1
|
Rahban M, Danyali S, Zaringhalam J, Manaheji H. Pharmacological blockade of neurokinin1 receptor restricts morphine-induced tolerance and hyperalgesia in the rat. Scand J Pain 2022; 22:193-203. [PMID: 34525274 DOI: 10.1515/sjpain-2021-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The most notable adverse side effects of chronic morphine administration include tolerance and hyperalgesia. This study investigated the involvement of dorsal root ganglion (DRG) protein kinase Cɛ (PKCɛ) expression during chronic morphine administration and also considered the relationship between DRG PKCɛ expression and the substance P- neurokinin1 receptor (SP- NK1R) activity. METHODS Thirty-six animals were divided into six groups (n=6) in this study. In the morphine and sham groups, rats received 10 µg intrathecal (i.t.) morphine or saline for eight consecutive days, respectively. Behavioral tests were performed on days 1 and 8 before and after the first injections and then 48 h after the last injection (day 10). In the treatment groups, rats received NK1R antagonist (L-732,138, 25 µg) daily, either alone or 10 min before a morphine injection, Sham groups received DMSO alone or 10 min before a morphine injection. Animals were sacrificed on days 8 and 10, and DRG PKCɛ and SP expression were analyzed by western blot and immunohistochemistry techniques, respectively. RESULTS Behavioral tests indicated that tolerance developed following eight days of chronic morphine injection. Hyperalgesia was induced 48 h after the last morphine injection. Expression of SP and PKCɛ in DRG significantly increased in rats that developed morphine tolerance on day 8 and hyperalgesia on day 10, respectively. NK1R antagonist (L-732,138) not only blocked the development of hyperalgesia and the increase of PKCɛ expression but also alleviated morphine tolerance. CONCLUSIONS Our results provide evidence that DRG PKCɛ and SP-NK1R most likely participated in the generation of morphine tolerance and hyperalgesia. Pharmacological inhibition of SP-NK1R activity in the spinal cord suggests a role for NK1R and in restricting some side effects of chronic morphine. All experiments were performed by the National Institute of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (NIH Publication No. 80-23, revised1996) and were approved by the Animal Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.MSP.REC.1396.130).
Collapse
Affiliation(s)
- Mohammad Rahban
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Danyali
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ram A, Edwards TM, McCarty A, McDermott MV, Bobeck EN. Morphine-induced kinase activation and localization in the periaqueductal gray of male and female mice. J Neurochem 2021; 159:590-602. [PMID: 34499746 DOI: 10.1111/jnc.15506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Morphine is a potent opioid analgesic with high propensity for the development of antinociceptive tolerance. Morphine antinociception and tolerance are partially regulated by the midbrain ventrolateral periaqueductal gray (vlPAG). However, the majority of research evaluating mu-opioid receptor signaling has focused on males. Here, we investigate kinase activation and localization patterns in the vlPAG following acute and chronic morphine treatment in both sexes. Male and female mice developed rapid antinociceptive tolerance to morphine (10 mg/kg i.p.) on the hot plate assay, but tolerance did not develop in males on the tail flick assay. Quantitative fluorescence immunohistochemistry was used to map and evaluate the activation of extracellular signal-regulated kinase 1/2 (ERK 1/2), protein kinase-C (PKC), and protein kinase-A (PKA). We observed significantly greater phosphorylated ERK 1/2 in the vlPAG of chronic morphine-treated animals which co-localized with the endosomal marker, Eea1. We note that pPKC is significantly elevated in the vlPAG of both sexes following chronic morphine treatment. We also observed that although PKA activity is elevated following chronic morphine treatment in both sexes, there is a significant reduction in the nuclear translocation of its phosphorylated substrate. Taken together, this study demonstrates increased activation of ERK 1/2, PKC, and PKA in response to repeated morphine treatment. The study opens avenues to explore the impact of chronic morphine treatment on G-protein signaling and kinase nuclear transport.
Collapse
Affiliation(s)
- Akila Ram
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | - Ashley McCarty
- Department of Biology, Utah State University, Logan, Utah, USA
| | - Max V McDermott
- Department of Biology, Utah State University, Logan, Utah, USA
- Interdisciplinary Neuroscience Program, Utah State University, Logan, Utah, USA
| | - Erin N Bobeck
- Department of Biology, Utah State University, Logan, Utah, USA
- Interdisciplinary Neuroscience Program, Utah State University, Logan, Utah, USA
| |
Collapse
|
3
|
Wei S, Han CZY, Wang J, Li K, Ru QM, Wang Y, Ma MT, Wang LQ, Liu X, Wang R. Repeated Endomorphin Analogue MEL-0614 Reduces Tolerance and Improves Chronic Postoperative Pain without Modulating the P2X7R Signaling Pathway. ACS Chem Neurosci 2021; 12:3124-3139. [PMID: 34351126 DOI: 10.1021/acschemneuro.1c00418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The clinical treatment of chronic postoperative pain (CPSP) remains challenging. The side effects of chronic morphine treatment limit its clinical application. MEL-0614, a novel endomorphin analogue that is highly selective and agonistic for μ opioid receptor (MOR), produces a more powerful analgesic effect than that of morphine. In this study, we explored the difference in antinociceptive tolerance and related mechanisms between MEL-0614 and morphine in CPSP induced in a skin/muscle incision and retraction (SMIR) mice model. We found that acute administration of MEL-0614 (1, 3, 5, and 10 nmol, i.t.) produced a dose-dependent analgesic effect that was superior to that of morphine in the SMIR mice model. Long-term MEL-0614 treatment (10 nmol, i.t.) did not induce tolerance compared with morphine. Notably, tolerance induced by morphine could be greatly prevented and/or inhibited via cross-administration or coadministration between MEL-0614 and morphine. In addition, MEL-0614 accelerated the recovery of postoperative pain, whereas morphine aggravated postoperative pain and prolonged its recovery time regardless of preoperative or postoperative treatment. In addition, MEL-0614 did not activate microglia and the P2X7R signaling pathway and showed reduced expression iba1 and P2X7R compared with that observed after morphine administration. Release of inflammatory factors was induced by continued administration of morphine during SMIR surgery, but MEL-0614 did not promote the activation of inflammatory factors. Our results showed that MEL-0614 has superior analgesic effects in CPSP and leads to tolerance to a lesser degree than morphine. Further, MEL-0614 may be used as a promising treatment option for the long-term treatment in CPSP.
Collapse
Affiliation(s)
- Shuang Wei
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao-Zhen-Yi Han
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiao-Min Ru
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng-Tao Ma
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin-Qing Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Department of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Kibaly C, Alderete JA, Liu SH, Nasef HS, Law PY, Evans CJ, Cahill CM. Oxycodone in the Opioid Epidemic: High 'Liking', 'Wanting', and Abuse Liability. Cell Mol Neurobiol 2021; 41:899-926. [PMID: 33245509 PMCID: PMC8155122 DOI: 10.1007/s10571-020-01013-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
It is estimated that nearly a third of people who abuse drugs started with prescription opioid medicines. Approximately, 11.5 million Americans used prescription drugs recreationally in 2016, and in 2018, 46,802 Americans died as the result of an opioid overdose, including prescription opioids, heroin, and illicitly manufactured fentanyl (National Institutes on Drug Abuse (2020) Opioid Overdose Crisis. https://www.drugabuse.gov/drugs-abuse/opioids/opioid-overdose-crisis . Accessed 06 June 2020). Yet physicians will continue to prescribe oral opioids for moderate-to-severe pain in the absence of alternative therapeutics, underscoring the importance in understanding how drug choice can influence detrimental outcomes. One of the opioid prescription medications that led to this crisis is oxycodone, where misuse of this drug has been rampant. Being one of the most highly prescribed opioid medications for treating moderate-to-severe pain as reflected in the skyrocketed increase in retail sales of 866% between 1997 and 2007, oxycodone was initially suggested to be less addictive than morphine. The false-claimed non-addictive formulation of oxycodone, OxyContin, further contributed to the opioid crisis. Abuse was often carried out by crushing the pills for immediate burst release, typically by nasal insufflation, or by liquefying the pills for intravenous injection. Here, we review oxycodone pharmacology and abuse liability as well as present the hypothesis that oxycodone may exhibit a unique pharmacology that contributes to its high likability and abuse susceptibility. We will discuss various mechanisms that likely contribute to the high abuse rate of oxycodone including clinical drug likability, pharmacokinetics, pharmacodynamics, differences in its actions within mesolimbic reward circuity compared to other opioids, and the possibility of differential molecular and cellular receptor interactions that contribute to its selective effects. We will also discuss marketing strategies and drug difference that likely contributes to the oxycodone opioid use disorders and addiction.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| | - Jacob A Alderete
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Steven H Liu
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Hazem S Nasef
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Ping-Yee Law
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Christopher J Evans
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA
| | - Catherine M Cahill
- Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020; 29:1345-1354. [PMID: 32297394 DOI: 10.1002/pro.3872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cell function over short- and long-term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.
Collapse
Affiliation(s)
- Thomas J Fernandez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
6
|
PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm (Vienna) 2020; 127:527-540. [PMID: 32108249 DOI: 10.1007/s00702-020-02162-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
Chronic pain is a frequent and disabling condition that is significantly maintained by central sensitization, which results in pathological amplification of responses to noxious and innocuous stimuli. As such, mechanical allodynia, or pain in response to a tactile stimulus that does not normally provoke pain, is a cardinal feature of chronic pain. Recent evidence suggests that the dorsal horn excitatory interneurons that express the γ isoform of protein kinase C (PKCγ) play a critical role in the mechanism of mechanical allodynia during chronic pain. Here, we review this evidence as well as the main aspects of the development, anatomy, electrophysiology, inputs, outputs, and pathophysiology of dorsal horn PKCγ neurons. Primary afferent high-threshold neurons transmit the nociceptive message to the dorsal horn of the spinal cord and trigeminal system where it activates second-order nociceptive neurons relaying the information to the brain. In physiological conditions, low-threshold mechanoreceptor inputs activate inhibitory interneurons in the dorsal horn, which may control activation of second-order nociceptive neurons. During chronic pain, low-threshold mechanoreceptor inputs now activate PKCγ neurons that forward the message to second-order nociceptive neurons, turning thus tactile inputs into pain. Several mechanisms may contribute to opening this gate, including disinhibition, activation of local astrocytes, release of diffusible factors such as reactive oxygen species, and alteration of the descending serotoninergic control on PKCγ neurons through 5-HT2A serotonin receptors. Dorsal horn PKCγ neurons, therefore, appear as a relevant therapeutic target to alleviate mechanical allodynia during chronic pain.
Collapse
|
7
|
Ding X, Gao T, Gao P, Meng Y, Zheng Y, Dong L, Luo P, Zhang G, Shi X, Rong W. Activation of the G Protein-Coupled Estrogen Receptor Elicits Store Calcium Release and Phosphorylation of the Mu-Opioid Receptors in the Human Neuroblastoma SH-SY5Y Cells. Front Neurosci 2019; 13:1351. [PMID: 31920512 PMCID: PMC6928052 DOI: 10.3389/fnins.2019.01351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Estrogens exert extensive influences on the nervous system besides their well-known roles in regulation of reproduction and metabolism. Estrogens act via the nuclear receptor ERα and ERβ to regulate gene transcription (classical genomic effects). In addition, estrogens are also known to cause rapid non-genomic effects on neuronal functions including inducing fast changes in cytosolic calcium level and rapidly desensitizing the μ type opioid receptor (MOR). The receptors responsible for the rapid actions of estrogens remain uncertain, but recent evidence points to the G protein-coupled estrogen receptor (GPER), which has been shown to be expressed widely in the nervous system. In the current study, we test the hypothesis that activation of GPER may mediate rapid calcium signaling, which may promote phosphorylation of MOR through the calcium-dependent protein kinases in neuronal cells. By qPCR and immunocytochemistry, we found that the human neuroblastoma SH-SY5Y cells endogenously express GPER and MOR. Activation of GPER by 17β-estradiol (E2) and G-1 (GPER selective agonist) evoked a rapid calcium rise in a concentration-dependent manner, which was due to store release rather than calcium entry. The GPER antagonist G15, the PLC inhibitor U73122 and the IP3 receptor inhibitor 2-APB each virtually abolished the calcium responses to E2 or G-1. Activation of GPER stimulated translocation of PKC isoforms (α and ε) to the plasma membrane, which led to MOR phosphorylation. Additionally, E2 and G-1 stimulated c-Fos expression in SH-SY5Y cells in a PLC/IP3-dependent manner. In conclusion, the present study has revealed a novel GPER-mediated estrogenic signaling in neuroblastoma cells in which activation of GPER is followed by rapid calcium mobilization, PKC activation and MOR phosphorylation. GPER-mediated rapid calcium signal may also be transmitted to the nucleus to impact on gene transcription. Such signaling cascade may play important roles in the regulation of opioid signaling in the brain.
Collapse
Affiliation(s)
- Xiaowei Ding
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Gao
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Po Gao
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youqiang Meng
- Department of Neurosurgery, Xin Hua Hospital Chongming Branch, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Zheng
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Dong
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Luo
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guohua Zhang
- Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyin Shi
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weifang Rong
- Department of Anesthesiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Anatomy and Physiology, Faculty of Basic Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Sanna MD, Borgonetti V, Galeotti N. μ Opioid Receptor-Triggered Notch-1 Activation Contributes to Morphine Tolerance: Role of Neuron–Glia Communication. Mol Neurobiol 2019; 57:331-345. [DOI: 10.1007/s12035-019-01706-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 01/07/2023]
|
9
|
Hill R, Dewey WL, Kelly E, Henderson G. Oxycodone-induced tolerance to respiratory depression: reversal by ethanol, pregabalin and protein kinase C inhibition. Br J Pharmacol 2018; 175:2492-2503. [PMID: 29574756 PMCID: PMC5980627 DOI: 10.1111/bph.14219] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxycodone, a prescription opioid, is a major drug of abuse, especially in the USA, and contributes significantly to opioid overdose deaths each year. Overdose deaths result primarily from respiratory depression. We have studied respiratory depression by oxycodone and have characterized how tolerance develops on prolonged exposure to the drug. We have investigated the role of PKC in maintaining tolerance and have examined whether ethanol or pregabalin reverses oxycodone-induced tolerance. EXPERIMENTAL APPROACH Respiration was measured in male CD-1 mice by whole-body plethysmography. Mice were preinjected with oxycodone then implanted with mini-pumps (s.c.) delivering 20, 45 or 120 mg·kg-1 ·day-1 oxycodone for 6 days and subsequently challenged with oxycodone (3 mg·kg-1 , i.p.) or morphine (10 mg·kg-1 , i.p.) to assess the level of tolerance. KEY RESULTS Oxycodone-treated mice developed tolerance to oxycodone and cross tolerance to morphine-induced respiratory depression. Tolerance was less with 20 mg·kg-1 ·day-1 than with 45 or 120 mg·kg-1 ·day-1 oxycodone treatment. At doses that do not depress respiration, ethanol (0.3 g·kg-1 ), pregabalin (20 mg·kg-1 ) and calphostin C (45 μg·kg-1 ) all reversed oxycodone-induced tolerance resulting in significant respiratory depression. Reversal of tolerance was less in mice treated with oxycodone (120 mg·kg-1 ·day-1 ). In mice receiving ethanol and calphostin C or ethanol and pregabalin, there was no greater reversal of tolerance than seen with either drug alone. CONCLUSION AND IMPLICATIONS These data suggest that oxycodone-induced tolerance is mediated by PKC and that reversal of tolerance by ethanol or pregabalin may be a contributory factor in oxycodone overdose deaths.
Collapse
Affiliation(s)
- Rob Hill
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | - William L Dewey
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVA23298‐0613USA
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolBS8 1TDUK
| |
Collapse
|
10
|
Jacob JC, Sakakibara K, Mischel RA, Henderson G, Dewey WL, Akbarali HI. Ethanol Reversal of Oxycodone Tolerance in Dorsal Root Ganglia Neurons. Mol Pharmacol 2018; 93:417-426. [PMID: 29467238 DOI: 10.1124/mol.117.110775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/08/2018] [Indexed: 01/23/2023] Open
Abstract
Oxycodone is a semisynthetic opioid compound that is widely prescribed, used, and abused today, and has a well-established role in shaping the current opioid epidemic. Previously, we have shown that tolerance develops to the antinociceptive and respiratory depressive effects of oxycodone in mice, and that a moderate dose of acute ethanol or a protein kinase C (PKC) inhibitor reversed that tolerance. To investigate further if tolerance was occurring through neuronal mechanisms, our aims for this study were to assess the effects of acute and prolonged oxycodone in isolated dorsal root ganglia (DRG) neurons and to determine if this tolerance was reversed by either ethanol or a PKC inhibitor. We found that an acute exposure to 3 μM oxycodone reduced neuronal excitability, as measured by increased threshold potentials and reduced action potential amplitude, without eliciting measurable changes in resting membrane potential. Exposure to 10 μM oxycodone for 18-24 hours prevented oxycodone's effect on neuronal excitability, indicative of tolerance development. The development of opioid tolerance was mitigated in DRG neurons from β-arrestin 2 knockout mice. Oxycodone tolerance was reversed in isolated DRG neurons by the acute application of either ethanol (20 mM) or the PKC inhibitor, bisindolylmaleimide XI hydrochloride (Bis XI), when a challenge of 3 µM oxycodone significantly reduced neuronal excitability following prolonged exposure. Through these studies, we concluded that oxycodone acutely reduced neuronal excitability, tolerance developed to this effect, and reversal of that tolerance occurred at the level of a single neuron, suggesting that reversal of oxycodone tolerance by either ethanol or Bis XI involves cellular mechanisms.
Collapse
Affiliation(s)
- Joanna C Jacob
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Kensuke Sakakibara
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Ryan A Mischel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Graeme Henderson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (J.C.J., K.S., R.A.M., W.L.D., H.I.A.); and School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom (G.H.)
| |
Collapse
|
11
|
Gonek M, Akbarali HI, Henderson G, Dewey WL. Reversal of oxycodone and hydrocodone tolerance by diazepam. Brain Res 2017; 1674:84-90. [PMID: 28830768 DOI: 10.1016/j.brainres.2017.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 02/03/2023]
Abstract
The Centers for Disease Control has declared opioid abuse to be an epidemic. Overdose deaths are largely assumed to be the result of excessive opioid consumption. In many of these cases, however, opioid abusers are often polydrug abusers. Benzodiazepines are one of the most commonly co-abused substances and pose a significant risk to opioid users. In 2016, the FDA required boxed warnings - the FDA's strongest warning - for prescription opioid analgesics and benzodiazepines about the serious risks associated with using these medications at the same time. The point of our studies was to evaluate the interactions between these two classes of drugs. We investigated whether diazepam adds to the depressant effects of opioids or do they alter the levels of tolerance to opioids. In the present study, we have found that the antinociceptive tolerance that developed to repeated administration of oxycodone was reversed by an acute dose of diazepam. Antinociceptive tolerance to hydrocodone was also reversed by acute injection of diazepam; however, a fourfold higher dose of diazepam was required when compared to reversal of oxycodone-induced tolerance. These doses of diazepam did not potentiate the acute antinociceptive effect of either opioid. The same dose of diazepam that reversed oxycodone antinociceptive tolerance also reversed oxycodone locomotor tolerance while having no potentiating effects. These studies show that diazepam does not potentiate the acute effect of prescription opioids but reverses the tolerance developed after chronic administration of the drugs.
Collapse
Affiliation(s)
- Maciej Gonek
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298-0613, USA.
| | - Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298-0613, USA
| | - Graeme Henderson
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 East Clay Street, Richmond, VA 23298-0613, USA
| |
Collapse
|
12
|
Kibaly C, Lin HY, Loh HH, Law PY. Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacol Res 2017; 119:153-168. [PMID: 28179123 DOI: 10.1016/j.phrs.2017.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
The development of tolerance to morphine, one of the most potent analgesics, in the management of chronic pain is a significant clinical problem and its mechanisms are poorly understood. Morphine exerts its pharmacological effects via the μ-opioid receptor (MOR). Tolerance is highly connected to G-protein-coupled receptors (GPCR) phosphorylation and desensitization increase. Because morphine desensitization previously has been shown to be MOR phosphorylation- and ß-arrestin2-independent (in contrast to agonists such as fentanyl), we examined the contribution of phosphorylation of the entire C-terminus to the development of antinociceptive tolerance to the partial (morphine) and full (fentanyl) MOR agonists in vivo. In MOR knockout (MORKO) mice, we delivered via lentivirus the genes encoding the wild-type MOR (WTMOR) or a phosphorylation-deficient MOR (Cterm(-S/T)MOR) in which all of the serine and threonine residues were mutated to alanine into the ventrolateral periaqueductal grey matter (vlPAG) or lumbar spinal cord (SC), structures that are involved in nociception. We compared the analgesic ED50 in WTMOR- and Cterm(-S/T)MOR-expressing MORKO mice before and after morphine or fentanyl tolerance was induced. Morphine acute antinociception was partially restored in WTMOR- or Cterm(-S/T)MOR-transferred MORKO mice. Fentanyl acute antinociception was observed only in MORKO mice with the transgenes expressed in the SC. Morphine antinociceptive tolerance was not affected by expressing Cterm(-S/T)MOR in the vlPAG or SC of MORKO mice. Fentanyl-induced tolerance in MORKO mice expressing WTMOR or Cterm(-S/T)MOR, is greater than morphine-induced tolerance. Thus, MOR C-terminus phosphorylation does not appear to be critical for morphine tolerance in vivo.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Hong-Yiou Lin
- Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI 48073, USA
| | - Horace H Loh
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Withey SL, Hill R, Lyndon A, Dewey WL, Kelly E, Henderson G. Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and c-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice. J Pharmacol Exp Ther 2017; 361:51-59. [PMID: 28130265 DOI: 10.1124/jpet.116.238329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/25/2017] [Indexed: 01/20/2023] Open
Abstract
Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine.
Collapse
Affiliation(s)
- Sarah L Withey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Rob Hill
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Abigail Lyndon
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - William L Dewey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Eamonn Kelly
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| | - Graeme Henderson
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom (S.L.W., R.H., A.L., E.K., G.H.); and Virginia Commonwealth University, Richmond, Virginia (W.L.D.)
| |
Collapse
|
14
|
Gessi S, Borea PA, Bencivenni S, Fazzi D, Varani K, Merighi S. The activation of μ-opioid receptor potentiates LPS-induced NF-kB promoting an inflammatory phenotype in microglia. FEBS Lett 2016; 590:2813-26. [DOI: 10.1002/1873-3468.12313] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Stefania Gessi
- Department of Medical Sciences; University of Ferrara; Italy
| | | | | | - Debora Fazzi
- Department of Medical Sciences; University of Ferrara; Italy
| | - Katia Varani
- Department of Medical Sciences; University of Ferrara; Italy
| | | |
Collapse
|
15
|
Halls ML, Yeatman HR, Nowell CJ, Thompson GL, Gondin AB, Civciristov S, Bunnett NW, Lambert NA, Poole DP, Canals M. Plasma membrane localization of the μ-opioid receptor controls spatiotemporal signaling. Sci Signal 2016; 9:ra16. [PMID: 26861044 DOI: 10.1126/scisignal.aac9177] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Differential regulation of the μ-opioid receptor (MOR), a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, contributes to the clinically limiting effects of opioid analgesics, such as morphine. We used biophysical approaches to quantify spatiotemporal MOR signaling in response to different ligands. In human embryonic kidney (HEK) 293 cells overexpressing MOR, morphine caused a Gβγ-dependent increase in plasma membrane-localized protein kinase C (PKC) activity, which resulted in a restricted distribution of MOR within the plasma membrane and induced sustained cytosolic extracellular signal-regulated kinase (ERK) signaling. In contrast, the synthetic opioid peptide DAMGO ([d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin) enabled receptor redistribution within the plasma membrane, resulting in transient increases in cytosolic and nuclear ERK activity, and, subsequently, receptor internalization. When Gβγ subunits or PKCα activity was inhibited or when the carboxyl-terminal phosphorylation sites of MOR were mutated, morphine-activated MOR was released from its restricted plasma membrane localization and stimulated a transient increase in cytosolic and nuclear ERK activity in the absence of receptor internalization. Thus, these data suggest that the ligand-induced redistribution of MOR within the plasma membrane, and not its internalization, controls its spatiotemporal signaling.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Holly R Yeatman
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cameron J Nowell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Georgina L Thompson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Arisbel Batista Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anesthesia and Perioperative Medicine, Monash University, Melbourne, Victoria 3004, Australia. Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Nevin A Lambert
- Department of Toxicology and Pharmacology, Georgia Regents University, Augusta, GA 30912, USA
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
16
|
Hill R, Lyndon A, Withey S, Roberts J, Kershaw Y, MacLachlan J, Lingford-Hughes A, Kelly E, Bailey C, Hickman M, Henderson G. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine. Neuropsychopharmacology 2016; 41:762-73. [PMID: 26171718 PMCID: PMC4610039 DOI: 10.1038/npp.2015.201] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 11/09/2022]
Abstract
Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths.
Collapse
Affiliation(s)
- Rob Hill
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Abi Lyndon
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Sarah Withey
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Joanne Roberts
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
| | - Yvonne Kershaw
- School of Clinical Sciences, University of Bristol, Bristol, UK
| | - John MacLachlan
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, UK
| | - Anne Lingford-Hughes
- Division of Brain Sciences, Centre for Neuropsychopharmacology, Imperial College, London, UK
| | - Eamonn Kelly
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Chris Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Matthew Hickman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Graeme Henderson
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain. J Neurosci 2015; 35:4614-25. [PMID: 25788678 DOI: 10.1523/jneurosci.1580-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As one of the most effective and frequently used chemotherapeutic agents, paclitaxel produces peripheral neuropathy (paclitaxel-induced peripheral neuropathy or PIPN) that negatively affects chemotherapy and persists after cancer therapy. The mechanisms underlying this dose-limiting side effect remain to be fully elucidated. This study aimed to investigate the role of nociceptor protein kinase C (PKC) isoforms in PIPN. Employing multiple complementary approaches, we have identified a subset of PKC isoforms, namely βII, δ, and ϵ, were activated by paclitaxel in the isolated primary afferent sensory neurons. Persistent activation of PKCβII, PKCδ, and PKCϵ was also observed in the dorsal root ganglion neurons after chronic treatment with paclitaxel in a mouse model of PIPN. Isoform-selective inhibitors of PKCβII, PKCδ, and PKCϵ given intrathecally dose-dependently attenuated paclitaxel-induced mechanical allodynia and heat hyperalgesia. Surprisingly, spinal inhibition of PKCβII and PKCδ, but not PKCϵ, blocked the spontaneous pain induced by paclitaxel. These data suggest that a subset of nociceptor PKC isoforms differentially contribute to spontaneous and evoked pain in PIPN, although it is not clear whether PKCϵ in other regions regulates spontaneous pain in PIPN. The findings can potentially offer new selective targets for pharmacological intervention of PIPN.
Collapse
|
19
|
Illing S, Mann A, Schulz S. Heterologous regulation of agonist-independent μ-opioid receptor phosphorylation by protein kinase C. Br J Pharmacol 2014; 171:1330-40. [PMID: 24308893 DOI: 10.1111/bph.12546] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/12/2013] [Accepted: 12/02/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Homologous agonist-induced phosphorylation of the μ-opioid receptor (MOR) is initiated at the carboxyl-terminal S375, followed by phosphorylation of T370, T376 and T379. In HEK293 cells, this sequential and hierarchical multi-site phosphorylation is specifically mediated by G-protein coupled receptor kinases 2 and 3. In the present study, we provide evidence for a selective and dose-dependent phosphorylation of T370 after activation of PKC by phorbol esters. EXPERIMENTAL APPROACH We used a combination of phospho site-specific antibodies, kinase inhibitors and siRNA knockdown screening to identify kinases that mediate agonist-independent phosphorylation of the MOR in HEK293 cells. In addition, we show with phospho site-specific antibodies were also used to study constitutive phosphorylation at S363 of MORs in mouse brain in vivo. KEY RESULTS Activation of PKC by phorbol esters or heterologous activation of substance P receptors co-expressed with MORs in the same cell induced a selective and dose-dependent phosphorylation of T370 that specifically requires the PKCα isoform. Inhibition of PKC activity did not compromise homologous agonist-driven T370 phosphorylation. In addition, S363 was constitutively phosphorylated in both HEK293 cells and mouse brain in vivo. Constitutive S363 phosphorylation required ongoing PKC activity. When basal PKC activity was decreased, S363 was also a substrate for homologous agonist-stimulated phosphorylation. CONCLUSIONS AND IMPLICATIONS Our results have disclosed novel mechanisms of heterologous regulation of MOR phosphorylation by PKC. These findings represent a useful starting point for definitive experiments elucidating the exact contribution of PKC-driven MOR phosphorylation to diminished MOR responsiveness in morphine tolerance and pathological pain.
Collapse
Affiliation(s)
- Susann Illing
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
20
|
Lamberts JT, Traynor JR. Opioid receptor interacting proteins and the control of opioid signaling. Curr Pharm Des 2014; 19:7333-47. [PMID: 23448476 DOI: 10.2174/138161281942140105160625] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/18/2013] [Indexed: 12/31/2022]
Abstract
Opioid receptors are seven-transmembrane domain receptors that couple to intracellular signaling molecules by activating heterotrimeric G proteins. However, the receptor and G protein do not function in isolation but their activities are modulated by several accessory and scaffolding proteins. Examples include arrestins, kinases, and regulators of G protein signaling proteins. Accessory proteins contribute to the observed potency and efficacy of agonists, but also to the direction of signaling and the phenomenon of biased agonism. This review will present current knowledge of such proteins and how they may provide targets for future drug design.
Collapse
Affiliation(s)
| | - John R Traynor
- Department of Pharmacology, University of Michigan Medical School, 1301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5632, USA.
| |
Collapse
|
21
|
Henderson G. The μ-opioid receptor: an electrophysiologist's perspective from the sharp end. Br J Pharmacol 2014; 172:260-7. [PMID: 24640948 DOI: 10.1111/bph.12633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Morphine, the prototypical opioid analgesic drug, produces its behavioural effects primarily through activation of μ-opioid receptors expressed in neurones of the central and peripheral nervous systems. This perspective provides a historical view of how, over the past 40 years, the use of electrophysiological recording techniques has helped to reveal the molecular mechanisms by which acute and chronic activation of μ-opioid receptors by morphine and other opioid drugs modify neuronal function. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Graeme Henderson
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Morphine mediates a proinflammatory phenotype via μ-opioid receptor–PKCɛ–Akt–ERK1/2 signaling pathway in activated microglial cells. Biochem Pharmacol 2013; 86:487-96. [DOI: 10.1016/j.bcp.2013.05.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022]
|
23
|
Llorente J, Withey S, Rivero G, Cunningham M, Cooke A, Saxena K, McPherson J, Oldfield S, Dewey WL, Bailey CP, Kelly E, Henderson G. Ethanol reversal of cellular tolerance to morphine in rat locus coeruleus neurons. Mol Pharmacol 2013; 84:252-60. [PMID: 23716621 DOI: 10.1124/mol.113.085936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala(2),N-MePhe(4),Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5'-O-(3-[(35)S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance.
Collapse
Affiliation(s)
- Javier Llorente
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hull LC, Gabra BH, Bailey CP, Henderson G, Dewey WL. Reversal of morphine analgesic tolerance by ethanol in the mouse. J Pharmacol Exp Ther 2013; 345:512-9. [PMID: 23528610 DOI: 10.1124/jpet.112.202184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The chronic use of opioids in humans, accompanied by the development of tolerance, is a dangerous phenomenon in its own right. However, chronic opioid use is often made more dangerous by the coconsumption of other substances. It has been observed that the blood level of opioids in postmortem analyses of addicts, who consumed ethanol along with the opioid, was much less than that observed in individuals who died from opioids alone. This relationship between ethanol and opioids led us to investigate the hypothesis that ethanol alters tolerance to opioids. In the present study, we report that ethanol significantly and dose-dependently reduced the antinociceptive tolerance produced by morphine and the cross-tolerance between [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and morphine in the mouse tail-flick test. The reversal of morphine tolerance was partially blocked by both the gamma receptor blocker bicuculline and by the γ-aminobutyric acid (GABA)(B) receptor blocker phaclofen and the administration of both inhibitors completely reversed the effects of ethanol on morphine tolerance. Diazepam, like ethanol, decreased morphine tolerance. However, this inhibition was reversed by the GABA(A) antagonist bicuculline but not by the GABA(B) antagonist phaclofen. These findings have important implications for individuals who abuse opioids and ethanol as well as suggest a mechanism to reduce the amount of opioid needed in chronic pain treatment.
Collapse
Affiliation(s)
- L C Hull
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | | | | | | | | |
Collapse
|
25
|
Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, Koch T, Evans CJ, Christie MJ. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 2013; 65:223-54. [PMID: 23321159 DOI: 10.1124/pr.112.005942] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Morphine and related µ-opioid receptor (MOR) agonists remain among the most effective drugs known for acute relief of severe pain. A major problem in treating painful conditions is that tolerance limits the long-term utility of opioid agonists. Considerable effort has been expended on developing an understanding of the molecular and cellular processes that underlie acute MOR signaling, short-term receptor regulation, and the progression of events that lead to tolerance for different MOR agonists. Although great progress has been made in the past decade, many points of contention and controversy cloud the realization of this progress. This review attempts to clarify some confusion by clearly defining terms, such as desensitization and tolerance, and addressing optimal pharmacological analyses for discerning relative importance of these cellular mechanisms. Cellular and molecular mechanisms regulating MOR function by phosphorylation relative to receptor desensitization and endocytosis are comprehensively reviewed, with an emphasis on agonist-biased regulation and areas where knowledge is lacking or controversial. The implications of these mechanisms for understanding the substantial contribution of MOR signaling to opioid tolerance are then considered in detail. While some functional MOR regulatory mechanisms contributing to tolerance are clearly understood, there are large gaps in understanding the molecular processes responsible for loss of MOR function after chronic exposure to opioids. Further elucidation of the cellular mechanisms that are regulated by opioids will be necessary for the successful development of MOR-based approaches to new pain therapeutics that limit the development of tolerance.
Collapse
Affiliation(s)
- John T Williams
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shin EJ, Duong CX, Nguyen XKT, Li Z, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav Brain Res 2012; 232:98-113. [PMID: 22512859 DOI: 10.1016/j.bbr.2012.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
Abstract
This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Chu Xuan Duong
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Xuan-Khanh Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Zhengyi Li
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Guoying Bing
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jae-Hyung Bach
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Dae Hun Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Syed F Ali
- Division of Neurotoxicology, National Center of Toxicological Research, FDA, Jefferson, Arkansas 72079, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Sciences and Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
27
|
Xu T, Chen M, Zhou Q, Xue Y, Wang L, Bil De Arce VJ, Zhang X, Jiang W. Antisense oligonucleotide knockdown of mGlu₅ receptor attenuates the antinociceptive tolerance and up-regulated expression of spinal protein kinase C associated with chronic morphine treatment. Eur J Pharmacol 2012; 683:78-85. [PMID: 22429573 DOI: 10.1016/j.ejphar.2012.02.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 02/15/2012] [Accepted: 02/26/2012] [Indexed: 01/28/2023]
Abstract
Spinal metabotropic glutamate receptor 5 (mGlu₅ receptor) is known to influence the development of intrathecal morphine antinociceptive tolerance. However, the signaling mechanisms remain unknown. We carried out intrathecal administration of an antisense oligodeoxynucleotide (ODN), which results in reduced expression of spinal mGlu₅ receptor, to determine its effects on morphine tolerance and spinal protein kinase C (PKC) expression. Rats were treated intrathecally with saline, morphine, mGlu5 receptor antisense ODN or mGlu5 receptor mismatched ODN. Behavioral tests were used to test the thermal and mechanical pain thresholds. Eight days later, rats were sacrificed and spinal cords were harvested to assess the expression of spinal PKC (α, γ and ε) by Western blotting and real-time polymerase chain reaction (PCR). Compared to control, intrathecal mGlu₅ receptor antisense ODN resulted in a ~53.9% reduction of spinal mGlu₅ receptor after 8days treatment. The mGlu5 receptor antisense ODN prevented the development of morphine tolerance. Expression of spinal PKC (α, γ and ε) was up-regulated at the mRNA and protein levels during the development of tolerance. Meanwhile, antisense ODN but not mismatched ODN reduced the spinal dorsal horn levels of PKC (α, γ and ε) which had been up-regulated after morphine exposure. We conclude that mGlu₅ receptor participates in the development of morphine tolerance. Expression of spinal PKC (α, γ and ε) at the mRNA and protein levels increased during morphine tolerance. Antisense ODN of mGlu₅ receptor prevented the tolerance and inhibited the altered expression of spinal PKC (α, γ and ε) during the development of tolerance.
Collapse
Affiliation(s)
- Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai 200233, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bian JM, Wu N, Su RB, Li J. Opioid receptor trafficking and signaling: what happens after opioid receptor activation? Cell Mol Neurobiol 2012; 32:167-84. [PMID: 21947865 DOI: 10.1007/s10571-011-9755-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/04/2011] [Indexed: 01/14/2023]
Abstract
Prolonged opioid treatment leads to a comprehensive cellular adaptation mediated by opioid receptors, a basis to understand the development of opioid tolerance and dependence. However, the molecular mechanisms underlying opioid-induced cellular adaptation remain obscure. Recent advances in opioid receptor trafficking and signaling in cells have extensively increased our insight into the network of intracellular signal integration. This review focuses on those important intracellular biochemical processes that play critical roles in the development of opioid tolerance and dependence after opioid receptor activation, and tries to explain what happens after opioid receptor activation, and how the cellular adaptation develops from cell membrane to nucleus. Decades of research have delineated a network on opioid receptor trafficking and signaling, but the challenge remains to explain opioid tolerance and dependence from a single cellular signal network.
Collapse
Affiliation(s)
- Jia-Ming Bian
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | | | | | | |
Collapse
|
29
|
Abstract
The involvement of reactive oxygen species (ROS) in morphine-induced analgesia and tolerance has been suggested, yet how and where ROS take part in these processes remains largely unknown. Here, we report a novel role for the superoxide-generating enzyme NOX1/NADPH oxidase in the regulation of analgesia and acute analgesic tolerance. In mice lacking Nox1 (Nox1(-/Y)), the magnitude of the analgesia induced by morphine was significantly augmented. More importantly, analgesic tolerance induced by repeated administration of morphine was significantly suppressed compared with that in the littermates, wild-type Nox1(+/Y). In a membrane fraction obtained from the dorsal spinal cord, no difference was observed in morphine-induced [(35)S]GTPγS-binding between the genotypes, whereas morphine-stimulated GTPase activity was significantly attenuated in Nox1(-/Y). At 2 h after morphine administration, a significant decline in [(35)S]GTPγS-binding was observed in Nox1(+/Y) but not in Nox1(-/Y). No difference in the maximal binding and affinity of [(3)H]DAMGO was observed between the genotypes, but the translocation of protein kinase C isoforms to the membrane fraction following morphine administration was almost completely abolished in Nox1(-/Y). Finally, the phosphorylation of RGS9-2 and formation of a complex by Gαi2/RGS9-2 with 14-3-3 found in morphine-treated Nox1(+/Y) were significantly suppressed in Nox1(-/Y). Together, these results suggest that NOX1/NADPH oxidase attenuates the pharmacological effects of opioids by regulating GTPase activity and the phosphorylation of RGS9-2 by protein kinase C. NOX1/NADPH oxidase may thus be a novel target for the development of adjuvant therapy to retain the beneficial effects of morphine.
Collapse
|
30
|
Abstract
BACKGROUND Protein kinase C (PKC) is a family of serine/threonine kinases that contains more than 10 isozymes. Evidence suggests that PKC may play important roles in pain modulation, but the isozyme-specific effects of PKC on different aspects of pain modulation are not fully understood. We hypothesize that different PKC isozymes play different roles in different aspects of pain modulation. METHODS The nociceptive behaviors of mice with deletion of PKCα, β, γ, or δ in multiple pain models were compared with their respective wild-type littermates. Also, morphine analgesia and the development of morphine tolerance in mice with deletion of PKCγ were compared with their respective wild-type littermates. RESULTS Thermal hyperalgesia induced by complete Freund's adjuvant injection was significantly attenuated by the deletion of PKCβ, γ, or δ, but not PKCα. Deletion of PKCγ significantly attenuated neuropathic mechanical allodynia induced by spared nerve injury, whereas deletion of PKCα enhanced this allodynia. Baseline thermal and mechanical sensitivity, nociceptive behaviors induced by formalin, mechanical allodynia induced by complete Freund's adjuvant injection, were not altered by deletion of PKCα, β, γ, or δ. Finally, morphine analgesia and the development of morphine tolerance were not altered in PKCγ-deficient mice. CONCLUSIONS PKC has isozyme-specific effects in pain modulation.
Collapse
|
31
|
Lin HY, Law PY, Loh HH. Activation of protein kinase C (PKC)α or PKCε as an approach to increase morphine tolerance in respiratory depression and lethal overdose. J Pharmacol Exp Ther 2012; 341:115-25. [PMID: 22228806 DOI: 10.1124/jpet.111.188235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Long-term use of opioids is hindered by respiratory depression and the possibility for fatal overdose in drug abusers. This is attributed to higher levels of tolerance that develops against antinociception than to respiratory depression. Identifying important mechanisms that would increase morphine respiratory depression and overdose tolerance could lead to the safer use of opioids. Because protein kinase C (PKC) activity mediates the development and maintenance of morphine antinociceptive tolerance, we hypothesized that activating PKCα or PKCε at the pre-Bötzinger complex (preBötC) can increase morphine tolerance in respiration and overdose. Laser microdissection and quantitative reverse transcriptase-polymerase chain reaction were used to compare the relative mRNA abundances of PKCα, γ, and ε between ventrolateral periaqueductal gray (vlPAG) and preBötC. To test whether PKCα or ε could enhance morphine tolerance in respiratory depression and overdose, lentivirus carrying the wild type, constitutively activated mutants, and small interference RNA against PKCα or ε was stereotaxically injected into the preBötC. Expression of constitutively active PKC (CAPKC) α or ε, but not wild-type PKC (WTPKC) α or ε, at the preBötC allowed rats to develop tolerance to morphine respiratory depression. In terms of lethality, expression of WTPKCε, CAPKCα, or CAPKCε at preBötC increased morphine tolerance to lethal overdose. CAPKCε-expressing rats developed the highest level of respiratory depression tolerance. Furthermore, when CAPKCε lentivirus was injected into the vlPAG, rats were able to develop significant antinociceptive tolerance at low doses of morphine that normally do not cause tolerance. The approach of increasing morphine respiratory depression and lethality tolerance by increasing PKCα or ε activity at preBötC could be used to make opioids safer for long-term use.
Collapse
Affiliation(s)
- Hong-Yiou Lin
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455-0217, USA.
| | | | | |
Collapse
|
32
|
Kang M, Maguma HT, Smith TH, Ross GR, Dewey WL, Akbarali HI. The role of β-arrestin2 in the mechanism of morphine tolerance in the mouse and guinea pig gastrointestinal tract. J Pharmacol Exp Ther 2011; 340:567-76. [PMID: 22129596 DOI: 10.1124/jpet.111.186320] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
β-Arrestin2 has been reported to play an essential role in analgesic tolerance. Analgesic tolerance without concomitant tolerance to constipation is a limiting side effect of chronic morphine treatment. Because tolerance to morphine develops in the mouse ileum but not the colon, we therefore examined whether the role of β-arrestin2 in the mechanism of morphine tolerance differs in the ileum and colon. In both guinea pig and mouse, chronic in vitro exposure (2 h, 10 μM) to morphine resulted in tolerance development in the isolated ileum but not the colon. The IC(50) values for morphine-induced inhibition of electrical field stimulation contraction of guinea pig longitudinal muscle myenteric plexus shifted rightward in the ileum from 5.7 ± 0.08 (n = 9) to 5.45 ± 0.09 (n = 6) (p < 0.001) after morphine exposure. A significant shift was not observed in the colon. Similar differential tolerance was seen between the mouse ileum and the colon. However, tolerance developed in the colon from β-arrestin2 knockout mice. β-Arrestin2 and extracellular signal-regulated kinase 1/2 expression levels were determined further by Western blot analyses in guinea pig longitudinal muscle myenteric plexus. A time-dependent decrease in the expression of β-arrestin2 and extracellular signal-regulated kinase 1/2 occurred in the ileum but not the colon after 2 h of morphine (10 μM) exposure. Naloxone prevented the decrease in β-arrestin2. In the isolated ileum from guinea pigs chronically treated in vivo with morphine for 7 days, neither additional tolerance to in vitro exposure of morphine nor a decrease in β-arrestin2 occurred. We conclude that a decrease in β-arrestin2 is associated with tolerance development to morphine in the gastrointestinal tract.
Collapse
Affiliation(s)
- Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay St., Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
33
|
Minami K, Sudo Y, Yokoyama T, Ogata J, Takeuchi M, Uezono Y. Sevoflurane inhibits the µ-opioid receptor function expressed in Xenopus oocytes. Pharmacology 2011; 88:127-32. [PMID: 21912198 DOI: 10.1159/000330096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/01/2011] [Indexed: 11/19/2022]
Abstract
Sevoflurane is widely used for anesthesia, and is commonly used together with opioids in clinical practice. However, the effects of sevoflurane on μ-opioid receptor (μOR) functions is still unclear. In this study, the effects of sevoflurane on μOR functions were analyzed by using Xenopus oocytes expressing a μOR fused to chimeric Gα protein G(qi5) (μOR-G(qi5)). Sevoflurane by itself did not elicit any currents in oocytes expressing μOR-G(qi5), whereas sevoflurane inhibited the [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO)-induced Cl(-) currents at clinically used concentrations. Sevoflurane did not affect the Cl(-) currents induced by AlF(4)(-), which directly led to activation of G proteins. The inhibitory effects of sevoflurane on the DAMGO-induced currents were not observed in oocytes pretreated with the protein kinase C (PKC) inhibitor GF109203X. These findings suggest that sevoflurane would inhibit μOR function. Further, the mechanism of inhibition by sevoflurane would be mediated by PKC.
Collapse
Affiliation(s)
- Kouichiro Minami
- Department of Anesthesiology and Critical Care Medicine, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Shin EJ, Duong CX, Nguyen XKT, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC. PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochem Int 2011; 59:39-50. [PMID: 21672585 DOI: 10.1016/j.neuint.2011.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 03/22/2011] [Indexed: 11/26/2022]
Abstract
The present study was designed to evaluate the specific role of protein kinase C (PKC) δ in methamphetamine (MA)-induced dopaminergic toxicity. A multiple-dose administration regimen of MA significantly increases PKCδ expression, while rottlerin, a PKCδ inhibitor, significantly attenuates MA-induced hyperthermia and behavioral deficits. These behavioral effects were not significantly observed in PKCδ antisense oligonucleotide (ASO)-treated- or PKCδ knockout (-/-)-mice. There were no MA-induced significant decreases of dopamine (DA) content or tyrosine hydroxylase (TH) expression in the striatum in rottlerin-treated-, ASO-treated- or PKCδ (-/-)-mice. The administration of MA also results in a significant decrease of TH phosphorylation at ser 40, but not ser 31, while the inhibition of PKCδ consistently and significantly attenuates MA-induced reduction in the phosphorylation of TH at ser 40. Therefore, these results suggest that the MA-induced enhancement of PKCδ expression is a critical factor in the impairment of TH phosphorylation at ser 40 and that pharmacological or genetic inhibition of PKCδ may be protective against MA-induced dopaminergic neurotoxicity in vivo.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Chu Xuan Duong
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Xuan-Khanh Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Guoying Bing
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jae-Hyung Bach
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Dae Hun Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Syed F Ali
- Division of Neurotoxicology, National Center of Toxicological Research, FDA, Jefferson, Arkansas 72079, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jean L Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
35
|
Stallaert W, Christopoulos A, Bouvier M. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opin Drug Discov 2011; 6:811-25. [DOI: 10.1517/17460441.2011.586691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Zheng H, Chu J, Zhang Y, Loh HH, Law PY. Modulating micro-opioid receptor phosphorylation switches agonist-dependent signaling as reflected in PKCepsilon activation and dendritic spine stability. J Biol Chem 2011; 286:12724-33. [PMID: 21292762 DOI: 10.1074/jbc.m110.177089] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new role of G protein-coupled receptor (GPCR) phosphorylation was demonstrated in the current studies by using the μ-opioid receptor (OPRM1) as a model. Morphine induces a low level of receptor phosphorylation and uses the PKCε pathway to induce ERK phosphorylation and receptor desensitization, whereas etorphine, fentanyl, and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) induce extensive receptor phosphorylation and use the β-arrestin2 pathway. Blocking OPRM1 phosphorylation (by mutating Ser363, Thr370 and Ser375 to Ala) enabled etorphine, fentanyl, and DAMGO to use the PKCε pathway. This was not due to the decreased recruitment of β-arrestin2 to the receptor signaling complex, because these agonists were unable to use the PKCε pathway when β-arrestin2 was absent. In addition, overexpressing G protein-coupled receptor kinase 2 (GRK2) decreased the ability of morphine to activate PKCε, whereas overexpressing dominant-negative GRK2 enabled etorphine, fentanyl, and DAMGO to activate PKCε. Furthermore, by overexpressing wild-type OPRM1 and a phosphorylation-deficient mutant in primary cultures of hippocampal neurons, we demonstrated that receptor phosphorylation contributes to the differential effects of agonists on dendritic spine stability. Phosphorylation blockage made etorphine, fentanyl, and DAMGO function as morphine in the primary cultures. Therefore, agonist-dependent phosphorylation of GPCR regulates the activation of the PKC pathway and the subsequent responses.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455-0217, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Since the discovery over 15 years ago of a protein transcription factor that possessed the ability to cross the plasma membrane, cell-penetrating peptides (CPPs) have been evaluated for the ability to transport diverse cargoes into cells, tissues, and organs. Certain CPPs have been used for the intracellular delivery of information-rich molecules to modulate protein-protein interactions and thereby inhibit key cellular mechanisms of disease. The ability to introduce drugs into cells allows the conventional biodistribution of drugs to be altered in order to favorably impact toxicity, patient compliance, and other treatment factors. In this monograph, we present the current status and future prospects for the application of CPPs to the development of human therapeutics. We discuss some of the advantages and disadvantages of using CPPs in the in vivo setting, and review the current status of a number of preclinical and human clinical studies of CPP-mediated delivery of therapeutics. These include CPP-conjugated moieties directed against a growing variety of targets and disease areas, including cancer, cardiology, pain, and stroke. Our discussion focuses on those therapeutics that have been tested in humans, including a CPP conjugate for the treatment of acute myocardial infarction. The promising results obtained in a number of these studies indicate that CPPs may have an important role in the development of novel therapeutics.
Collapse
|
38
|
Ingram SL, Traynor JR. Role of protein kinase C in functional selectivity for desensitization at the mu-opioid receptor: from pharmacological curiosity to therapeutic potential. Br J Pharmacol 2010; 158:154-6. [PMID: 19719778 DOI: 10.1111/j.1476-5381.2009.00198.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Opioid agonists are the best therapy for moderate to severe pain, but clinical use is limited due to the development of tolerance and dependence. For the first time, Bailey and co-workers have demonstrated functional selectivity for agonist-induced desensitization of mu-opioid receptors (MOR) in mature rat locus coeruleus neurons. Native MORs are differentially desensitized through separate, agonist-dependent signalling pathways; desensitization of the morphine-occupied receptor occurs via a protein kinase C alpha-dependent pathway while [D-Ala(2), N-MePhe(4), Gly-ol]enkephalin-mediated desensitization is via a G protein receptor kinase subtype 2-dependent mechanism. These results suggest that MORs adopt separate conformational states that either result in different efficiencies of G protein activation or access to phosphorylation by desensitization machinery (e.g. protein kinase C alpha or G protein receptor kinase subtype 2). Further study of the interaction of protein kinase C with MORs in native neurons will enhance our understanding of agonist-induced functional selectivity for desensitization at MORs and provide important insights into how to selectively modulate agonist efficacy to enhance therapeutic capabilities of opioid drugs.
Collapse
Affiliation(s)
- Susan L Ingram
- Department of Psychology, Washington State University Vancouver, Vancouver, WA, USA
| | | |
Collapse
|
39
|
Chronic morphine treatment impaired hippocampal long-term potentiation and spatial memory via accumulation of extracellular adenosine acting on adenosine A1 receptors. J Neurosci 2010; 30:5058-70. [PMID: 20371826 DOI: 10.1523/jneurosci.0148-10.2010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic exposure to opiates impairs hippocampal long-term potentiation (LTP) and spatial memory, but the underlying mechanisms remain to be elucidated. Given the well known effects of adenosine, an important neuromodulator, on hippocampal neuronal excitability and synaptic plasticity, we investigated the potential effect of changes in adenosine concentrations on chronic morphine treatment-induced impairment of hippocampal CA1 LTP and spatial memory. We found that chronic treatment in mice with either increasing doses (20-100 mg/kg) of morphine for 7 d or equal daily dose (20 mg/kg) of morphine for 12 d led to a significant increase of hippocampal extracellular adenosine concentrations. Importantly, we found that accumulated adenosine contributed to the inhibition of the hippocampal CA1 LTP and impairment of spatial memory retrieval measured in the Morris water maze. Adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine significantly reversed chronic morphine-induced impairment of hippocampal CA1 LTP and spatial memory. Likewise, adenosine deaminase, which converts adenosine into the inactive metabolite inosine, restored impaired hippocampal CA1 LTP. We further found that adenosine accumulation was attributable to the alteration of adenosine uptake but not adenosine metabolisms. Bidirectional nucleoside transporters (ENT2) appeared to play a key role in the reduction of adenosine uptake. Changes in PKC-alpha/beta activity were correlated with the attenuation of the ENT2 function in the short-term (2 h) but not in the long-term (7 d) period after the termination of morphine treatment. This study reveals a potential mechanism by which chronic exposure to morphine leads to impairment of both hippocampal LTP and spatial memory.
Collapse
|
40
|
Gregus AM, Inra CN, Giordano TP, Costa ACS, Rajadhyaksha AM, Inturrisi CE. Spinal mediators that may contribute selectively to antinociceptive tolerance but not other effects of morphine as revealed by deletion of GluR5. Neuroscience 2010; 169:475-87. [PMID: 20359526 DOI: 10.1016/j.neuroscience.2010.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 12/22/2022]
Abstract
Several groups maintain that morphine tolerance and dependence correlate with increased activity of protein kinases ERK1/2 and P38 MAPK and PKC as well as elevated levels of the neuropeptides dynorphin (DYN), substance P (sP), and calcitonin gene-related peptide (CGRP) in spinal cord dorsal horn (SCDH). They demonstrate that tolerance and dependence can be prevented, and sometimes reversed, by constitutive genetic deletion or pharmacological inhibition of these factors. Recently, we showed that mice with a constitutive deletion of the GluR5 subunit of kainate receptors (GluR5 KO) are not different from wild type (WT) littermates with respect to baseline nociceptive thresholds as well as acute morphine antinociception, morphine physical dependence and conditioned place preference. However, unlike WT, GluR5 KO mice do not develop antinociceptive tolerance following systemic morphine administration. In this report, we examined levels of these mediators in SCDH of WT and GluR5 KO mice following subcutaneous implantation of placebo or morphine pellets. Surprisingly, spinal DYN and CGRP, along with phosphorylated ERK2 (pERK2), P38 (pP38) and PKCgamma (pPKCgamma) are elevated by deletion of GluR5. Additionally, chronic systemic morphine administration increased spinal pERK2, pP38 and pPKCgamma levels in both tolerant WT and non-tolerant GluR5 KO mice. In contrast, while morphine increased spinal DYN and CGRP in WT mice, DYN remained unchanged and CGRP was reduced in GluR5 KO mice. These observations suggest that spinal ERK2, P38 and PKCgamma are likely involved in multiple adaptive responses following systemic morphine administration, whereas DYN and CGRP may contribute selectively to the development of antinociceptive tolerance.
Collapse
Affiliation(s)
- A M Gregus
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chu J, Zheng H, Zhang Y, Loh HH, Law PY. Agonist-dependent mu-opioid receptor signaling can lead to heterologous desensitization. Cell Signal 2010; 22:684-96. [PMID: 20043990 DOI: 10.1016/j.cellsig.2009.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/07/2009] [Accepted: 12/19/2009] [Indexed: 12/18/2022]
Abstract
Desensitization of the micro-opioid receptor (MOR) has been implicated as an important regulatory process in the development of tolerance to opiates. Monitoring the release of intracellular Ca(2+) ([Ca(2+)](i)), we reported that [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO)-induced receptor desensitization requires receptor phosphorylation and recruitment of beta-arrestins (betaArrs), while morphine-induced receptor desensitization does not. In current studies, we established that morphine-induced MOR desensitization is protein kinase C (PKC)-dependent. By using RNA interference techniques and subtype specific inhibitors, PKCepsilon was shown to be the PKC subtype activated by morphine and the subtype responsible for morphine-induced desensitization. In contrast, DAMGO did not increase PKCepsilon activity and DAMGO-induced MOR desensitization was not affected by modulating PKCepsilon activity. Among the various proteins within the receptor signaling complex, Galphai2 was phosphorylated by morphine-activated PKCepsilon. Moreover, mutating three putative PKC phosphorylation sites, Ser(44), Ser(144) and Ser(302) on Galphai2 to Ala attenuated morphine-induced, but not DAMGO-induced desensitization. In addition, pretreatment with morphine desensitized cannabinoid receptor CB1 agonist WIN 55212-2-induced [Ca(2+)](i) release, and this desensitization could be reversed by pretreating the cells with PKCepsilon inhibitor or overexpressing Galphai2 with the putative PKC phosphorylation sites mutated. Thus, depending on the agonist, activation of MOR could lead to heterologous desensitization and probable crosstalk between MOR and other Galphai-coupled receptors, such as the CB1.
Collapse
Affiliation(s)
- Ji Chu
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, Minnesota 55455-0217, USA.
| | | | | | | | | |
Collapse
|
42
|
Hull LC, Llorente J, Gabra BH, Smith FL, Kelly E, Bailey C, Henderson G, Dewey WL. The effect of protein kinase C and G protein-coupled receptor kinase inhibition on tolerance induced by mu-opioid agonists of different efficacy. J Pharmacol Exp Ther 2009; 332:1127-35. [PMID: 20008489 DOI: 10.1124/jpet.109.161455] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differences in the mechanisms underlying tolerance and mu-opioid receptor desensitization resulting from exposure to opioid agonists of different efficacy have been suggested previously. The objective of this study was to determine the effects of protein kinase C (PKC) and G protein-coupled receptor kinase (GRK) inhibition on antinociceptive tolerance in vivo to opioid agonists of different efficacy. A rapid (8-h) tolerance-induction model was used where each opioid was repeatedly administered to naive mice. Animals were then challenged with the opioid after injection of a kinase inhibitor to determine its effects on the level of tolerance. Tolerance to meperidine, morphine, or fentanyl was fully reversed by the PKC inhibitor 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)carbazole (Gö6976). However, in vivo tolerance to [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) was not reversed by PKC inhibition. The novel small-molecule GRK inhibitors beta-adrenergic receptor kinase 1 inhibitor and 2-(8-[(dimethylamino) methyl]-6,7,8,9-tetrahydropyridol[1,2-a]indol-3-yl)-3-(1-methylindol-3-yl)maleimide (Ro 32-0432) did not reverse the tolerance to meperidine, fentanyl, or morphine but did reverse the tolerance to DAMGO. To correlate GRK-dependent DAMGO-induced tolerance with mu-opioid receptor desensitization, we used in vitro whole-cell patch-clamp recording from mouse locus coeruleus neurons and observed that the GRK inhibitors reduced DAMGO-induced desensitization of mu-opioid receptors, whereas the PKC inhibitor had no effect. These results suggest that tolerance induced by low- and moderate-efficacy mu-opioid receptor agonists is dependent on PKC, whereas tolerance induced by the high-efficacy agonist DAMGO is dependent on GRK.
Collapse
Affiliation(s)
- L C Hull
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bailey CP, Llorente J, Gabra BH, Smith FL, Dewey WL, Kelly E, Henderson G. Role of protein kinase C and mu-opioid receptor (MOPr) desensitization in tolerance to morphine in rat locus coeruleus neurons. Eur J Neurosci 2009; 29:307-18. [PMID: 19200236 PMCID: PMC2695152 DOI: 10.1111/j.1460-9568.2008.06573.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In morphine tolerance a key question that remains to be answered is whether μ-opioid receptor (MOPr) desensitization contributes to morphine tolerance, and if so by what cellular mechanisms. Here we demonstrate that MOPr desensitization can be observed in single rat brainstem locus coeruleus (LC) neurons following either prolonged (> 4 h) exposure to morphine in vitro or following treatment of animals with morphine in vivo for 3 days. Analysis of receptor function by an operational model indicated that with either treatment morphine could induce a profound degree (70–80%) of loss of receptor function. Ongoing PKC activity in the MOPr-expressing neurons themselves, primarily by PKCα, was required to maintain morphine-induced MOPr desensitization, because exposure to PKC inhibitors for only the last 30–50 min of exposure to morphine reduced the MOPr desensitization that was induced both in vitro and in vivo. The presence of morphine was also required for maintenance of desensitization, as washout of morphine for > 2 h reversed MOPr desensitization. MOPr desensitization was homologous, as there was no change in α2-adrenoceptor or ORL1 receptor function. These results demonstrate that prolonged morphine treatment induces extensive homologous desensitization of MOPrs in mature neurons, that this desensitization has a significant PKC-dependent component and that this desensitization underlies the maintenance of morphine tolerance.
Collapse
Affiliation(s)
- C P Bailey
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | | | | | | | |
Collapse
|
44
|
Bailey CP, Oldfield S, Llorente J, Caunt CJ, Teschemacher AG, Roberts L, McArdle CA, Smith FL, Dewey WL, Kelly E, Henderson G. Involvement of PKC alpha and G-protein-coupled receptor kinase 2 in agonist-selective desensitization of mu-opioid receptors in mature brain neurons. Br J Pharmacol 2009; 158:157-64. [PMID: 19309357 DOI: 10.1111/j.1476-5381.2009.00140.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The ability of an agonist to induce desensitization of the mu-opioid receptor (MOR) depends upon the agonist used. Furthermore, previous data suggest that the intracellular mechanisms underlying desensitization may be agonist-specific. We investigated the mechanisms underlying MOR desensitization, in adult mammalian neurons, caused by morphine (a partial agonist in this system) and DAMGO (a high-efficacy agonist). EXPERIMENTAL APPROACH MOR function was measured in locus coeruleus neurons, by using whole-cell patch-clamp electrophysiology, in rat and mouse brain slices (both wild-type and protein kinase C (PKC)alpha knockout mice). Specific isoforms of PKC were inhibited by using inhibitors of the receptors for activated C-kinase (RACK), and in vivo viral-mediated gene-transfer was used to transfect neurons with dominant negative mutants (DNMs) of specific G-protein-coupled receptor kinases (GRKs). KEY RESULTS Morphine-induced desensitization was attenuated by using RACK inhibitors that inhibit PKCalpha, but not by other isoform-specific inhibitors. Further, the PKC component of morphine-induced desensitization was absent in locus coeruleus neurons from PKCalpha knockout mice. The PKC-enhanced morphine-induced desensitization was not affected by over-expression of a GRK2 dominant negative mutant (GRK2 DNM). In contrast, DAMGO-induced MOR desensitization was independent of PKC activity but was reduced by over-expression of the GRK2 DNM but not by that of a GRK6 DNM. CONCLUSIONS AND IMPLICATIONS In mature mammalian neurons, different MOR agonists can induce MOR desensitization by different mechanisms, morphine by a PKCalpha-mediated, heterologous mechanism and DAMGO by a GRK-mediated, homologous mechanism. These data represent functional selectivity at the level of receptor desensitization.
Collapse
Affiliation(s)
- C P Bailey
- Department of Pharmacy & Pharmacology, University of Bath, Bath, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hamabe W, Yamane H, Harada S, Tokuyama S. Involvement of kappa opioid receptors in the inhibition of receptor desensitization and PKC activation induced by repeated morphine treatment. J Pharm Pharmacol 2008; 60:1183-8. [PMID: 18718122 DOI: 10.1211/jpp.60.9.0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analgesic tolerance to morphine can develop from long-term use of this drug for the treatment of pain. Many reports have shown that stimulation of the kappa opioid receptor (KOR) suppresses development of analgesic tolerance to morphine. Here, we studied the KOR-mediated inhibition of morphine tolerance during repeated morphine treatment, with a focus on desensitization of the receptor. The development of analgesic tolerance to morphine during repeated morphine administration (10 mg kg(-1) s.c.) was completely suppressed by U-50488H (2 mg kg(-1) i.p.), a KOR agonist. The decrease in [35S] GTPgammaS binding activity stimulated by the mu opioid receptor (MOR) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) was also significantly inhibited by U-50488H. These results indicate that stimulation of KOR caused by repeated morphine treatment either inhibits MOR desensitization or accelerates recycling of MOR on the cell surface, thereby suppressing morphine tolerance. Furthermore, we found that activity of protein kinase C (PKC) was significantly decreased in mice treated with both U-50488H and morphine. These results suggest that the mechanisms underlying KOR-mediated inhibition of analgesic tolerance to morphine may be partly due to suppression of PKC activation and prevention of receptor desensitization.
Collapse
Affiliation(s)
- Wakako Hamabe
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
47
|
Bogulavsky JJ, Gregus AM, Kim PTH, Costa ACS, Rajadhyaksha AM, Inturrisi CE. Deletion of the glutamate receptor 5 subunit of kainate receptors affects the development of morphine tolerance. J Pharmacol Exp Ther 2008; 328:579-87. [PMID: 18957577 DOI: 10.1124/jpet.108.144121] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous reports utilizing pharmacological antagonists implicate kainate receptor (KAR) activation in the development of morphine tolerance, dependence, conditioned place preference (CPP), and locomotor sensitization, but the role of glutamate receptor (GluR) 5-containing KAR in these effects remains unclear because of limited selectivity of the inhibitors employed. Therefore, we examined responses to systemic morphine treatment in mice expressing a constitutive deletion of GluR5 [GluR5 knockout (KO)]. Unlike wild-type (WT) littermates, GluR5 KO mice do not develop tolerance after repeated morphine administration by subcutaneous injection or via subcutaneous pellet implantation. In contrast, GluR5 KO mice do not differ from WT with respect to thermal or mechanical nociceptive thresholds, acute morphine antinociception, morphine disposition in the central nervous system (CNS), morphine physical dependence as revealed by naloxone-precipitated withdrawal or development of place preference and locomotor hyperresponsiveness after chronic morphine administration. It is surprising that continuous subcutaneous infusion of the GluR2/GluR5-preferring antagonist LY293558 [(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]decahydroisoquinoline-3-carboxylic acid] decreased the number of naloxone-precipitated jumps to a similar extent in WT and GluR5 KO mice. We observed opioid-induced hypersensitivity in both groups during morphine withdrawal as demonstrated by equivalent reductions in thermal and mechanical thresholds; however, this hypersensitivity was not evident during continuous systemic morphine infusion. These data collectively indicate that KARs containing the GluR5 subunit contribute to the development of morphine tolerance without affecting nociceptive thresholds, morphine analgesia, or disposition in CNS of morphine and its metabolite morphine-3-glucuronide. In addition, constitutive deletion of GluR5 does not alter the morphine-induced increase in locomotor activity or the acquisition of morphine reward as measured by a CPP paradigm.
Collapse
Affiliation(s)
- Johanna J Bogulavsky
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
48
|
Chu J, Zheng H, Loh HH, Law PY. Morphine-induced mu-opioid receptor rapid desensitization is independent of receptor phosphorylation and beta-arrestins. Cell Signal 2008; 20:1616-24. [PMID: 18558479 DOI: 10.1016/j.cellsig.2008.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Receptor desensitization involving receptor phosphorylation and subsequent betaArrestin (betaArr) recruitment has been implicated in the tolerance development mediated by mu-opioid receptor (OPRM1). However, the roles of receptor phosphorylation and betaArr on morphine-induced OPRM1 desensitization remain to be demonstrated. Using OPRM1-induced intracellular Ca(2+) ([Ca(2+)](i))release to monitor receptor activation, as predicted, [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO), induced OPRM1 desensitization in a receptor phosphorylation- and betaArr-dependent manner. The DAMGO-induced OPRM1 desensitization was attenuated significantly when phosphorylation deficient OPRM1 mutants or Mouse Embryonic Fibroblast (MEF) cells from betaArr1 and 2 knockout mice were used in the studies. Specifically, DAMGO-induced desensitization was blunted in HEK293 cells expressing the OPRM1S375A mutant and was eliminated in MEF cells isolated from betaArr2 knockout mice expressing the wild type OPRM1. However, although morphine also could induce a rapid desensitization on [Ca(2+)](i) release to a greater extent than that of DAMGO and could induce the phosphorylation of Ser(375) residue, morphine-induced desensitization was not influenced by mutating the phosphorylation sites or in MEF cells lacking betaArr1 and 2. Hence, morphine could induce OPRM1 desensitization via pathway independent of betaArr, thus suggesting the in vivo tolerance development to morphine can occur in the absence of betaArr.
Collapse
Affiliation(s)
- Ji Chu
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, MN 55455-0217, USA.
| | | | | | | |
Collapse
|
49
|
Gabra BH, Bailey CP, Kelly E, Smith FL, Henderson G, Dewey WL. Pre-treatment with a PKC or PKA inhibitor prevents the development of morphine tolerance but not physical dependence in mice. Brain Res 2008; 1217:70-7. [PMID: 18501877 DOI: 10.1016/j.brainres.2008.04.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that intracerebroventricular (i.c.v.) administration of protein kinase C (PKC) or protein kinase A (PKA) inhibitors reversed morphine antinociceptive tolerance in 3-day morphine-pelleted mice. The present study aimed at evaluating whether pre-treating mice with a PKC or PKA inhibitor prior to pellet implantation would prevent the development of morphine tolerance and physical dependence. Antinociception was assessed using the warm-water tail immersion test and physical dependence was evaluated by quantifying/scoring naloxone-precipitated withdrawal signs. While drug-naïve mice pelleted with a 75 mg morphine pellet for 3 days developed a 5.8-fold tolerance to morphine antinociception, mice pre-treated i.c.v. with the PKC inhibitors bisindolylmaleimide I, Go-7874 or Go-6976, or with the myristoylated PKA inhibitor, PKI-(14-22)-amide failed to develop any tolerance to morphine antinociception. Experiments were also conducted to determine whether morphine-pelleted mice were physically dependent when pre-treated with PKC or PKA inhibitors. The same inhibitor doses that prevented morphine tolerance were evaluated in other mice injected s.c. with naloxone and tested for precipitated withdrawal. The pre-treatment with PKC or PKA inhibitors failed to attenuate or block the signs of morphine withdrawal including jumping, wet-dog shakes, rearing, forepaw tremor, increased locomotion, grooming, diarrhea, tachypnea and ptosis. These data suggest that elevations in the activity of PKC and PKA in the brain are critical to the development of morphine tolerance. However, it appears that tolerance can be dissociated from physical dependence, indicating a role for PKC and PKA to affect antinociception but not those signs mediated through the complex physiological processes of withdrawal.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Department of Pharmacology and Toxicology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
50
|
Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 2007; 153 Suppl 1:S379-88. [PMID: 18059321 DOI: 10.1038/sj.bjp.0707604] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The widely accepted model of G protein-coupled receptor (GPCR) regulation describes a system where the agonist-activated receptors couple to G proteins to induce a cellular response, and are subsequently phosphorylated by a family of kinases called the G protein-coupled receptor kinases (GRKs). The GRK-phosphorylated receptor then acts as a substrate for the binding of a family of proteins called arrestins, which uncouple the receptor and G protein so desensitizing the agonist-induced response. Other kinases, principally the second messenger-dependent protein kinases, are also known to play a role in the desensitization of many GPCR responses. It is now clear that there are subtle and complex interactions between GRKs and second messenger-dependent protein kinases in the regulation of GPCR function. Functional selectivity describes the ability of agonists to stabilize different active conformations of the same GPCR. With regard to desensitization, distinct agonist-activated conformations of a GPCR could undergo different molecular mechanisms of desensitization. An example of this is the mu opioid receptor (MOPr), where the agonists morphine and [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) induce desensitization of the MOPr by different mechanisms, largely protein kinase C (PKC)- or GRK-dependent, respectively. This can be best explained by supposing that these two agonists stabilize distinct conformations of the MOPr, which are nevertheless able to couple to the relevant G-proteins and produce similar responses, yet are sufficiently different to trigger different regulatory processes. There is evidence that other GPCRs also undergo agonist-selective desensitization, but the full therapeutic consequences of this phenomenon await further detailed study.
Collapse
Affiliation(s)
- E Kelly
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|