1
|
Jia J, Chen T, Chen C, Si T, Gao C, Fang Y, Sun J, Wang J, Zhang Z. Astrocytes in preoptic area regulate acute nociception-induced hypothermia through adenosine receptors. CNS Neurosci Ther 2024; 30:e14726. [PMID: 38715251 PMCID: PMC11076694 DOI: 10.1111/cns.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.
Collapse
Affiliation(s)
- Junke Jia
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Ting Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Chang Chen
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Tengxiao Si
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
| | - Chenyi Gao
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Yuanyuan Fang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jiahui Sun
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanChina
- Institute of Neuroscience and Brain Diseases, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of MedicineSongjiang Hospital and Songjiang Research InstituteShanghaiChina
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan HospitalWuhan UniversityWuhanChina
| |
Collapse
|
2
|
Lumb BM, Donaldson LF. When Differential Descending Control of Speed Matters: Descending Modulation of A- versus C-Fiber Evoked Spinal Nociception. FRONTIERS IN PAIN RESEARCH 2022; 3:910471. [PMID: 35756907 PMCID: PMC9218479 DOI: 10.3389/fpain.2022.910471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Descending pain modulatory systems (DPMS) that originate within the brain and act to modulate spinal nociceptive transmission are a major determinant of the acute and chronic pain experience. Investigations of these systems in basic scientific research is critical to the development of therapeutic strategies for the relief of pain. Despite our best efforts, something is lost in translation. This article will explore whether this is due in part to a primary focus on sensory modality leading to a failure to differentiate between descending control of A- vs. C-fiber mediated spinal nociception.
Collapse
Affiliation(s)
- Bridget M. Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- *Correspondence: Bridget M. Lumb
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
3
|
Larkin MB, Karas PJ, McGinnis JP, McCutcheon IE, Viswanathan A. Stereotactic Radiosurgery Hypophysectomy for Palliative Treatment of Refractory Cancer Pain: A Historical Review and Update. Front Oncol 2020; 10:572557. [PMID: 33392075 PMCID: PMC7773820 DOI: 10.3389/fonc.2020.572557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Medically refractory pain in those with advanced cancer significantly reduces one's quality of life. Therefore, palliative interventions to mitigate cancer pain and reduce opioid requirements are necessary to reduce patient suffering and opioid-induced side effects. Hypophysectomy, a largely forgotten pain procedure with several technical variations, has been repeatedly studied in small series with encouraging results, though historically has been fraught with complications. As a result, the minimally invasive and more tolerable stereotactic radiosurgery (SRS) hypophysectomy has resurfaced as a possible treatment for cancer-related pain. While the mechanism of pain relief is not entirely understood, the hypothalamohypophyseal axis appears to play an essential role in pain perception and transmission and involves C fiber signal processing and downstream modulation of the brainstem and spinal cord via the hypothalamus. This review highlights the role of hypophysectomy in alleviating advanced cancer pain, both in hormonal and nonhormonal malignancy and the current mechanistic understanding of pain relief for the three primary hypophysectomy modalities used historically: surgical and chemical adenolysis, as well as the more recent, SRS hypophysectomy. Given the lack of high-quality evidence for stereotactic radiosurgery hypophysectomy, there is a need for further rigorous and prospective clinical studies despite its ideal and noninvasive approach.
Collapse
Affiliation(s)
- M. Benjamin Larkin
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Patrick J. Karas
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - John P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ian E. McCutcheon
- Department of Neurosurgery, University of Texas, MD Anderson, Houston, TX, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
- Department of Neurosurgery, University of Texas, MD Anderson, Houston, TX, United States
| |
Collapse
|
4
|
Acupuncture Induces Reduction in Limbic-Cortical Feedback of a Neuralgia Rat Model: A Dynamic Causal Modeling Study. Neural Plast 2020; 2020:5052840. [PMID: 32148473 PMCID: PMC7023796 DOI: 10.1155/2020/5052840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 11/17/2022] Open
Abstract
Background Neuropathic pain after brachial plexus avulsion remained prevalent and intractable currently. However, the neuroimaging study about neural mechanisms or etiology was limited and blurred. Objective This study is aimed at investigating the effect of electroacupuncture on effective connectivity and neural response in corticolimbic circuitries during implicit processing of nociceptive stimulus in rats with brachial plexus pain. Methods An fMRI scan was performed in a total of 16 rats with brachial plexus pain, which was equally distributed into the model group and the electroacupuncture group. The analysis of task-dependent data determined pain-related activation in each group. Based on those results, several regions including AMY, S1, and h were recruited as ROI in dynamic causal modeling (DCM) analysis comparing evidence for different neuronal hypotheses describing the propagation of noxious stimuli in regions of interest and horizontal comparison of effective connections between the model and electroacupuncture groups. Results In both groups, DCM revealed that noxious stimuli were most likely driven by the somatosensory cortex, with bidirectional propagation with the hypothalamus and amygdala and the interactions in them. Also, the 3-month intervention of acupuncture reduced effective connections of h-S1 and AMY-S1. Conclusions We showed an evidence that a full connection model within the brain network of brachial plexus pain and electroacupuncture intervention reduces effective connectivity from h and AMY to S1. Our study for the first time explored the relationship of involved brain regions with dynamic causal modeling. It provided novel evidence for the feature of the organization of the cortical-limbic network and the alteration caused by acupuncture.
Collapse
|
5
|
The Periaqueductal Gray Orchestrates Sensory and Motor Circuits at Multiple Levels of the Neuraxis. J Neurosci 2016; 35:14132-47. [PMID: 26490855 DOI: 10.1523/jneurosci.0261-15.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The periaqueductal gray (PAG) coordinates behaviors essential to survival, including striking changes in movement and posture (e.g., escape behaviors in response to noxious stimuli vs freezing in response to fear-evoking stimuli). However, the neural circuits underlying the expression of these behaviors remain poorly understood. We demonstrate in vivo in rats that activation of the ventrolateral PAG (vlPAG) affects motor systems at multiple levels of the neuraxis through the following: (1) differential control of spinal neurons that forward sensory information to the cerebellum via spino-olivo-cerebellar pathways (nociceptive signals are reduced while proprioceptive signals are enhanced); (2) alterations in cerebellar nuclear output as revealed by changes in expression of Fos-like immunoreactivity; and (3) regulation of spinal reflex circuits, as shown by an increase in α-motoneuron excitability. The capacity to coordinate sensory and motor functions is demonstrated in awake, behaving rats, in which natural activation of the vlPAG in fear-conditioned animals reduced transmission in spino-olivo-cerebellar pathways during periods of freezing that were associated with increased muscle tone and thus motor outflow. The increase in spinal motor reflex excitability and reduction in transmission of ascending sensory signals via spino-olivo-cerebellar pathways occurred simultaneously. We suggest that the interactions revealed in the present study between the vlPAG and sensorimotor circuits could form the neural substrate for survival behaviors associated with vlPAG activation. SIGNIFICANCE STATEMENT Neural circuits that coordinate survival behaviors remain poorly understood. We demonstrate in rats that the periaqueductal gray (PAG) affects motor systems at the following multiple levels of the neuraxis: (1) through altering transmission in spino-olivary pathways that forward sensory signals to the cerebellum, reducing and enhancing transmission of nociceptive and proprioceptive information, respectively; (2) by alterations in cerebellar output; and (3) through enhancement of spinal motor reflex pathways. The sensory and motor effects occurred at the same time and were present in both anesthetized animals and behavioral experiments in which fear conditioning naturally activated the PAG. The results provide insights into the neural circuits that enable an animal to be ready and able to react to danger, thus assisting in survival.
Collapse
|
6
|
Streff A, Michaux G, Anton F. Internal validity of inter-digital web pinching as a model for perceptual diffuse noxious inhibitory controls-induced hypoalgesia in healthy humans. Eur J Pain 2012; 15:45-52. [DOI: 10.1016/j.ejpain.2010.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/16/2010] [Accepted: 05/20/2010] [Indexed: 10/19/2022]
|
7
|
Terhaar J, Viola FC, Franz M, Berger S, Bär KJ, Weiss T. Differential processing of laser stimuli by Aδ and C fibres in major depression. Pain 2011; 152:1796-1802. [PMID: 21511396 DOI: 10.1016/j.pain.2011.03.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 11/26/2022]
|
8
|
Role of different brain areas in peripheral nerve injury-induced neuropathic pain. Brain Res 2011; 1381:187-201. [DOI: 10.1016/j.brainres.2011.01.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 02/07/2023]
|
9
|
Rossi HL, Vierck CJ, Caudle RM, Yezierski RP, Neubert JK. Dose-dependent effects of icilin on thermal preference in the hindpaw and face of rats. THE JOURNAL OF PAIN 2009; 10:646-53. [PMID: 19409862 DOI: 10.1016/j.jpain.2009.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 12/31/2008] [Accepted: 01/02/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED Icilin induces wet dog shakes (WDS) in rodents when injected systemically and activates the cold receptor TRPM8 and putative cold receptor TRPA1. It is assumed that WDS reflect an enhanced cold sensitivity; however, none have examined the relationship between WDS and cutaneous cold sensitivity following systemic icilin. In this study, we sought to characterize the effect of systemic and central icilin administration on WDS and thermal preference with either hindpaw or facial stimulation. It was found that a low dose of icilin (.025 mg), which transiently elevated WDS, decreased preference for cold with hindpaw stimulation (15 and 45 degrees C) when administered ip or it. Intracisternal administration of this dose produced similar results for facial stimulation (10 and 48 degrees C), but had no effect when administered ip. In contrast a high dose of icilin (.25 mg), which persistently elevated WDS, strongly increased preference for cold with hindpaw stimulation and had no effect on thermal preference with facial stimulation. These findings indicate that at the low concentration, systemic and central icilin enhances cold sensitivity, likely via TRPM8 and TRPA1 activation. In contrast, systemic icilin at the high concentration produces peripheral and/or central effects that diminish cold sensitivity, while WDS is maintained at a persistent rate. PERSPECTIVE Icilin is a unique compound that produces dissociable effects on an innate behavior (WDS) and on operant behaviors related to thermal perception. This compound could help clarify the relationship between peripheral cold transduction and the central induction of thermogenesis and nocifensive behaviors, as well as alterations that produce pathological pain.
Collapse
Affiliation(s)
- Heather L Rossi
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
10
|
Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. BRAIN RESEARCH REVIEWS 2009; 60:214-25. [PMID: 19146877 PMCID: PMC2894733 DOI: 10.1016/j.brainresrev.2008.12.009] [Citation(s) in RCA: 649] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
Abstract
The dorsal horn of the spinal cord is the location of the first synapse in pain pathways, and as such, offers a very powerful target for regulation of nociceptive transmission by both local segmental and supraspinal mechanisms. Descending control of spinal nociception originates from many brain regions and plays a critical role in determining the experience of both acute and chronic pain. The earlier concept of descending control as an "analgesia system" is now being replaced with a more nuanced model in which pain input is prioritized relative to other competing behavioral needs and homeostatic demands. Descending control arises from a number of supraspinal sites, including the midline periaqueductal gray-rostral ventromedial medulla (PAG-RVM) system, and the more lateral and caudal dorsal reticular nucleus (DRt) and ventrolateral medulla (VLM). Inhibitory control from the PAG-RVM system preferentially suppresses nociceptive inputs mediated by C-fibers, preserving sensory-discriminative information conveyed by more rapidly conducting A-fibers. Analysis of the circuitry within the RVM reveals that the neural basis for bidirectional control from the midline system is two populations of neurons, ON-cells and OFF-cells, that are differentially recruited by higher structures important in fear, illness and psychological stress to enhance or inhibit pain. Dynamic shifts in the balance between pain inhibiting and facilitating outflows from the brainstem play a role in setting the gain of nociceptive processing as dictated by behavioral priorities, but are also likely to contribute to pathological pain states.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
| | | | | | | |
Collapse
|
11
|
Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog Neurobiol 2008; 86:22-47. [PMID: 18602968 DOI: 10.1016/j.pneurobio.2008.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 04/08/2008] [Accepted: 06/11/2008] [Indexed: 02/01/2023]
Abstract
Since the initial description by Wall [Wall, P.D., 1967. The laminar organization of dorsal horn and effects of descending impulses. J. Neurophysiol. 188, 403-423] of tonic descending inhibitory control of dorsal horn neurons, several studies have aimed to characterize the role of various brain centers in the control of nociceptive input to the spinal cord. The role of brainstem centers in pain inhibition has been well documented over the past four decades. Lesion to peripheral nerves results in hypersensitivity to mild tactile or cold stimuli (allodynia) and exaggerated response to nociceptive stimuli (hyperalgesia), both considered as cardinal signs of neuropathic pain. The increased interest in animal models for peripheral neuropathy has raised several questions concerning the rostral conduction of the neuropathic manifestations and the role of supraspinal centers, especially brainstem, in the inhibitory control or in the abnormal contribution to the maintenance and facilitation of neuropathic-like behavior. This review aims to summarize the data on the ascending and descending modulation of neuropathic manifestations and discusses the recent experimental data on the role of supraspinal centers in the control of neuropathic pain. In particular, the review emphasizes the importance of the reciprocal interconnections between the analgesic areas of the brainstem and the pain-related areas of the forebrain. The latter includes the cerebral limbic areas, the prefrontal cortex, the intralaminar thalamus and the hypothalamus and play a critical role in the control of pain considered as part of an integrated behavior related to emotions and various homeostatic regulations. We finally speculate that neuropathic pain, like extrapyramidal motor syndromes, reflects a disorder in the processing of somatosensory information.
Collapse
|
12
|
Leith JL, Wilson AW, Donaldson LF, Lumb BM. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception. J Neurosci 2007; 27:11296-305. [PMID: 17942724 PMCID: PMC6673041 DOI: 10.1523/jneurosci.2586-07.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/21/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) exert analgesic effects by inhibiting peripheral cyclooxygenases (COXs). It is now clear that these drugs also have central actions that include the modulation of descending control of spinal nociception from the midbrain periaqueductal gray (PAG). Descending control is a powerful determinant of the pain experience and is thus a potential target for analgesic drugs, including COX inhibitors. Noxious information from the periphery is conveyed to the spinal cord in A- and C-fiber nociceptors, which convey different qualities of the pain signal and have different roles in chronic pain. This in vivo study used different rates of skin heating to preferentially activate A- or C-heat nociceptors to further investigate the actions of COX inhibitors and prostaglandins in the PAG on spinal nociceptive processing. The results significantly advance our understanding of the central mechanisms underlying the actions of NSAIDs and prostaglandins by demonstrating that (1) in the PAG, it is COX-1 and not COX-2 that is responsible for acute antinociceptive effects of NSAIDs in vivo; (2) these effects are only evoked from the opioid-sensitive ventrolateral PAG; and (3) prostaglandins in the PAG exert tonic facilitatory control that targets C- rather than A-fiber-mediated spinal nociception. This selectivity of control is of particular significance given the distinct roles of A- and C-nociceptors in acute and chronic pain. Thus, effects of centrally acting prostaglandins are pivotal, we suggest, to both the understanding of nociceptive processing and the development of new analgesic drugs.
Collapse
Affiliation(s)
- J. Lianne Leith
- Department of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| | - Alex W. Wilson
- Neurology and Gastrointestinal Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, Essex CM19 5AW, United Kingdom
| | - Lucy F. Donaldson
- Department of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| | - Bridget M. Lumb
- Department of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| |
Collapse
|