Hippocampus in Mouse Models of Trigeminal Neuralgia and Inescapable Shock-Induced Depression. Neurosci Bull 2017; 34:74-84. [PMID: 28424990 DOI: 10.1007/s12264-017-0131-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022] Open
Abstract
To investigate the behavioral and biomolecular similarity between neuralgia and depression, a trigeminal neuralgia (TN) mouse model was established by constriction of the infraorbital nerve (CION) to mimic clinical trigeminal neuropathic pain. A mouse learned helplessness (LH) model was developed to investigate inescapable foot-shock-induced psychiatric disorders like depression in humans. Mass spectrometry was used to assess changes in the biomolecules and signaling pathways in the hippocampus from TN or LH mice. TN mice developed not only significant mechanical allodynia but also depressive-like behaviors (mainly behavioral despair) at 2 weeks after CION, similar to LH mice. MS analysis demonstrated common and distinctive protein changes in the hippocampus between groups. Many protein function families (such as cell-to-cell signaling and interaction, and cell assembly and organization,) and signaling pathways (e.g., the Huntington's disease pathway) were involved in chronic neuralgia and depression. Together, these results demonstrated that the LH and TN models both develop depressive-like behaviors, and revealed the involvement of many psychiatric disorder-related biomolecules/pathways in the pathogenesis of TN and LH.
Collapse
Affiliation(s)
- Qing-Huan Guo
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Qing-He Tong
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ning Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Hong Cao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Liu Yang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qiu Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Nones C, Claudino R, Ferreira L, Dos Reis R, King T, Chichorro J. Descending facilitatory pain pathways mediate ongoing pain and tactile hypersensitivity in a rat model of trigeminal neuropathic pain. Neurosci Lett 2017; 644:18-23. [DOI: 10.1016/j.neulet.2017.02.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/01/2017] [Accepted: 02/18/2017] [Indexed: 11/24/2022]
|
25
|
Deseure K, Hans GH. Chronic Constriction Injury of the Rat's Infraorbital Nerve (IoN-CCI) to Study Trigeminal Neuropathic Pain. J Vis Exp 2015. [PMID: 26437303 DOI: 10.3791/53167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Animal models are important tools to study the pathophysiology and pharmacology of neuropathic pain. This manuscript describes the surgical and behavioral procedures to study trigeminal neuropathic pain in rats. To meet the specificity of trigeminal neuropathic pain syndromes, the infraorbital nerve (IoN) is subjected to a chronic constriction injury (CCI) by loosely ligating the nerve. An intra-orbital approach is presented here to expose and ligate the IoN in the orbital cavity. After IoN ligation, rats exhibit changes in spontaneous behavior and in response to von Frey hair stimulation that are indicative of persistent pain and mechanical allodynia. Two phases can be defined in the development of the behavioral changes. During the first week following IoN-CCI (phase 1), rats show an increased and asymmetric face grooming activity, i.e., with face wash strokes primarily directed to the nerve-injured IoN territory. A distinction is made between face grooming behavior that is part of a more general body grooming behavior, which remains largely unaffected by IoN-CCI, and face grooming that is neither preceded nor followed by body grooming, which is significantly increased after IoN-CCI. During this period, responsiveness to mechanical stimulation of the IoN territory is reduced. This hyporesponsiveness is abruptly replaced by an extreme hyperresponsiveness whereby even very weak stimulus intensities provoke nocifensive behavior (phase 2). The phenomenological similarities between these behavioral alterations and reported signs of facial pain (i.e., responses to noxious stimulation of the face) suggest the presence of dysesthesia/paresthesia and mechanical allodynia in the ligated IoN territory.
Collapse
Affiliation(s)
| | - Guy H Hans
- Multidisciplinary Pain Center, Antwerp University Hospital
| |
Collapse
|
26
|
Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects. Eur J Pharmacol 2015; 762:326-32. [PMID: 26048309 DOI: 10.1016/j.ejphar.2015.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/11/2023]
Abstract
Vitamins of the B complex attenuate some neuropathic pain sensory aspects in various animal models and in patients, but the mechanisms underlying their effects remain to be elucidated. Herein it was investigated if the treatment with a vitamin B complex (VBC) reduces heat hyperalgesia in rats submitted to infraorbital nerve constriction and the possibility that TRPV1 receptors represent a target for B vitamins. In the present study, the VBC refers to a combination of vitamins B1, B6 and B12 at low- (18, 18 and 1.8mg/kg, respectively) or high- (180, 180 and 18mg/kg, respectively) doses. Acute treatment of rats with either the low- or the high-doses combination reduced heat hyperalgesia after nerve injury, but the high-doses combination resulted in a long-lasting effect. Repeated treatment with the low-dose combination reduced heat hyperalgesia on day four after nerve injury and showed a synergist effect with a single injection of carbamazepine (3 or 10mg/kg), which per se failed to modify the heat threshold. In naïve rats, acute treatment with the high-dose of VBC or B1 and B12 vitamins independently reduced heat hyperalgesia evoked by capsaicin (3µg into the upper lip). Moreover, the VBC, as well as, each one of the B vitamins independently reduced the capsaicin-induced calcium responses in HEK 293 cells transiently transfected with the human TRPV1 channels. Altogether, these results indicate that B vitamins can be useful to control heat hyperalgesia associated with trigeminal neuropathic pain and that modulation of TRPV1 receptors may contribute to their anti-hyperalgesic effects.
Collapse
|
27
|
Juárez-Rojop IE, Morales-Hernández PE, Tovilla-Zárate CA, Bermúdez-Ocaña DY, Torres-Lopez JE, Ble-Castillo JL, Díaz-Zagoya JC, Granados-Soto V. Celecoxib reduces hyperalgesia and tactile allodynia in diabetic rats. Pharmacol Rep 2015; 67:545-52. [DOI: 10.1016/j.pharep.2014.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/23/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
|
28
|
Luiz AP, Schroeder SD, Rae GA, Calixto JB, Chichorro JG. Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice. Neuroscience 2015; 300:189-200. [PMID: 25982562 DOI: 10.1016/j.neuroscience.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/29/2023]
Abstract
Infraorbital nerve constriction (CION) causes hypersensitivity to facial mechanical, heat and cold stimulation in rats and mice and is a reliable model to study trigeminal neuropathic pain. In this model there is evidence that mechanisms operated by kinin B1 and B2 receptors contribute to heat hyperalgesia in both rats and mice. Herein we further explored this issue and assessed the role of kinin receptors in mechanical hyperalgesia after CION. Swiss and C57Bl/6 mice that underwent CION or sham surgery or dynorphin A (1-17) administration were repeatedly submitted to application of either heat stimuli to the snout or mechanical stimuli to the forehead. Treatment of the animals on the fifth day after CION surgery with DALBK (B1 receptor antagonist) or HOE-140 (B2 receptor antagonist), both at 0.01-1μmol/kg (i.p.), effectively reduced CION-induced mechanical hyperalgesia. Knockout mice for kinin B1, B2 or B1/B2 receptors did not develop heat or mechanical hyperalgesia in response to CION. Subarachnoid dynorphin A (1-17) delivery (15nmol/5μL) also resulted in orofacial heat hyperalgesia, which was attenuated by post-treatment with DALBK (1 and 3μmol/kg, i.p.), but was not affected by HOE-140. Additionally, treatment with an anti-dynorphin A antiserum (200μg/5μL, s.a.) reduced CION-induced heat hyperalgesia for up to 2h. These results suggest that both kinin B1 and B2 receptors are relevant in orofacial sensory nociceptive changes induced by CION. Furthermore, they also indicate that dynorphin A could stimulate kinin receptors and this effect seems to contribute to the maintenance of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- A P Luiz
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | - S D Schroeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - G A Rae
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - J B Calixto
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Center of Innovation and Pre-clinical Trials, Florianopolis, SC, Brazil
| | - J G Chichorro
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| |
Collapse
|
29
|
Intraganglionar resiniferatoxin prevents orofacial inflammatory and neuropathic hyperalgesia. Behav Pharmacol 2014; 25:112-8. [PMID: 24557321 DOI: 10.1097/fbp.0000000000000024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Trigeminal ganglion C-fiber neurons bearing transient receptor potential vanilloid-1 (TRPV1) channels are selectively destroyed by resiniferatoxin (RTX), a potent capsaicin analogue. The current study assessed the effect of an RTX injection (200 ng/4 μl) into the trigeminal ganglion in inflammatory and neuropathic rat models of orofacial thermal hyperalgesia. Intraganglionar RTX injection resulted in trigeminal ganglion C-fiber deletion, which was confirmed by the capsaicin eye wipes test, performed 6 days after the injection. The nociceptive responses induced by 2.5% formalin injected into the orofacial region were unchanged by a previous intraganglionar RTX injection. However, orofacial heat and cold hyperalgesia, induced by carrageenan injected into the upper lip (50 µg/50 μl), was abolished by previous intraganglionar RTX treatment. In addition, the development of orofacial heat and cold hyperalgesia after constriction of the infraorbital nerve was prevented by previous RTX treatment. Thus, trigeminal ganglion neurons expressing TRPV1 are crucial for the development of orofacial inflammatory and neuropathic thermal hyperalgesia.
Collapse
|
30
|
Smith TP, Haymond T, Smith SN, Sweitzer SM. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J Pain Res 2014; 7:531-45. [PMID: 25210474 PMCID: PMC4155994 DOI: 10.2147/jpr.s65923] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Tami Haymond
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sherika N Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sarah M Sweitzer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA ; Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
31
|
Coelho S, Bastos-Pereira A, Fraga D, Chichorro J, Zampronio A. Etanercept reduces thermal and mechanical orofacial hyperalgesia following inflammation and neuropathic injury. Eur J Pain 2014; 18:957-67. [DOI: 10.1002/j.1532-2149.2013.00441.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- S.C. Coelho
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | | | - D. Fraga
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | - J.G. Chichorro
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| | - A.R. Zampronio
- Department of Pharmacology; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
32
|
Evans LJ, Loescher AR, Boissonade FM, Whawell SA, Robinson PP, Andrew D. Temporal mismatch between pain behaviour, skin Nerve Growth factor and intra-epidermal nerve fibre density in trigeminal neuropathic pain. BMC Neurosci 2014; 15:1. [PMID: 24380503 PMCID: PMC3890607 DOI: 10.1186/1471-2202-15-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/05/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The neurotrophin Nerve Growth factor (NGF) is known to influence the phenotype of mature nociceptors, for example by altering synthesis of neuropeptides, and changes in NGF levels have been implicated in the pathophysiology of chronic pain conditions such as neuropathic pain. We have tested the hypothesis that after partial nerve injury, NGF accumulates within the skin and causes 'pro-nociceptive' phenotypic changes in the remaining population of sensory nerve fibres, which could underpin the development of neuropathic pain. RESULTS Eleven days after chronic constriction injury of the rat mental nerve the intra-epidermal nerve fibre density of the chin skin from had reduced from 11.6 ± 4.9 fibres/mm to 1.0 ± 0.4 fibres/mm; this slowly recovered to 2.4 ± 2.0 fibres/mm on day 14 and 4.0 ± 0.8 fibres/mm on day 21. Cold hyperalgesia in the ipsilateral lower lip was detectable 11 days after chronic constriction injury, although at this time skin [NGF] did not differ between sides. At 14 days post-injury, there was a significantly greater [NGF] ipsilaterally compared to contralaterally (ipsilateral = 111 ± 23 pg/mg, contralateral = 69 ± 13 pg/mg), but there was no behavioural evidence of neuropathic pain at this time-point. By 21 days post-injury, skin [NGF] was elevated bilaterally and there was a significant increase in the proportion of TrkA-positive (the high-affinity NGF receptor) intra-epidermal nerve fibres that were immunolabelled for the neuropeptide Calcitonin Gene-related peptide. CONCLUSIONS The temporal mismatch in behaviour, skin [NGF] and phenotypic changes in sensory nerve fibres indicate that increased [NGF] does not cause hyperalgesia after partial mental nerve injury, although it may contribute to the altered neurochemistry of cutaneous nerve fibres.
Collapse
Affiliation(s)
| | | | | | | | | | - David Andrew
- Oral & Maxillofacial Medicine and Surgery, University of Sheffield School of Clinical Dentistry, Claremont Crescent, Sheffield, UK.
| |
Collapse
|
33
|
Teodoro FC, Tronco Júnior MF, Zampronio AR, Martini AC, Rae GA, Chichorro JG. Peripheral substance P and neurokinin-1 receptors have a role in inflammatory and neuropathic orofacial pain models. Neuropeptides 2013. [PMID: 23177733 DOI: 10.1016/j.npep.2012.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is accumulating evidence that substance P released from peripheral sensory neurons participates in inflammatory and neuropathic pain. In this study it was investigated the ability of substance P to induce orofacial nociception and thermal and mechanical hyperalgesia, as well as the role of NK1 receptors on models of orofacial inflammatory and neuropathic pain. Substance P injected into the upper lip at 1, 10 and 100 μg/50 μL failed to induce nociceptive behavior. Also, substance P (0.1-10 μg/50 μL) injected into the upper lip did not evoke orofacial cold hyperalgesia and when injected at 1 μg/50 μL did not induce mechanical hyperalgesia. However, substance P at this latter dose induced orofacial heat hyperalgesia, which was reduced by the pre-treatment of rats with a non-peptide NK1 receptor antagonist (SR140333B, 3mg/kg). Systemic treatment with SR140333B (3 mg/kg) also reduced carrageenan-induced heat hyperalgesia, but did not exert any influence on carrageenan-induced cold hyperalgesia. Blockade of NK1 receptors with SR140333B also reduced by about 50% both phases of the formalin response evaluated in the orofacial region. Moreover, heat, but not cold or mechanical, hyperalgesia induced by constriction of the infraorbital nerve, a model of trigeminal neuropathic pain, was abolished by pretreatment with SR140333B. Considering that substance P was peripherally injected (i.e. upper lip) and the NK1 antagonist used lacks the ability to cross the blood-brain-barrier, our results demonstrate that the peripheral SP/NK1 system participates in the heat hyperalgesia associated with inflammation or nerve injury and in the persistent pain evoked by formalin in the orofacial region.
Collapse
Affiliation(s)
- Fernanda C Teodoro
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Kurose M, Meng ID. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells. J Neurophysiol 2013; 110:495-504. [PMID: 23636717 DOI: 10.1152/jn.00222.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dry eye syndrome is a painful condition caused by inadequate or altered tear film on the ocular surface. Primary afferent cool cells innervating the cornea regulate the ocular fluid status by increasing reflex tearing in response to evaporative cooling and hyperosmicity. It has been proposed that activation of corneal cool cells via a transient receptor potential melastatin 8 (TRPM8) channel agonist may represent a potential therapeutic intervention to treat dry eye. This study examined the effect of dry eye on the response properties of corneal cool cells and the ability of the TRPM8 agonist menthol to modify these properties. A unilateral dry eye condition was created in rats by removing the left lacrimal gland. Lacrimal gland removal reduced tears in the dry eye to 35% compared with the contralateral eye and increased the number of spontaneous blinks in the dry eye by over 300%. Extracellular single-unit recordings were performed 8-10 wk following surgery in the trigeminal ganglion of dry eye animals and age-matched controls. Responses of corneal cool cells to cooling were examined after the application of menthol (10 μM-1.0 mM) to the ocular surface. The peak frequency of discharge to cooling was higher and the cooling threshold was warmer in dry eye animals compared with controls. The dry condition also altered the neuronal sensitivity to menthol, causing desensitization to cold-evoked responses at concentrations that produced facilitation in control animals. The menthol-induced desensitization of corneal cool cells would likely result in reduced tearing, a deleterious effect in individuals with dry eye.
Collapse
Affiliation(s)
- Masayuki Kurose
- Division of Oral Physiology, Department of Oral Biological Sciences, Niigata University, Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | |
Collapse
|
35
|
Yamamoto T, Ono K, Hitomi S, Harano N, Sago T, Yoshida M, Nunomaki M, Shiiba S, Watanabe S, Nakanishi O, Inenaga K. Endothelin receptor-mediated responses in trigeminal ganglion neurons. J Dent Res 2013; 92:335-9. [PMID: 23396520 DOI: 10.1177/0022034513478428] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent evidence implicates endothelin in nociception, but it is unclear how endothelin activates trigeminal ganglion (TRG) neurons. In the present study, we investigated the expression of the endothelin receptors ETA and ETB and endothelin-induced responses in rat TRG neurons. Double-immunofluorescence studies demonstrated that ETA and ETB were expressed in TRG neurons and that 26% of ETA- or ETB-expressing neurons expressed both receptors. During whole-cell patch-clamp recording, endothelin-1 enhanced an induced current in response to capsaicin, a TRPV1 agonist, in approximately 20% of dissociated neurons. The enhancement was blocked by the PKC inhibitor chelerythrine and by the ETA antagonist BQ-123, but not by the ETB antagonist BQ-788. Ca(2+)-imaging showed that endothelin-1 increased the intracellular Ca(2+) concentration in more than 20% of the dissociated neurons. Importantly, unlike the effect of endothelin-1 on capsaicin-induced current, the Ca(2+) response was largely suppressed by BQ-788 but not by BQ-123. These results suggest that ETA-mediated TRPV1 hyperactivation via PKC activation and ETB-mediated Ca(2+) mobilization occurs in different subsets of TRG neurons. These endothelin-induced responses may contribute to the induction of orofacial pain. The ETB-mediated function in TRG neurons is a special feature in the trigeminal system because of no ETB expression in dorsal root ganglion neurons.
Collapse
Affiliation(s)
- T Yamamoto
- Division of Physiology, Kokurakitaku, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nones CFM, Reis RC, Jesus CHA, Veronez DADL, Cunha JM, Chichorro JG. Orofacial sensory changes after streptozotocin-induced diabetes in rats. Brain Res 2013; 1501:56-67. [PMID: 23313875 DOI: 10.1016/j.brainres.2013.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/06/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022]
Abstract
Peripheral neuropathy is a common complication of diabetes and is often accompanied by episodes of pain. There is evidence that diabetic neuropathy may affect the trigeminal nerve, altering the transmission of orofacial sensory information. Structural changes in the trigeminal ganglia may be involved in the development of these sensory alterations. Herein, we evaluate the development of orofacial sensory changes after streptozotocin-induced diabetes in rats, and their sensitivity to pregabalin and morphine treatments. Furthermore, stereological analysis of the trigeminal ganglia was performed. Diabetic rats showed similar responses to 1% formalin applied into the upper lip compared to normoglycemic rats on weeks 1, 2 and 4 after streptozotocin. Additionally, there was no difference in the facial mechanical threshold of normoglycemic and diabetic rats, on weeks 1 up to 5 after streptozotocin, while the paw mechanical threshold of diabetic rats was significantly reduced. In contrast, diabetic rats developed long-lasting orofacial heat and cold hyperalgesia. Moreover, stereological analyses revealed significant neuronal loss in the trigeminal ganglia of diabetic compared to normoglycemic rats. Pregabalin treatment (30mg/kg, p.o.) of diabetic rats resulted in marked and prolonged (up to 6h) reduction of heat and cold orofacial hyperalgesia. Likewise, morphine treatment (2.5mg/kg, s.c.) abolished orofacial heat and cold hyperalgesia, but its effect was significant only up to 1h after the administration. In conclusion, the results of the present study demonstrated that streptozotocin-treated rats developed long-lasting orofacial heat and cold hyperalgesia, which is more amenable to reduction by pregabalin than morphine.
Collapse
|
37
|
Krzyzanowska A, Avendaño C. Behavioral testing in rodent models of orofacial neuropathic and inflammatory pain. Brain Behav 2012; 2:678-97. [PMID: 23139912 PMCID: PMC3489819 DOI: 10.1002/brb3.85] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/12/2022] Open
Abstract
Orofacial pain conditions are often very debilitating to the patient and difficult to treat. While clinical interest is high, the proportion of studies performed in the orofacial region in laboratory animals is relatively low, compared with other body regions. This is partly due to difficulties in testing freely moving animals and therefore lack of reliable testing methods. Here we present a comprehensive review of the currently used rodent models of inflammatory and neuropathic pain adapted to the orofacial areas, taking into account the difficulties and drawbacks of the existing approaches. We examine the available testing methods and procedures used for assessing the behavioral responses in the face in both mice and rats and provide a summary of some pharmacological agents used in these paradigms to date. The use of these agents in animal models is also compared with outcomes observed in the clinic.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Medical School Madrid, Spain
| | | |
Collapse
|
38
|
Kopruszinski CM, Reis RC, Chichorro JG. B vitamins relieve neuropathic pain behaviors induced by infraorbital nerve constriction in rats. Life Sci 2012; 91:1187-95. [PMID: 22940269 DOI: 10.1016/j.lfs.2012.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 01/16/2023]
Abstract
AIMS There is mounting evidence that use of B vitamins can help control neuropathic pain. This study investigated if treatment with B1, B6 and B12 vitamins, alone or in combination with carbamazepine, can ameliorate distinct nociceptive behaviors in a model of trigeminal neuropathic pain. MAIN METHODS Male Wistar rats were submitted to infraorbital nerve constriction or sham surgery and received a 5-day treatment with one of the B vitamins, a single carbamazepine injection or the association of both treatments and were tested for facial thermal and mechanical hyperalgesia at different time intervals. KEY FINDINGS Repeated treatment with B1 (thiamine), B6 (pyridoxine) and B12 (cyanocobalamin) vitamins (at 180, 180 and 18 mg/kg/day, respectively, for 5 days) prevented the development of heat hyperalgesia after infraorbital nerve injury, but only B12 and B6 treatments attenuated cold and mechanical hyperalgesia, respectively. A single injection of carbamazepine (30 mg/kg) significantly reduced thermal, but not mechanical, hyperalgesia after nerve injury. Combinations of lower doses of each B vitamin (B1 and B6 at 18 mg/kg/day and B12 at 1.8 mg/kg/day for 5 days) with carbamazepine (10mg/kg) markedly reduced heat hyperalgesia after infraorbital nerve injury. Treatment with B12 (1.8 mg/kg/day) combined with carbamazepine (10mg/kg) also synergized to attenuate cold hyperalgesia at some time points, but combination of B6 (18 mg/kg/day) with carbamazepine (30 mg/kg) failed to modify mechanical hyperalgesia. SIGNIFICANCE We suggest that B vitamins might constitute a relevant adjuvant to control some aspects of the pain afflicting patients suffering from trigeminal neuropathic pain.
Collapse
|
39
|
Rossi HL, Jenkins AC, Kaufman J, Bhattacharyya I, Caudle RM, Neubert JK. Characterization of bilateral trigeminal constriction injury using an operant facial pain assay. Neuroscience 2012; 224:294-306. [PMID: 22909425 DOI: 10.1016/j.neuroscience.2012.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/25/2012] [Accepted: 08/10/2012] [Indexed: 11/18/2022]
Abstract
In order to better understand and treat neuropathic pain, scientific study must use methods that can assess pain processing at the cortical level where pain is truly perceived. Operant behavior paradigms can accomplish this. We used an operant task to evaluate changes following chronic constriction injury to the trigeminal nerves. We also relate these behavioral changes to immunohistochemistry of transient receptor potential channels vanilloid 1 and melastatin 8 (TRPV1 and TRPM8) in the trigeminal ganglia. Following nerve injury, successful performance of the operant task was reduced and aversive behaviors were observed with 10 and 37 °C stimulation, indicating cold allodynia and mechanical allodynia respectively. In contrast, while aversive behaviors were observed with 48 °C stimulation, successful performance of the operant task was not substantially hindered following injury. These behavioral changes were accompanied by an increase in TRPV1 positive cells and an increased intensity of TRPM8 staining at 2 weeks post-injury, when cold allodynia is maximal. These findings suggest that the incorporation of operant behavioral assessment in the study of pain may provide insight into the relationship among peripheral changes, motivational drive, and pain. Understanding this relationship will allow us to better treat and prevent chronic neuropathic pain.
Collapse
Affiliation(s)
- H L Rossi
- College of Dentistry Department of Orthodontics, University of Florida, Gainesville, FL, United States.
| | | | | | | | | | | |
Collapse
|
40
|
Cyclotraxin-B, a new TrkB antagonist, and glial blockade by propentofylline, equally prevent and reverse cold allodynia induced by BDNF or partial infraorbital nerve constriction in mice. THE JOURNAL OF PAIN 2012; 13:579-89. [PMID: 22560237 DOI: 10.1016/j.jpain.2012.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 01/03/2023]
Abstract
UNLABELLED Several lines of evidence indicate that brain-derived neurotrophic factor (BDNF) plays a key role as a central pronociceptive modulator of pain, acting through postsynaptic TrkB receptors that trigger intracellular signaling cascades leading to central sensitization. The overall aim of this study was to investigate to what extent BDNF could participate in the generation and maintenance of trigeminal neuropathic pain. The results showed that acute intracisternal administration of nanogram doses of BDNF in naïve mice elicited long-lasting, dose-related, cold allodynic responses to topical application of acetone onto vibrissal pad skin. The systemic administration of cyclotraxin-B (CTX-B), a new TrkB receptor antagonist, or propentofylline, an inhibitor of glial activation, was able to either prevent or reverse the effects of intracisternal BDNF on cold nociception. In addition, the blockade of TrkB receptor by CTX-B inhibited the mechanisms that either initiate or maintain cold allodynia in the ipsilateral vibrissal pad skin after unilateral constriction of the infraorbital nerve. These observations raise the possibility that BDNF is capable on its own of conveying many features of the signaling mechanisms that underlie central sensitization caused by nerve constriction. PERSPECTIVE Although further studies are necessary to examine in detail the mechanisms underlying the strong anti-allodynic action of CTX-B, this compound may represent an interesting lead for the development of novel therapeutic strategies aimed at preventing and/or suppressing central sensitization associated with neuropathic pain.
Collapse
|
41
|
Urano H, Ara T, Fujinami Y, Hiraoka BY. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain. Int J Med Sci 2012; 9:690-7. [PMID: 23091405 PMCID: PMC3477677 DOI: 10.7150/ijms.4706] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/06/2012] [Indexed: 12/24/2022] Open
Abstract
Trigeminal neuropathic pain is a facial pain syndrome associated with trigeminal nerve injury. However, the mechanism of trigeminal neuropathic pain is poorly understood. This study aimed to determine the role of transient receptor potential vanilloid 1 (TRPV1) in heat hyperalgesia in a trigeminal neuropathic pain model. We evaluated nociceptive responses to mechanical and heat stimuli using a partial infraorbital nerve ligation (pIONL) model. Withdrawal responses to mechanical and heat stimuli to vibrissal pads (VP) were assessed using von Frey filaments and a thermal stimulator equipped with a heat probe, respectively. Changes in withdrawal responses were measured after subcutaneous injection of the TRP channel antagonist capsazepine. In addition, the expression of TRPV1 in the trigeminal ganglia was examined. Mechanical allodynia and heat hyperalgesia were observed in VP by pIONL. Capsazepine suppressed heat hyperalgesia but not mechanical allodynia. The number of TRPV1-positive neurons in the trigeminal ganglia was significantly increased in the large-diameter-cell group. These results suggest that TRPV1 plays an important role in the heat hyperalgesia observed in the pIONL model.
Collapse
Affiliation(s)
- Hiroko Urano
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan
| | | | | | | |
Collapse
|
42
|
Abstract
Orofacial pain remains an understudied area in pain research given that most attention has been focused on the spinal system. In this chapter, animal models of neuropathic and inflammatory orofacial pain are presented. Four different types of pain behavior tests are then described for assessing evoked and spontaneous pain behavior in addition to conditional reward behavior. The use of a combination of different pain models and behavior assessments is needed to aid in understanding the mechanisms contributing to orofacial pain in humans for developing effective therapy.
Collapse
Affiliation(s)
- Timothy K Y Kaan
- Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
43
|
Liang J, Ji Q, Ji W. Role of transient receptor potential ankyrin subfamily member 1 in pruritus induced by endothelin-1. Neurosci Lett 2011; 492:175-8. [PMID: 21315802 DOI: 10.1016/j.neulet.2011.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/19/2011] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
Abstract
Noxious cold reduces pruritus and transient receptor potential ankyrin subfamily member 1 (TRPA1), a non-selective cation channel, is known as a noxious cold-activated ion channel. Recent findings implicated the involvement of TRPA1 in pain induced by endothelin-1 (ET-1). Therefore, we evaluated its potential role in pruritus induced by ET-1. We found that ruthenium red (RR; a nonselective TRP inhibitor) and AP18 (a TRPA1 antagonist) significantly increased scratching bouts caused by ET-1, while capsazepine (a TRPV1 antagonist) and morphine showed no effects in the ET-1-induced scratching response. However, RR and capsazepine significantly reduced scratching bouts caused by histamine. Our results suggested that activation of TRPA1 could suppress itch induced by ET-1 and this is not related to pain induced by ET-1.
Collapse
Affiliation(s)
- Jiexian Liang
- Division of Anesthesiology, Department of Cardiovascular Surgery, Guangdong Institute of Cardiovascular, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | | |
Collapse
|
44
|
Millecamps M, Laferrière A, Ragavendran VJ, Stone LS, Coderre TJ. Role of peripheral endothelin receptors in an animal model of complex regional pain syndrome type 1 (CRPS-I). Pain 2010; 151:174-183. [PMID: 20675053 DOI: 10.1016/j.pain.2010.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
Chronic post-ischemic pain (CPIP) is an animal model of CRPS-I developed using a 3-h ischemia-reperfusion injury of the rodent hind paw. The contribution of local endothelin to nociception has been evaluated in CPIP mice by measuring sustained nociceptive behaviors (SNBs) following intraplantar injection of endothelin-1 or -2 (ET-1, ET-2). The effects of local BQ-123 (ETA-R antagonist), BQ-788 (ETB-R antagonist), IRL-1620 (ETB-R agonist) and naloxone (opioid antagonist) were assessed on ET-induced SNBs and/or mechanical and cold allodynia in CPIP mice. ETA-R and ETB-R expression was assessed using immunohistochemistry and Western blot analysis. Compared to shams, CPIP mice exhibited hypersensitivity to local ET-1 and ET-2. BQ-123 reduced ET-1- and ET-2-induced SNBs in both sham and CPIP animals, but not mechanical or cold allodynia. BQ-788 enhanced ET-1- and ET-2-induced SNBs in both sham and CPIP mice, and cold allodynia in CPIP mice. IRL-1620 displayed a non-opioid anti-nociceptive effect on ET-1- and ET-2-induced SNBs and mechanical allodynia in CPIP mice. The distribution of ETA-R and ETB-R was similar in plantar skin of sham and CPIP mice, but both receptors were over-expressed in plantar muscles of CPIP mice. This study shows that ETA-R and ETB-R have differing roles in nociception for sham and CPIP mice. CPIP mice exhibit more local endothelin-induced SNBs, develop a novel local ETB-R agonist-induced (non-opioid) analgesia, and exhibit over-expression of both receptors in plantar muscles, but not skin. The effectiveness of local ETB-R agonists as anti-allodynic treatments in CPIP mice holds promise for novel therapies in CRPS-I patients.
Collapse
Affiliation(s)
- Magali Millecamps
- Department of Anesthesia, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 Department of Neurology & Neurosurgery, McGill University, 3801 University Ave., Montreal, Quebec, Canada H3A 2B4 Department of Psychology, McGill University, 1205 Dr. Penfield Ave., Montreal, Quebec, Canada H3A 1B1 Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 Faculty of Dentistry, McGill University, 3640 University Ave., Montreal, Quebec, Canada H3A 2B2 Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Ave., Montreal, Quebec, Canada H3A 1A4 McGill University Health Centre Research Institute, 2155 Guy St., Montreal, Quebec, Canada H3H 2R9
| | | | | | | | | |
Collapse
|
45
|
Claudino RF, Marcon R, Bento AF, Chichorro JG, Rae GA. Endothelins implicated in referred mechanical hyperalgesia associated with colitis induced by TNBS in miceThis article is one of a selection of papers published in the two-part special issue entitled 20 Years of Endothelin Research. Can J Physiol Pharmacol 2010; 88:661-7. [DOI: 10.1139/y10-043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study evaluated the contribution of endothelins to changes in sensitivity to mechanical stimulation of the lower abdomen and hind paw associated with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. The frequency of withdrawal responses to 10 consecutive applications of von Frey probes to the lower abdomen (0.07 g) or hind paw (0.4 g) was assessed in male BALB/c mice before and after intracolonic TNBS injection (0.5 mg in 100 µL of 35% ethanol). TNBS (0.5 mg) induced referred mechanical hyperalgesia in the abdomen (response frequencies at 24 h: saline 11.0% ± 3.1%, TNBS 48.0% ± 6.9%) and hind paw (frequencies at 24 h: saline 12.5% ± 4.7%, TNBS 47.1% ± 7.1%) lasting up to 72 and 48 h, respectively. Mice receiving 1.0 or 1.5 mg TNBS assumed hunch-backed postures and became immobile during abdominal mechanical stimulation, suggestive of excessive ongoing pain. Atrasentan (ETA receptor antagonist; 10 and 30 mg/kg, i.v.) given 24 h after TNBS abolished hind paw and abdominal mechanical hyperalgesia for 2–3 h. A-192621 (ETB receptor antagonist; 20 mg/kg, i.v.) attenuated abdominal mechanical hyperalgesia at the 3 h time point only. Thus, endothelins contribute importantly to abdominal and hind paw referred mechanical hyperalgesia during TNBS-induced colitis mainly through ETA receptor-signaled mechanisms.
Collapse
Affiliation(s)
- Rafaela Franco Claudino
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Rodrigo Marcon
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Allisson Freire Bento
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Juliana Geremias Chichorro
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| | - Giles Alexander Rae
- Department of Pharmacology, Biological Sciences Center, Universidade Federal de Santa Catarina, Florianopolis, SC 88049-900, Brazil
| |
Collapse
|
46
|
Chichorro JG, Fiuza CR, Bressan E, Claudino RF, Leite DF, Rae GA. Endothelins as pronociceptive mediators of the rat trigeminal system: role of ETA and ETB receptors. Brain Res 2010; 1345:73-83. [PMID: 20450894 DOI: 10.1016/j.brainres.2010.04.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 04/27/2010] [Accepted: 04/27/2010] [Indexed: 11/26/2022]
Abstract
The trigeminal nerve is comprised of three main divisions, ophthalmic, maxillary and mandibular, each providing somatosensory innervation to distinct regions of the head, face and oral cavity. Recently, a role for endothelins in nociceptive signaling in the trigeminal system has been proposed. The present study aimed to gain better insight into the participation of the endothelin system in trigeminal nociceptive transmission. Herein ET-1 and ET-3 mRNA was detected in the rats' trigeminal ganglion (TG). Fluorescent labeling of TG neurons revealed that ET(A) and ET(B) receptors are distributed along the entire TG, but ET(A) receptor expression slightly predominated within the three divisions. TRPV1 receptors were also detected throughout the entire TG, and a significant proportion of TRPV1-positive neurons (approximately 30%) co-expressed either ET(A) or ET(B) receptors. Our behavioral data showed that ET-1 (3 to 30 pmol/site) induced overt nociceptive responses after injection into the upper lip or temporomandibular joint (TMJ) and hyperalgesic actions when applied to the eye, while ET-3 and the selective ET(B) receptor agonist IRL-1620 (each at 3 to 30 pmol/site) showed only the first two effects. Injection of BQ-123, but not BQ-788 (ET(A) and ET(B) receptor antagonists, respectively, 10 nmol/site each, 30 min beforehand), into the ipsilateral upper lip abolished ET-1 induced facial grooming, but both antagonists markedly reduced the nociceptive responses induced by ET-1 injected into the TMJ. Taken together, these findings suggest that endothelins, acting through ET(A) and/or ET(B) receptors, may play an important role in mediating pain resulting from activation of most trigeminal nerve branches.
Collapse
|
47
|
Abstract
Transient receptor potential ankyrin subfamily member 1 (TRPA1) is a nonselective cation channel known as a noxious cold-activated ion channel. Recent findings implicated its involvement in acute and chronic cold nociception processes. Here, we investigated whether TRPA1 is involved in endothelin-1 (ET-1)-induced spontaneous pain-like behavior in C57BL/6J mice. We found that TRPA1 antagonists, HC-030031 and AP18, significantly reduced the pain-like behavior caused by ET-1. AP18 also significantly reduced the pain caused by cinnamaldehyde, an agonist of TRPA-1. However, AP18 did not alleviate the pain caused by capsaicin. The pain-like behavior caused by ET-1 was inhibited by phospholipase C inhibitor, but not by protein kinase C inhibitor. Low dose of ET-1 could potentiate cinnamaldehyde-induced nociception. Our results suggested that TRPA1 is involved in ET-1-induced spontaneous pain-like behavior in mice.
Collapse
|
48
|
Luiz AP, Schroeder SD, Chichorro JG, Calixto JB, Zampronio AR, Rae GA. Kinin B(1) and B(2) receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats. Neuropeptides 2010; 44:87-92. [PMID: 19914714 DOI: 10.1016/j.npep.2009.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 11/19/2022]
Abstract
Mechanisms coupled to kinin B(1) and B(2) receptors have been implicated in sensory changes associated to various models of neuropathy. The current study aimed to investigate if kinins also participate in orofacial thermal hyperalgesia induced by constriction of the infraorbital nerve (CION), a model of trigeminal neuropathic pain which displays persistent hypersensitivity to orofacial sensory stimulation, in rats and mice. Male Swiss mice (30-35g) or Wistar rats (200-250g; n=6-10 per group in both cases) underwent CION or sham surgery and were submitted repeatedly to application of heat ( approximately 50 degrees C) to the ipsilateral or contralateral snout, delivered by a heat source placed 1cm from the vibrissal pad. Decreases in latency to display head withdrawal or vigorous snout flicking were considered indicative of heat hyperalgesia. CION caused long-lasting heat hyperalgesia which started on Day 2 after surgery in both species and lasted up to Day 17 in mice and Day 10 in rats. Administration of DALBK or HOE-140 (peptidic B(1) and B(2) receptor antagonists, respectively; each at 3nmol in 10microl) onto the exposed infraorbital nerve of mice at the moment of surgery delayed the development of the thermal hyperalgesia. Systemic treatment on Day 5 (mice) or Day 4 (rats) with Des-Arg(9), Leu(8)-Bradykinin (DALBK, B(1) receptor antagonist, 0.1-1micromol/kg, i.p.) or HOE-140 (B(2) receptor antagonist, 0.001-1micromol/kg, i.p.) transiently reduced heat hyperalgesia in both species. Due to the peptidic nature of DALBK and HOE-140, it is likely that their effects reported herein resulted from blockade of peripheral kinin receptors. Thus, mechanisms operated by kinin B(1) and B(2) receptors, contribute to orofacial heat hyperalgesia induced by CION in both mice and rats. Perhaps kinin B(1) and B(2) receptor antagonists might constitute effective preventive and curative treatments for orofacial thermal hyperalgesia induced by nerve injury.
Collapse
Affiliation(s)
- Ana Paula Luiz
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Werner MFP, Trevisani M, Campi B, André E, Geppetti P, Rae GA. Contribution of peripheral endothelin ETA and ETB receptors in neuropathic pain induced by spinal nerve ligation in rats. Eur J Pain 2010; 14:911-7. [PMID: 20350830 DOI: 10.1016/j.ejpain.2010.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/10/2010] [Accepted: 03/02/2010] [Indexed: 12/11/2022]
Abstract
Endothelins (ETs) contribute to the sensory changes seen in animals models of inflammatory, cancer and diabetic neuropathic pain, but little is known about their nociceptive role following peripheral nerve injury. The current study evaluated mechanisms by which ETs can drive changes in nociceptive responses to thermal stimulation of the hind paw of rats induced by unilateral lumbar L5/L6 spinal nerve ligation (SNL) injury. SNL sensitizes rats to acetone-evoked cooling of and radiant heat application (Hargreaves test) to the ipsilateral hind paw (throughout 3-40 and 9-40 days after surgery, respectively). At 12 days after SNL, intraplantar (i.pl.) injection of endothelin-1 (ET-1, 10 pmol) induces greater overt nociception that was reduced only by treatment with the selective ET(A) peptidic antagonist (BQ-123, 10 nmol, i.pl), but unchanged by the selective ET(B) peptidic antagonist (BQ-788). Cold allodynia evoked by cooling the ipsilateral hind paw with acetone was reduced by i.pl. injection of both antagonists BQ-123 or BQ-788 (3 or 10 nmol). In contrast, heat hyperalgesia evaluated by Hargreaves method was reduced only by BQ-123. SNL enhanced the [Ca(+2)](i) increases induced by ET-1 (100 nM) in neurons from L5/L6 (injured) and L4 (intact) cultured dorsal root ganglion, but did not change the responses of non-neuronal cells. Furthermore, Western blot analysis revealed that SNL increased ET(A) and ET(B) receptor protein expression in spinal nerves. Thus, SNL induces marked hind paw hypersensitivity to thermal stimulation in part via up-regulation of peripheral sensory nerve pronociceptive ET(A) and ET(B) receptor-operated mechanisms.
Collapse
Affiliation(s)
- Maria Fernanda P Werner
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
da Costa DSM, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 2010; 148:431-437. [DOI: 10.1016/j.pain.2009.12.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/15/2009] [Accepted: 12/01/2009] [Indexed: 12/21/2022]
|