1
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Aarnio M, Fredrikson M, Lampa E, Sörensen J, Gordh T, Linnman C. Whiplash injuries associated with experienced pain and disability can be visualized with [11C]-D-deprenyl positron emission tomography and computed tomography. Pain 2022; 163:489-495. [PMID: 34232928 PMCID: PMC8832543 DOI: 10.1097/j.pain.0000000000002381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Knowledge of etiological mechanisms underlying whiplash-associated disorders is incomplete. Localisation and quantification of peripheral musculoskeletal injury and inflammation in whiplash-associated disorders would facilitate diagnosis, strengthen patients' subjective pain reports, and aid clinical decisions, all of which could lead to improved treatment. In this longitudinal observational study, we evaluated combined [11C]-D-deprenyl positron emission tomography and computed tomography after acute whiplash injury and at 6-month follow-up. Sixteen adult patients (mean age 33 years) with whiplash injury grade II were recruited at the emergency department. [11C]-D-deprenyl positron emission tomography and computed tomography, subjective pain levels, self-rated neck disability, and active cervical range of motion were recorded within 7 days after injury and again at 6-month follow-up. Imaging results showed possible tissue injuries after acute whiplash with an altered [11C]-D-deprenyl uptake in the cervical bone structures and facet joints, associated with subjective pain locale and levels, as well as self-rated disability. At follow-up, some patients had recovered and some showed persistent symptoms and reductions in [11C]-D-deprenyl uptake correlated to reductions in pain levels. These findings help identify affected peripheral structures in whiplash injury and strengthen the idea that positron emission tomography and computed tomography detectable organic lesions in peripheral tissue are relevant for the development of persistent pain and disability in whiplash injury.
Collapse
Affiliation(s)
- Mikko Aarnio
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Sweden
| | - Mats Fredrikson
- Department of Psychology, Uppsala University, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Lampa
- UCR, Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- PET Centre, Department of Medical Imaging, Uppsala University Hospital, Sweden
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Uppsala University, Sweden
| | - Clas Linnman
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
3
|
Farrell SF, Cowin GJ, Pedler A, Durbridge G, de Zoete RMJ, Sterling M. Magnetic Resonance Spectroscopy Assessment of Brain Metabolite Concentrations in Individuals With Chronic Whiplash-associated Disorder: A Cross-sectional Study. Clin J Pain 2021; 37:28-37. [PMID: 33093341 DOI: 10.1097/ajp.0000000000000890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Pathophysiologic mechanisms underpinning ongoing pain in whiplash-associated disorder (WAD) are not well understood, however, alterations in brain morphology and function have been observed in this population and in other chronic pain conditions. This study investigated metabolite profiles of brain regions in people with chronic WAD compared with controls. MATERIALS AND METHODS Thirty-eight individuals with chronic WAD (mean [SD] age, 39.5 [11.3] years, 23 female individuals) and 16 pain-free controls (38.9 [12.7] years, 11 female individuals) underwent multivoxel brain magnetic resonance spectroscopy. At the anterior cingulate cortex (ACC), primary motor cortex (1MC), and somatosensory cortex (SSC), ratios of metabolite concentrations were calculated for N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-inositol (Ins), and glutamate/glutamine (Glx). Chronic WAD group participants completed clinical questionnaires and cold and pressure pain threshold assessment. Data were analyzed with hypothesis testing and Spearman correlations (P≥0.05), with Benjamini-Hochberg corrections (5% false discovery rate). RESULTS No group differences were observed for NAA:Cr, NAA:Cho, Cr:Cho, Glx:NAA, Glx:Cr, Glx:Cho, Ins:NAA, Ins:Cr, Ins:Cho or Ins:Glx for left or right ACC, 1MC, or SSC following correction for multiple comparisons. No significant correlations were observed between metabolite ratios and any clinical variable. DISCUSSION These results suggest that ongoing pain and disability in this population may not be underpinned by metabolite aberrations in the brain regions examined. Further research is required to progress our understanding of cortical contributions to neurophysiologic mechanisms in chronic WAD.
Collapse
Affiliation(s)
- Scott F Farrell
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries
- Menzies Health Institute Queensland, Griffith University, Gold Coast
| | - Gary J Cowin
- Centre for Advanced Imaging, The University of Queensland, Brisbane
| | - Ashley Pedler
- Menzies Health Institute Queensland, Griffith University, Gold Coast
| | - Gail Durbridge
- Centre for Advanced Imaging, The University of Queensland, Brisbane
| | - Rutger M J de Zoete
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA, Australia
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Recovery Following Road Traffic Injuries
- Menzies Health Institute Queensland, Griffith University, Gold Coast
| |
Collapse
|
4
|
Song SY, Zhai XM, Dai JH, Lu LL, Shan CJ, Hong J, Cao JL, Zhang LC. The CSF-Contacting Nucleus Receives Anatomical Inputs From the Cerebral Cortex: A Combination of Retrograde Tracing and 3D Reconstruction Study in Rat. Front Neuroanat 2020; 14:600555. [PMID: 33328908 PMCID: PMC7714914 DOI: 10.3389/fnana.2020.600555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the direct monosynaptic projections from cortical functional regions to the cerebrospinal fluid (CSF)-contacting nucleus for understanding the functions of the CSF-contacting nucleus. Methods The Sprague-Dawley rats received cholera toxin B subunit (CB) injections into the CSF-contacting nucleus. After 7-10 days of survival time, the rats were perfused, and the whole brain and spinal cord were sliced under a freezing microtome at 40 μm. All sections were treated with the CB immunofluorescence reaction. The retrogradely labeled neurons in different cortical areas were revealed under a confocal microscope. The distribution features were further illustrated under 3D reconstruction. Results The retrogradely labeled neurons were identified in the olfactory, orbital, cingulate, insula, retrosplenial, somatosensory, motor, visual, auditory, association, rhinal, and parietal cortical areas. A total of 12 functional areas and 34 functional subregions showed projections to the CSF-contacting nucleus in different cell intensities. Conclusion According to the connectivity patterns, we conclude that the CSF-contacting nucleus participates in cognition, emotion, pain, visceral activity, etc. The present study firstly reveals the cerebral cortex→CSF-contacting nucleus connections, which implies the multiple functions of this special nucleus in neural and body fluid regulations.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Hao Dai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Lei-Lei Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
5
|
Park BY, Lee JJ, Kim HJ, Woo CW, Park H. A neuroimaging marker for predicting longitudinal changes in pain intensity of subacute back pain based on large-scale brain network interactions. Sci Rep 2020; 10:17392. [PMID: 33060726 PMCID: PMC7567066 DOI: 10.1038/s41598-020-74217-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Abstract
Identification of predictive neuroimaging markers of pain intensity changes is a crucial issue to better understand macroscopic neural mechanisms of pain. Although a single connection between the medial prefrontal cortex and nucleus accumbens has been suggested as a powerful marker, how the complex interactions on a large-scale brain network can serve as the markers is underexplored. Here, we aimed to identify a set of functional connections predictive of longitudinal changes in pain intensity using large-scale brain networks. We re-analyzed previously published resting-state functional magnetic resonance imaging data of 49 subacute back pain (SBP) patients. We built a network-level model that predicts changes in pain intensity over one year by combining independent component analysis and a penalized regression framework. Connections involving top-down pain modulation, multisensory integration, and mesocorticolimbic circuits were identified as predictive markers for pain intensity changes. Pearson’s correlations between actual and predicted pain scores were r = 0.33–0.72, and group classification results between SBP patients with persisting pain and recovering patients, in terms of area under the curve (AUC), were 0.89/0.75/0.75 for visits four/three/two, thus outperforming the previous work (AUC 0.83/0.73/0.67). This study identified functional connections important for longitudinal changes in pain intensity in SBP patients, providing provisional markers to predict future pain using large-scale brain networks.
Collapse
Affiliation(s)
- Bo-Yong Park
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jae-Joong Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea. .,School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
6
|
Ihara N, Wakaizumi K, Nishimura D, Kato J, Yamada T, Suzuki T, Hashiguchi S, Terasawa Y, Kosugi S, Morisaki H. Aberrant resting-state functional connectivity of the dorsolateral prefrontal cortex to the anterior insula and its association with fear avoidance belief in chronic neck pain patients. PLoS One 2019; 14:e0221023. [PMID: 31404104 PMCID: PMC6690512 DOI: 10.1371/journal.pone.0221023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Chronic neck pain (CNP), a global health problem, involves a large amount of psychological and socioeconomic burdens. Not only physical causes but also behavioral disorders such as a fear-avoidance belief (FAB) can associate with the chronicity of neck pain. However, functional brain mechanisms underlying CNP and its related behavioral disorders remain unknown. The aim of the current resting-state functional magnetic resonance imaging (fMRI) study was to explore how the functional brain networks differed between CNP patients and age- and sex-matched healthy, pain-free controls (HCs). We also investigated whether these possible brain network changes in CNP patients were associated with fear avoidance belief (FAB) and the intensity of pain. We analyzed the resting-state fMRI data of 20 CNP patients and 20 HCs. FAB and the intensity of pain were assessed by Tampa Scale for Kinesiophobia (TSK) and Visual Analog Scale (VAS) of pain. The whole brain analysis showed that CNP patients had significant different functional connectivity (FC) compared with HCs, and the right dorsolateral prefrontal cortex (DLPFC) was a core hub of these altered functional networks. Furthermore, general linear model analyses showed that, in CNP patients, the increased FC between the right DLPFC and the right anterior insular cortex (aIC) significantly associated with increased TSK (p = 0.01, statistical significance after Bonferroni correction: p<0.025), and the FC between the right DLPFC and dorsal posterior cingulate cortex had a trend of inverse association with VAS (p = 0.04). Our findings suggest that aberrant FCs between the right DLPFC and aIC associated with CNP and its related FAB.
Collapse
Affiliation(s)
- Naho Ihara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenta Wakaizumi
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Nishimura
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Jungo Kato
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashige Yamada
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Saori Hashiguchi
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuri Terasawa
- Department of Psychology, Keio University, Tokyo, Japan
| | - Shizuko Kosugi
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow. PLoS One 2016; 11:e0161563. [PMID: 27658244 PMCID: PMC5033598 DOI: 10.1371/journal.pone.0161563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1) receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis) were selected out of a larger (n = 120) randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis). These ten subjects were examined by positron emission tomography (PET) with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA), was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP) / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment.
Collapse
|
8
|
Vállez García D, Doorduin J, Willemsen ATM, Dierckx RAJO, Otte A. Altered Regional Cerebral Blood Flow in Chronic Whiplash Associated Disorders. EBioMedicine 2016; 10:249-57. [PMID: 27444853 PMCID: PMC5006659 DOI: 10.1016/j.ebiom.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/02/2023] Open
Abstract
There is increasing evidence of central hyperexcitability in chronic whiplash-associated disorders (cWAD). However, little is known about how an apparently simple cervical spine injury can induce changes in cerebral processes. The present study was designed (1) to validate previous results showing alterations of regional cerebral blood flow (rCBF) in cWAD, (2) to test if central hyperexcitability reflects changes in rCBF upon non-painful stimulation of the neck, and (3) to verify our hypothesis that the missing link in understanding the underlying pathophysiology could be the close interaction between the neck and midbrain structures. For this purpose, alterations of rCBF were explored in a case-control study using H215O positron emission tomography, where each group was exposed to four different conditions, including rest and different levels of non-painful electrical stimulation of the neck. rCBF was found to be elevated in patients with cWAD in the posterior cingulate and precuneus, and decreased in the superior temporal, parahippocampal, and inferior frontal gyri, the thalamus and the insular cortex when compared with rCBF in healthy controls. No differences in rCBF were observed between different levels of electrical stimulation. The alterations in regions directly involved with pain perception and interoceptive processing indicate that cWAD symptoms might be the consequence of a mismatch during the integration of information in brain regions involved in pain processing. Differences of rCBF were explored by PET in cWAD patients and healthy volunteers exposed to four conditions. Changes in rCBF were observed in cWAD patients in regions involved in pain perception and interoceptive sensory information. These changes might be the consequence of a mismatch in the integration of interoceptive stimuli in pain processing regions.
In the past, published work on chronic whiplash-associated disorders (cWAD) has caused much confusion and discussion, yet functional imaging methods such as positron emission tomography (PET) have demonstrated a variety of different significant alterations in the perfusion or glucose utilization of the brain. The present study, using PET and the perfusion marker, H215O, is a step forward in whiplash research. It shows changes in perfusion in regions directly involved in pain perception and interoceptive sensory information, such as the insular cortex, precuneus, and posterior cingulate, indicating a mismatch in the integration of interoceptive information in pain processing brain regions.
Collapse
Affiliation(s)
- David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Huispostcode EB50, Postbus 30001, 9700 RB Groningen, The Netherlands.
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Huispostcode EB50, Postbus 30001, 9700 RB Groningen, The Netherlands.
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Huispostcode EB50, Postbus 30001, 9700 RB Groningen, The Netherlands.
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Huispostcode EB50, Postbus 30001, 9700 RB Groningen, The Netherlands.
| | - Andreas Otte
- Division of Biomedical Engineering, Department of Electrical Engineering and Information Technology, Offenburg University, D-77652 Offenburg, Germany.
| |
Collapse
|
9
|
Peterson M, Svärdsudd K, Appel L, Engler H, Aarnio M, Gordh T, Långström B, Sörensen J. PET-scan shows peripherally increased neurokinin 1 receptor availability in chronic tennis elbow: visualizing neurogenic inflammation? PLoS One 2013; 8:e75859. [PMID: 24155873 PMCID: PMC3796513 DOI: 10.1371/journal.pone.0075859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/22/2013] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED In response to pain, neurokinin 1 (NK1) receptor availability is altered in the central nervous system. The NK1 receptor and its primary agonist, substance P, also play a crucial role in peripheral tissue in response to pain, as part of neurogenic inflammation. However, little is known about alterations in NK1 receptor availability in peripheral tissue in chronic pain conditions and very few studies have been performed on human beings. Ten subjects with chronic tennis elbow were therefore examined by positron emission tomography (PET) with the NK1 specific radioligand [(11)C]GR205171 before and after treatment with graded exercise. The radioligand signal intensity was higher in the affected arm as compared with the unaffected arm, measured as differences between the arms in volume of voxels and signal intensity of this volume above a reference threshold set as 2.5 SD above mean signal intensity of the unaffected arm before treatment. In the eight subjects examined after treatment, pain ratings decreased in all subjects but signal intensity decreased in five and increased in three. In conclusion, NK1 receptors may be activated, or up-regulated in the peripheral, painful tissue of a chronic pain condition. This up-regulation does, however, have moderate correlation to pain ratings. The increased NK1 receptor availability is interpreted as part of ongoing neurogenic inflammation and may have correlation to the pathogenesis of chronic tennis elbow. TRIAL REGISTRATION ClinicalTrials.gov NCT00888225 http://clinicaltrials.gov/
Collapse
Affiliation(s)
- Magnus Peterson
- Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Kurt Svärdsudd
- Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Lieuwe Appel
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Henry Engler
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
- Uruguayan Centre of Molecular Imaging (CUDIM), Faculty of Medicine and Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Mikko Aarnio
- Department of Surgical Sciences, Pain Research, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Pain Research, Uppsala University, Uppsala, Sweden
| | - Bengt Långström
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
- Neuropsychopharmacology Section, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jens Sörensen
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Affiliation(s)
- Torsten Gordh
- Multidisciplinary Pain Center , Uppsala University Hospital , Uppsala , Sweden
| |
Collapse
|
11
|
Linnman C. New pieces for the substance P puzzle. Pain 2013; 154:966-967. [PMID: 23643331 DOI: 10.1016/j.pain.2013.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Clas Linnman
- Boston Childreńs Hospital, Harvard Medical School, Anesthesia, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
12
|
Jarcho JM, Feier NA, Bert A, Labus JA, Lee M, Stains J, Ebrat B, Groman SM, Tillisch K, Brody AL, London ED, Mandelkern MA, Mayer EA. Diminished neurokinin-1 receptor availability in patients with two forms of chronic visceral pain. Pain 2013; 154:987-96. [PMID: 23582152 DOI: 10.1016/j.pain.2013.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 12/29/2022]
Abstract
Central sensitization and dysregulation of peripheral substance P and neurokinin-1 receptor (NK-1R) signaling are associated with chronic abdominal pain in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Although positron emission tomography (PET) has demonstrated that patients with injury-related chronic pain have diminished NK-1R availability in the brain, it is unknown whether these deficits are present in IBD and IBS patients, who have etiologically distinct forms of non-injury-related chronic pain. This study's aim was to determine if patients with IBD or IBS exhibit deficits in brain expression of NK-1Rs relative to healthy controls (HCs), the extent to which expression patterns differ across patient populations, and if these patterns differentially relate to clinical parameters. PET with [(18)F]SPA-RQ was used to measure NK-1R availability by quantifying binding potential (BP) in the 3 groups. Exploratory correlation analyses were performed to detect associations between NK-1R BP and physical symptoms. Compared to HCs, IBD patients had NK-1R BP deficits across a widespread network of cortical and subcortical regions. IBS patients had similar, but less pronounced deficits. BP in a subset of these regions was robustly related to discrete clinical parameters in each patient population. Widespread deficits in NK-1R BP occur in IBD and, to a lesser extent, IBS; however, discrete clinical parameters relate to NK-1R BP in each patient population. This suggests that potential pharmacological interventions that target NK-1R signaling may be most effective for treating distinct symptoms in IBD and IBS.
Collapse
Affiliation(s)
- Johanna M Jarcho
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain. J Neuroimmune Pharmacol 2012. [PMID: 23188523 DOI: 10.1007/s11481-012-9422-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS.
Collapse
|
14
|
Engman J, Åhs F, Furmark T, Linnman C, Pissiota A, Appel L, Frans Ö, Långström B, Fredrikson M. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [¹¹C]GR205171. Eur Neuropsychopharmacol 2012; 22:562-8. [PMID: 22225860 DOI: 10.1016/j.euroneuro.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/13/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Abstract
The substance P/neurokinin 1 (SP/NK1) system has been implicated in the processing of negative affect. Its role seems complex and findings from animal studies have not been easily translated to humans. Brain imaging studies on NK1 receptor distribution in humans have revealed an abundance of receptors in cortical, striatal and subcortical areas, including the amygdala. A reduction in NK1 receptors with increasing age has been reported in frontal, temporal, and parietal cortices, as well as in hippocampal areas. Also, a previous study suggests sex differences in cortical and subcortical areas, with women displaying fewer NK1 receptors. The present PET study explored NK1 receptor availability in men (n=9) and women (n=9) matched for age varying between 20 and 50years using the highly specific NK1 receptor antagonist [¹¹C]GR205171 and a reference tissue model with cerebellum as the reference region. Age by sex interactions in the amygdala and the temporal cortex reflected a lower NK1 receptor availability with increasing age in men, but not in women. A general age-related decline in NK1 receptor availability was evident in the frontal, temporal, and occipital cortices, as well as in the brainstem, caudate nucleus, and thalamus. Women had lower NK1 receptor availability in the thalamus. The observed pattern of NK1 receptor distribution in the brain might have functional significance for brain-related disorders showing age- and sex-related differences in prevalence.
Collapse
Affiliation(s)
- Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Parenti C, Aricò G, Ronsisvalle G, Scoto GM. Supraspinal injection of Substance P attenuates allodynia and hyperalgesia in a rat model of inflammatory pain. Peptides 2012; 34:412-8. [PMID: 22306475 DOI: 10.1016/j.peptides.2012.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/20/2012] [Accepted: 01/20/2012] [Indexed: 01/03/2023]
Abstract
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.
Collapse
Affiliation(s)
- Carmela Parenti
- Department of Drug Sciences-Pharmacology and Toxicology Section, University of Catania, v.le A. Doria 6, 95125 Catania, Italy.
| | | | | | | |
Collapse
|
16
|
Linnman C. Response to Dr. Otte ‘Functional neuroimaging in whiplash injury’. Eur J Pain 2012. [DOI: 10.1111/j.1532-2149.2011.00001.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Clas Linnman
- P.A.I.N. Group; McLean Hospital, Harvard Medical School; Belmont; MA; USA
| |
Collapse
|
17
|
Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage 2011; 60:505-22. [PMID: 22197740 DOI: 10.1016/j.neuroimage.2011.11.095] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/18/2023] Open
Abstract
This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain modulation, anxiety, bladder and bowel function and autonomic regulation. Methods include structural and functional magnetic resonance imaging, functional connectivity measures, diffusion weighted imaging and positron emission tomography. Human neuroimaging studies in healthy and clinical populations largely confirm the animal literature indicating that the PAG is involved in homeostatic regulation of salient functions such as pain, anxiety and autonomic function. Methodological concerns in the current literature, including resolution constraints, imaging artifacts and imprecise neuroanatomical labeling are discussed, and future directions are proposed. A general conclusion is that PAG neuroimaging is a field with enormous potential to translate animal data onto human behaviors, but with some growing pains that can and need to be addressed in order to add to our understanding of the neurobiology of this key region.
Collapse
Affiliation(s)
- Clas Linnman
- Pain and Analgesia Imaging Neuroscience group, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK(1) receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.
Collapse
|
19
|
Danfors T, Åhs F, Appel L, Linnman C, Fredrikson M, Furmark T, Kumlien E. Increased neurokinin-1 receptor availability in temporal lobe epilepsy: a positron emission tomography study using [(11)C]GR205171. Epilepsy Res 2011; 97:183-9. [PMID: 21925840 DOI: 10.1016/j.eplepsyres.2011.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 11/19/2022]
Abstract
PURPOSE Activation of the neurokinin-1 (NK1) receptor by neuropeptide substance P (SP) induces and maintains epileptic activity in various experimental models of epilepsy. The primary objective of this study was to investigate whether neurobiological changes linked to NK1-SP receptor system are associated with hyperexcitability in patients with temporal lobe epilepsy (TLE). A secondary objective was to investigate the relationship between seizure frequency and NK1 receptor availability. METHODS A positron emission tomography study was conducted with the selective NK1 receptor antagonist [(11)C]GR205171 in nine patients with TLE and 18 healthy control participants. Parametric PET images were generated using the Patlak graphical method, with cerebellum as reference region. Data analyses including group comparisons were performed using statistical parametric mapping. RESULTS Patients with TLE showed increased NK1 receptor availability in both hemispheres with the most pronounced increase in anterior cingulate gyrus ipsilateral to seizure onset. A positive correlation between NK1 receptor availability and seizure frequency was observed in the medial temporal lobe and in the lentiform nucleus ipsilateral to the seizure onset. CONCLUSION Our results suggest that there is an intrinsic network using the NK1-SP receptor system for synaptic transmission and epileptiform activity in TLE.
Collapse
Affiliation(s)
- Torsten Danfors
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|