1
|
Zhou H, Han R, Chen L, Zhang Z, Zhang X, Wang J, Liu Z, Huang D. Effect of Implantable Electrical Nerve Stimulation on Cortical Dynamics in Patients With Herpes Zoster–Related Pain: A Prospective Pilot Study. Front Bioeng Biotechnol 2022; 10:862353. [PMID: 35651542 PMCID: PMC9149165 DOI: 10.3389/fbioe.2022.862353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Implantable electrical nerve stimulation (ENS) can be used to treat neuropathic pain caused by herpes zoster. However, little is known about the cortical mechanism underlying neuromodulation therapy. Here, we recorded a 16-channel resting-state electroencephalogram after the application of spinal cord stimulation (n = 5) or peripheral nerve stimulation (n = 3). The neuromodulatory effect was compared between specific conditions (active ENS versus rest). To capture the cortical responses of ENS, spectral power and coherence analysis were performed. ENS therapy achieved satisfactory relief from pain with a mean visual analog scale score reduction of 5.9 ± 1.1. The spectral analysis indicated that theta and alpha oscillations increased significantly during active neuromodulation compared with the resting state. Furthermore, ENS administration significantly increased frontal-frontal coherence in the alpha band. Our findings demonstrate that, despite methodological differences, both spinal cord and peripheral nerve stimulation can induce cortical alpha oscillation changes in patients with zoster-related pain. The dynamic change may, in part, mediate the analgesic effect of ENS on herpes zoster–related pain.
Collapse
Affiliation(s)
- Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
| | - Rui Han
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Li Chen
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Zhen Zhang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Xiaobo Zhang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoliang Liu
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
- *Correspondence: Dong Huang,
| |
Collapse
|
2
|
De Pascalis V, Scacchia P, Vecchio A. Influences of hypnotic suggestibility, contextual factors, and EEG alpha on placebo analgesia. AMERICAN JOURNAL OF CLINICAL HYPNOSIS 2021; 63:302-328. [PMID: 33999775 DOI: 10.1080/00029157.2020.1863182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We tested the role of hypnotic suggestibility, involuntariness, pain expectation, and subjective hypnotic depth in the prediction of placebo analgesia (PA) responsiveness. We also tested the link of lower and upper alpha sub-band (i.e., 'alpha1' and 'alpha2') power changes with tonic PA responding during waking and hypnosis conditions. Following an initial PA manipulation condition, we recorded EEG activity during waking and hypnosis under two treatments: (1) painful stimulation (Pain); (2) painful stimulation after application of a PA cream. Alpha1 and alpha2 power were derived using the individual alpha frequency method. We found that (1) PA in both waking and hypnosis conditions significantly reduced relative pain perception; (2) during waking, all the above mentioned contextual measures were associated with pain reduction, while involuntariness alone was associated with pain reduction within hypnosis. Enhanced alpha2 power at the left-parietal lead was solely associated with pain reduction in waking, but not in hypnosis condition. Using multiple regression and mediation analyses we found that: (i) during waking, the enhancement of relative left-parietal alpha2 power, directly influenced the enhancement in pain reduction, and, indirectly, through the mediating positive effect of involuntariness; (j) during hypnosis, the enhancement of left-temporoparietal alpha2 power, through the mediation of involuntariness, influenced pain reduction. Current findings obtained during waking suggest that enhanced alpha2 power may serve as a direct-objective measure of the subjective reduction of tonic pain in response to PA treatment. Overall, our findings suggest that placebo analgesia during waking and hypnosis involves different processes of top-down regulation.
Collapse
|
3
|
Chien JH, Colloca L, Korzeniewska A, Meeker TJ, Bienvenu OJ, Saffer MI, Lenz FA. Behavioral, Physiological and EEG Activities Associated with Conditioned Fear as Sensors for Fear and Anxiety. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6751. [PMID: 33255916 PMCID: PMC7728331 DOI: 10.3390/s20236751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Anxiety disorders impose substantial costs upon public health and productivity in the USA and worldwide. At present, these conditions are quantified by self-report questionnaires that only apply to behaviors that are accessible to consciousness, or by the timing of responses to fear- and anxiety-related words that are indirect since they do not produce fear, e.g., Dot Probe Test and emotional Stroop. We now review the conditioned responses (CRs) to fear produced by a neutral stimulus (conditioned stimulus CS+) when it cues a painful laser unconditioned stimulus (US). These CRs include autonomic (Skin Conductance Response) and ratings of the CS+ unpleasantness, ability to command attention, and the recognition of the association of CS+ with US (expectancy). These CRs are directly related to fear, and some measure behaviors that are minimally accessible to consciousness e.g., economic scales. Fear-related CRs include non-phase-locked phase changes in oscillatory EEG power defined by frequency and time post-stimulus over baseline, and changes in phase-locked visual and laser evoked responses both of which include late potentials reflecting attention or expectancy, like the P300, or contingent negative variation. Increases (ERS) and decreases (ERD) in oscillatory power post-stimulus may be generalizable given their consistency across healthy subjects. ERS and ERD are related to the ratings above as well as to anxious personalities and clinical anxiety and can resolve activity over short time intervals like those for some moods and emotions. These results could be incorporated into an objective instrumented test that measures EEG and CRs of autonomic activity and psychological ratings related to conditioned fear, some of which are subliminal. As in the case of instrumented tests of vigilance, these results could be useful for the direct, objective measurement of multiple aspects of the risk, diagnosis, and monitoring of therapies for anxiety disorders and anxious personalities.
Collapse
Affiliation(s)
- Jui-Hong Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| | - Luana Colloca
- Department of Pain Translational Symptom Science, School of Nursing, University of Maryland, Baltimore, MD 21201-1595, USA;
- Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD 21201-1595, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287-7713, USA;
| | - Timothy J. Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| | - O. Joe Bienvenu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD 21287-7713, USA;
| | - Mark I. Saffer
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| | - Fred A. Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7713, USA; (J.-H.C.); (T.J.M.); (M.I.S.)
| |
Collapse
|
4
|
The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies. J Clin Med 2020; 9:jcm9061945. [PMID: 32580436 PMCID: PMC7355617 DOI: 10.3390/jcm9061945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Millions of people in the United States are affected by chronic pain, and the financial cost of pain treatment is weighing on the healthcare system. In some cases, current pharmacological treatments may do more harm than good, as with the United States opioid crisis. Direct electrical stimulation of the brain is one potential non-pharmacological treatment with a long history of investigation. Yet brain stimulation has been far less successful than peripheral or spinal cord stimulation, perhaps because of our limited understanding of the neural circuits involved in pain perception. In this paper, we review the history of using electrical stimulation of the brain to treat pain, as well as contemporary studies identifying the structures involved in pain networks, such as the thalamus, insula, and anterior cingulate. We propose that the thermal grill illusion, an experimental pain model, can facilitate further investigation of these structures. Pairing this model with intracranial recording will provide insight toward disentangling the neural correlates from the described anatomic areas. Finally, the possibility of altering pain perception with brain stimulation in these regions could be highly informative for the development of novel brain stimulation therapies for chronic pain.
Collapse
|
5
|
Li SJ, Zhang YF, Ma SH, Yi Y, Yu HY, Pei L, Feng D. The role of NLRP3 inflammasome in stroke and central poststroke pain. Medicine (Baltimore) 2018; 97:e11861. [PMID: 30113480 PMCID: PMC6112889 DOI: 10.1097/md.0000000000011861] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND NLRP3 inflammasome plays a prominent role in the pathogenesis and progression of many diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis, and Alzheimer's disease. However, little knowledge is known about the role of NLRP3 inflammasome in central post-stroke pain (CPSP). METHODS We selected relevant studies by searching PubMed, Embase, and Medline from inception through February, 2018. We systematically reviewed available publications according to the terms "NLRP3 inflammasome" and "stroke" or "central post-stroke pain" in the title/abstract field. RESULTS We reviewed the articles and put forward two possible ways for NLRP3 inflammasome in CPSP. One way is that NLRP3 activation causes cerebral cortex injure, decreasing descending projection fiber to thalamus. Such condition may let GABAergic releases reduce, making the ventral basal (VB) neurons excitability increased. Finally, CPSP occur. Another way is that NLRP3 inflammasome leads to thalamic lesion and strengthens inflammatory response of microglia at the same time. Persistent inflammation causes GABAergic alteration in thalamus reticular neurons (TRN) to restrain VB interneurons functions, contributing to CPSP. CONCLUSIONS These possible mechanisms will help become knowledgeable about the occurrence CPSP and provide potential therapy for CPSP.
Collapse
Affiliation(s)
- Shao-jun Li
- Department of Pain Management, Wuhan First Hospital
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-fen Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Se-hui Ma
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Yi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-yan Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Feng
- Department of Pain Management, Wuhan First Hospital
- The Institute for Brain Research (IBR), Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chien JH, Colloca L, Korzeniewska A, Cheng JJ, Campbell CM, Hillis AE, Lenz FA. Oscillatory EEG activity induced by conditioning stimuli during fear conditioning reflects Salience and Valence of these stimuli more than Expectancy. Neuroscience 2017; 346:81-93. [PMID: 28077278 PMCID: PMC5426483 DOI: 10.1016/j.neuroscience.2016.12.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022]
Abstract
Imaging studies have described hemodynamic activity during fear conditioning protocols with stimulus trains in which a visual conditioned stimulus (CS+) is paired with an aversive unconditioned stimulus (US, painful laser pulse) while another visual stimulus is unpaired (CS-). We now test the hypothesis that CS Event Related Spectral Perturbations (ERSPs) are related to ratings of CS Expectancy (likelihood of pairing with the US), Valence (unpleasantness) and Salience (ability to capture attention). ERSP windows in EEG were defined by both time after the CS and frequency, and showed increased oscillatory power (Event Related Synchronization, ERS) in the Delta/Theta Windows (0-8Hz) and the Gamma Window (30-55Hz). Decreased oscillatory power (Event Related Desynchronization - ERD) was found in Alpha (8-14Hz) and Beta Windows (14-30Hz). The Delta/Theta ERS showed a differential effect of CS+ versus CS- at Prefrontal, Frontal and Midline Channels, while Alpha and Beta ERD were greater at Parietal and Occipital Channels early in the stimulus train. The Gamma ERS Window increased from habituation to acquisition over a broad area from frontal and occipital electrodes. The CS Valence and Salience were greater for CS+ than CS-, and were correlated with each other and with the ERD at overlapping channels, particularly in the Alpha Window. Expectancy and CS Skin Conductance Response were greater for CS+ than CS- and were correlated with ERSP at fewer channels than Valence or Salience. These results suggest that Alpha ERSP activity during fear conditioning reflects Valence and Salience of the CSs more than conditioning per se.
Collapse
Affiliation(s)
- J H Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| | - L Colloca
- Department of Pain Translational Symptom Science, School of Nursing, and Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, USA
| | - A Korzeniewska
- Departments of Neurology and Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - J J Cheng
- Department of Neurosurgery, Emory University, Atlanta, USA
| | - C M Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - A E Hillis
- Departments of Neurology and Cognitive Science, Johns Hopkins University, Baltimore, USA
| | - F A Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
7
|
Abstract
Pain is an integrative phenomenon that results from dynamic interactions between sensory and contextual (i.e., cognitive, emotional, and motivational) processes. In the brain the experience of pain is associated with neuronal oscillations and synchrony at different frequencies. However, an overarching framework for the significance of oscillations for pain remains lacking. Recent concepts relate oscillations at different frequencies to the routing of information flow in the brain and the signaling of predictions and prediction errors. The application of these concepts to pain promises insights into how flexible routing of information flow coordinates diverse processes that merge into the experience of pain. Such insights might have implications for the understanding and treatment of chronic pain.
Collapse
Affiliation(s)
- Markus Ploner
- Department of Neurology and TUMNeuroimaging Center, Technische Universität München, Munich, Germany.
| | - Christian Sorg
- Departments of Neuroradiology and Psychiatry and TUMNeuroimaging Center, Technische Universität München, Munich, Germany
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Huishi Zhang C, Sohrabpour A, Lu Y, He B. Spectral and spatial changes of brain rhythmic activity in response to the sustained thermal pain stimulation. Hum Brain Mapp 2016; 37:2976-91. [PMID: 27167709 DOI: 10.1002/hbm.23220] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to investigate the neurophysiological correlates of pain caused by sustained thermal stimulation. A group of 21 healthy volunteers was studied. Sixty-four channel continuous electroencephalography (EEG) was recorded while the subject received tonic thermal stimulation. Spectral changes extracted from EEG were quantified and correlated with pain scales reported by subjects, the stimulation intensity, and the time course. Network connectivity was assessed to study the changes in connectivity patterns and strengths among brain regions that have been previously implicated in pain processing. Spectrally, a global reduction in power was observed in the lower spectral range, from delta to alpha, with the most marked changes in the alpha band. Spatially, the contralateral region of the somatosensory cortex, identified using source localization, was most responsive to stimulation status. Maximal desynchrony was observed when stimulation was present. The degree of alpha power reduction was linearly correlated to the pain rating reported by the subjects. Contralateral alpha power changes appeared to be a robust correlate of pain intensity experienced by the subjects. Granger causality analysis showed changes in network level connectivity among pain-related brain regions due to high intensity of pain stimulation versus innocuous warm stimulation. These results imply the possibility of using noninvasive EEG to predict pain intensity and to study the underlying pain processing mechanism in coping with prolonged painful experiences. Once validated in a broader population, the present EEG-based approach may provide an objective measure for better pain management in clinical applications. Hum Brain Mapp 37:2976-2991, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Clara Huishi Zhang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Abbas Sohrabpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Yunfeng Lu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
9
|
Liu CC, Chien JH, Chang YW, Kim JH, Anderson WS, Lenz FA. Functional role of induced gamma oscillatory responses in processing noxious and innocuous sensory events in humans. Neuroscience 2015; 310:389-400. [PMID: 26408986 DOI: 10.1016/j.neuroscience.2015.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022]
Abstract
Gamma time-frequency responses (TFRs) induced by painful laser in the contralateral primary somatosensory (SI) cortex have been shown to correlate with perceived pain-intensity in human. Given the functional roles of gamma TFRs in the cortical spaces, it remains unclear whether such a relationship is sustained for other brain regions where the laser-evoked potentials (LEPs) are presented. In this study, we delivered the painful laser pluses at random pain-intensity levels (i.e. strong, medium and weak) in a single train to the dorsal hand of six patients with uncontrolled epilepsy. The laser stimulus produced a painful pinprick sensation by activating nociceptors located in the superficial layers of the skin. For each patient, arrays of >64 subdural electrodes were implanted directly covering the contralateral SI, parasylvian (PS) and medial frontal (MF) cortices to study the stimulus related gamma (TFRs) in the neocortex. In addition, using the same stimulation paradigm, the modality specificity of gamma TFRs was further examined by applying innocuous vibrotactile stimuli to the same regions of the dorsal hand in a separated group of five patients. Our results showed that gamma TFRs are not modality specific, but the largest gamma TFRs were consistently found within the SI region and noxious laser elicited significantly stronger gamma TFRs than innocuous nonpainful vibratory stimuli. Furthermore, stronger pain induced stronger gamma TFRs in the cortices of SI (r=0.4, p<0.001) and PS (r=0.29, p=0.005). Given that potentially harmful noxious stimulus would automatically capture greater attention than the innocuous ones, our results support the hypothesis that the degree of SI and PS gamma TFRs is associated with an attentional drive provoked by painful stimuli.
Collapse
Affiliation(s)
- C C Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
| | - J H Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Y W Chang
- Boehringer Ingelheim, Ridgefield, CT, USA
| | - J H Kim
- Department of Neurosurgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - W S Anderson
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - F A Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Peng W, Babiloni C, Mao Y, Hu Y. Subjective pain perception mediated by alpha rhythms. Biol Psychol 2015; 109:141-50. [PMID: 26026894 DOI: 10.1016/j.biopsycho.2015.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/23/2015] [Accepted: 05/23/2015] [Indexed: 01/26/2023]
Abstract
Suppression of spontaneous alpha oscillatory activities, interpreted as cortical excitability, was observed in response to both transient and tonic painful stimuli. The changes of alpha rhythms induced by pain could be modulated by painful sensory inputs, experimental tasks, and top-down cognitive regulations such as attention. The temporal and spatial characteristics, as well as neural functions of pain induced alpha responses, depend much on how these factors contribute to the observed alpha event-related desynchronization/synchronization (ERD/ERS). How sensory-, task-, and cognitive-related changes of alpha oscillatory activities interact in pain perception process is reviewed in the current study, and the following conclusions are made: (1) the functional inhibition hypothesis that has been proposed in auditory and visual modalities could be applied also in pain modality; (2) the neural functions of pain induced alpha ERD/ERS were highly dependent on the cortical regions where it is observed, e.g., somatosensory cortex alpha ERD/ERS in pain perception for painful stimulus processing; (3) the attention modulation of pain perception, i.e., influences on the sensory and affective dimensions of pain experience, could be mediated by changes of alpha rhythms. Finally, we propose a model regarding the determinants of pain related alpha oscillatory activity, i.e., sensory-discriminative, affective-motivational, and cognitive-modulative aspects of pain experience, would affect and determine pain related alpha oscillatory activities in an integrated way within the distributed alpha system.
Collapse
Affiliation(s)
- Weiwei Peng
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Claudio Babiloni
- Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy
| | - Yanhui Mao
- Department of Developmental and Social Process Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Kim JH, Chien JH, Liu CC, Lenz FA. Painful cutaneous laser stimuli induce event-related gamma-band activity in the lateral thalamus of humans. J Neurophysiol 2015; 113:1564-73. [PMID: 25505116 PMCID: PMC4346717 DOI: 10.1152/jn.00778.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/09/2014] [Indexed: 11/22/2022] Open
Abstract
Although the thalamus is an important module in "pain networks," there are few studies of the effect of experimental pain upon thalamic oscillations. We have now examined the hypothesis that, during a series of painful cutaneous laser stimuli, thalamic signals will show stimulus-related gamma-band spectral activity, which is modulated by attention to vs. distraction from the painful stimulus. When the series of laser stimuli was presented, attention was focused by counting the laser stimuli (count laser task), while distraction was produced by counting backward (count back plus laser task). We have studied the effect of a cutaneous laser on thalamic local field potentials and EEG activity during awake procedures (deep brain stimulation implants) for the treatment of essential tremor. At different delays after the stimulus, three low gamma- (30-50 Hz) and two high gamma-band (70-90 Hz) activations were observed during the two tasks. Greater high-gamma activation was found during the count laser task for the earlier window, while greater high-gamma activation was found during the count back plus laser task for the later window. Thalamic signals were coherent with EEG signals in the beta band, which indicated significant synchrony. Thalamic cross-frequency coupling analysis indicated that the phase of the lower frequency activity (theta to beta) modulated the amplitude of the higher frequency activity (low and high gamma) more strongly during the count laser task than during the count back plus laser task. This modulation might result in multiplexed signals each encoding a different aspect of pain.
Collapse
Affiliation(s)
- J H Kim
- Department of Neurosurgery, Korea University, Guro Hospital, Seoul, South Korea
| | - J H Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland; and
| | - C C Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland; and
| | - F A Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland; and
| |
Collapse
|
12
|
Crossmodal shaping of pain: a multisensory approach to nociception. Trends Cogn Sci 2014; 18:319-27. [PMID: 24751359 DOI: 10.1016/j.tics.2014.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/21/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Abstract
Noxious stimuli in our environment are often accompanied by input from other sensory modalities that can affect the processing of these stimuli and the perception of pain. Stimuli from these other modalities may distract us from pain and reduce its perceived strength. Alternatively, they can enhance the saliency of the painful input, leading to an increased pain experience. We discuss factors that influence the crossmodal shaping of pain and highlight the important role of innocuous stimuli in peripersonal space. We propose that frequency-specific modulations in local oscillatory power and in long-range functional connectivity may serve as neural mechanisms underlying the crossmodal shaping of pain. Finally, we provide an outlook on future directions and clinical implications of this promising research field.
Collapse
|
13
|
Barraza-Sandoval G, Casanova-Mollá J, Valls-Solé J. Neurophysiological assessment of painful neuropathies. Expert Rev Neurother 2014; 12:1297-309; quiz 1310. [DOI: 10.1586/ern.12.93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Markman T, Liu CC, Chien JH, Crone NE, Zhang J, Lenz FA. EEG analysis reveals widespread directed functional interactions related to a painful cutaneous laser stimulus. J Neurophysiol 2013; 110:2440-9. [PMID: 23945784 PMCID: PMC3841864 DOI: 10.1152/jn.00246.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/14/2013] [Indexed: 12/25/2022] Open
Abstract
During attention to a painful cutaneous laser stimulus, event-related causality (ERC) has been detected in recordings from subdural electrodes implanted directly over cortical modules for the treatment of epilepsy. However, these studies afforded limited sampling of modules and did not examine interactions with a nonpainful stimulus as a control. We now sample scalp EEG to test the hypothesis that attention to the laser stimulus is associated with poststimulus ERC interactions that are different from those with attention to a nonpainful stimulus. Subjects attended to (counted) either a painful laser stimulus (laser attention task) or a nonpainful electrical cutaneous stimulus that produced distraction from the laser (laser distraction task). Both of these stimuli were presented in random order in a single train. The intensities of both stimuli were adjusted to produce similar baseline salience and sensations in the same cutaneous territory. The results demonstrated that EEG channels with poststimulus ERC interactions were consistently different during the laser stimulus versus the electric stimulus. Poststimulus ERC interactions for the laser attention task were different from the laser distraction task. Furthermore, scalp EEG frontal channels play a driver role while parietal temporal channels play a receiver role during both tasks, although this does not prove that these channels are connected. Sites at which large numbers of ERC interactions were found for both laser attention and distraction tasks (critical sites) were located at Cz, Pz, and C3. Stimulation leading to disruption of sites of these pain-related interactions may produce analgesia for acute pain.
Collapse
Affiliation(s)
- T. Markman
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - C. C. Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - J. H. Chien
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - N. E. Crone
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland; and
| | - J. Zhang
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
- School of Biological Science and Medical Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China
| | - F. A. Lenz
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci 2012; 35:629-37. [DOI: 10.1016/j.tins.2012.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/25/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
16
|
Visualizing the complex brain dynamics of chronic pain. J Neuroimmune Pharmacol 2012; 8:510-7. [PMID: 22684310 DOI: 10.1007/s11481-012-9378-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/28/2012] [Indexed: 12/23/2022]
Abstract
Chronic pain is now recognized as a disease state that involves changes in brain function. This concept is reinforced by data that document structural and morphological remapping of brain circuitry under conditions of chronic pain. Evidence for aberrant neurophysiology in the brain further confirms neuroplasticity at cellular and molecular levels. Proper detection of pain-induced changes using emerging non-invasive and cost-effective technologies, such as analytical electroencephalography methods, could yield objective diagnostic measures and may guide therapeutic interventions targeting the brain for effective management of chronic pain.
Collapse
|
17
|
Liu CC, Franaszczuk P, Crone NE, Jouny C, Lenz FA. Studies of properties of "Pain Networks" as predictors of targets of stimulation for treatment of pain. Front Integr Neurosci 2011; 5:80. [PMID: 22164137 PMCID: PMC3230069 DOI: 10.3389/fnint.2011.00080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/19/2011] [Indexed: 12/29/2022] Open
Abstract
Two decades of functional imaging studies have demonstrated pain-related activations of primary somatic sensory cortex (S1), parasylvian cortical structures (PS), and medial frontal cortical structures (MF), which are often described as modules in a "pain network." The directionality and temporal dynamics of interactions between and within the cortical and thalamic modules are uncertain. We now describe our studies of these interactions based upon recordings of local field potentials (LFPs) carried out in an epilepsy monitoring unit over the one week period between the implantation and removal of cortical electrodes during the surgical treatment of epilepsy. These recordings have unprecedented clarity and resolution for the study of LFPs related to the experimental pain induced by cutaneous application of a Thulium YAG laser. We also used attention and distraction as behavioral probes to study the psychophysics and neuroscience of the cortical "pain network." In these studies, electrical activation of cortex was measured by event-related desynchronization (ERD), over SI, PS, and MF modules, and was more widespread and intense while attending to painful stimuli than while being distracted from them. This difference was particularly prominent over PS. In addition, greater perceived intensity of painful stimuli was associated with more widespread and intense ERD. Connectivity of these modules was then examined for dynamic causal interactions within and between modules by using the Granger causality (GRC). Prior to the laser stimuli, a task involving attention to the painful stimulus consistently increased the number of event-related causality (ERC) pairs both within the SI cortex, and from SI upon PS (SI > PS). After the laser stimulus, attention to a painful stimulus increased the number of ERC pairs from SI > PS, and SI > MF, and within the SI module. LFP at some electrode sites (critical sites) exerted ERC influences upon signals at multiple widespread electrodes, both in other cortical modules and within the module where the critical site was located. In summary, critical sites and SI modules may bind the cortical modules together into a "pain network," and disruption of that network by stimulation might be used to treat pain. These results in humans may be uniquely useful to design and optimize anatomically based pain therapies, such as stimulation of the S1 or critical sites through transcutaneous magnetic fields or implanted electrodes.
Collapse
Affiliation(s)
- C. C. Liu
- Department of Neurosurgery, Johns Hopkins HospitalBaltimore, MD, USA
| | - P. Franaszczuk
- Department of Neurology, Johns Hopkins HospitalBaltimore, MD, USA
- US Army Research Laboratory, Human Research and Engineering DirectorateAberdeen Proving Ground, MD, USA
| | - N. E. Crone
- Department of Neurology, Johns Hopkins HospitalBaltimore, MD, USA
| | - C. Jouny
- Department of Neurology, Johns Hopkins HospitalBaltimore, MD, USA
| | - F. A. Lenz
- Department of Neurosurgery, Johns Hopkins HospitalBaltimore, MD, USA
| |
Collapse
|
18
|
Liu CC, Ohara S, Franaszczuk PJ, Crone NE, Lenz FA. Attention to painful cutaneous laser stimuli evokes directed functional interactions between human sensory and modulatory pain-related cortical areas. Pain 2011; 152:2781-2791. [PMID: 22033363 PMCID: PMC3433227 DOI: 10.1016/j.pain.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/25/2011] [Accepted: 09/01/2011] [Indexed: 12/30/2022]
Abstract
The human 'pain network' includes cortical areas that are activated during the response to painful stimuli (termed category 1) or during psychological processes that modulate pain, for example, distraction (termed category 2). These categories include parts of the parasylvian (PS), medial frontal (MF), and paracentral cortex (S1&M1). Here we test the hypothesis that causal interactions both within and between category 1 and category 2 modules occur during attention to a painful stimulus. Event-related causality (ERC) was calculated from local field potentials recorded directly from these cortical areas during the response to a painful cutaneous laser stimulus in patients being monitored for epilepsy. The number of electrodes involved in pairs with significant ERC in category 1 was greater for pre-stimulus vs post-stimulus and for attention vs distraction. This is consistent with our prior evidence that the category 1 'pain network' changes rapidly with time intervals and tasks. In contrast, the interaction between categories was often unchanged or stable across intervals and tasks, particularly in MF. The proportion of contacts involved in interactions with PS was greater during distraction vs attention while activation was less, which suggests that distraction involves an inhibitory process in PS. Functional interactions between categories were overwhelmingly in the direction from category 2>1, particularly for contacts in MF which often had a driver role. These results demonstrate that MF is densely interconnected throughout the 'pain network' so that stimulation of MF might be used to disrupt the 'pain network' as a therapy for pain.
Collapse
Affiliation(s)
- Chang-Chia Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA Department of Neurology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
19
|
Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe. Neuroscience 2011; 189:359-69. [PMID: 21664438 DOI: 10.1016/j.neuroscience.2011.05.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022]
Abstract
The current model of fear conditioning suggests that it is mediated through modules involving the amygdala (AMY), hippocampus (HIP), and frontal lobe (FL). We now test the hypothesis that habituation and acquisition stages of a fear conditioning protocol are characterized by different event-related causal interactions (ERCs) within and between these modules. The protocol used the painful cutaneous laser as the unconditioned stimulus and ERC was estimated by analysis of local field potentials recorded through electrodes implanted for investigation of epilepsy. During the prestimulus interval of the habituation stage FL>AMY ERC interactions were common. For comparison, in the poststimulus interval of the habituation stage, only a subdivision of the FL (dorsolateral prefrontal cortex, dlPFC) still exerted the FL>AMY ERC interaction (dlFC>AMY). For a further comparison, during the poststimulus interval of the acquisition stage, the dlPFC>AMY interaction persisted and an AMY>FL interaction appeared. In addition to these ERC interactions between modules, the results also show ERC interactions within modules. During the poststimulus interval, HIP>HIP ERC interactions were more common during acquisition, and deep hippocampal contacts exerted causal interactions on superficial contacts, possibly explained by connectivity between the perihippocampal gyrus and the HIP. During the prestimulus interval of the habituation stage, AMY>AMY ERC interactions were commonly found, while interactions between the deep and superficial AMY (indirect pathway) were independent of intervals and stages. These results suggest that the network subserving fear includes distributed or widespread modules, some of which are themselves "local networks." ERC interactions between and within modules can be either static or change dynamically across intervals or stages of fear conditioning.
Collapse
|
20
|
Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz F. Dipole source analyses of laser evoked potentials obtained from subdural grid recordings from primary somatic sensory cortex. J Neurophysiol 2011; 106:722-30. [PMID: 21593389 DOI: 10.1152/jn.00135.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cortical potentials evoked by cutaneous application of a laser stimulus (laser evoked potentials, LEP) often include potentials in the primary somatic sensory cortex (S1), which may be located within the subdivisions of S1 including Brodmann areas 3A, 3B, 1, and 2. The precise location of the LEP generator may clarify the pattern of activation of human S1 by painful stimuli. We now test the hypothesis that the generators of the LEP are located in human Brodmann area 1 or 3A within S1. Local field potential (LFP) source analysis of the LEP was obtained from subdural grids over sensorimotor cortex in two patients undergoing epilepsy surgery. The relationship of LEP dipoles was compared with dipoles for somatic sensory potentials evoked by median nerve stimulation (SEP) and recorded in area 3B (see Baumgärtner U, Vogel H, Ohara S, Treede RD, Lenz FA. J Neurophysiol 104: 3029-3041, 2010). Both patients had an early radial dipole in S1. The LEP dipole was located medial, anterior, and deep to the SEP dipole, which suggests a nociceptive dipole in area 3A. One patient had a later tangential dipole with positivity posterior, which is opposite to the orientation of the SEP dipole in area 3B. The reversal of orientations between modalities is consistent with the cortical surface negative orientation resulting from superficial termination of thalamocortical neurons that receive inputs from the spinothalamic tract. Therefore, the present results suggest that the LEP may result in a radial dipole consistent with a generator in area 3A and a putative later tangential generator in area 3B.
Collapse
Affiliation(s)
- Ulf Baumgärtner
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | | | | | | | | |
Collapse
|
21
|
Liu CC, Shi CQ, Franaszczuk PJ, Crone NE, Schretlen D, Ohara S, Lenz FA. Painful laser stimuli induce directed functional interactions within and between the human amygdala and hippocampus. Neuroscience 2011; 178:208-17. [PMID: 21256929 DOI: 10.1016/j.neuroscience.2011.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 01/15/2023]
Abstract
The pathways by which painful stimuli are signaled within the human medial temporal lobe are unknown. Rodent studies have shown that nociceptive inputs are transmitted from the brainstem or thalamus through one of two pathways to the central nucleus of the amygdala. The indirect pathway projects from the basal and lateral nuclei of the amygdala to the central nucleus, while the direct pathway projects directly to the central nucleus. We now test the hypothesis that the human ventral amygdala (putative basal and lateral nuclei) exerts a causal influence upon the dorsal amygdala (putative central nucleus), during the application of a painful laser stimulus. Local field potentials (LFPs) were recorded from depth electrode contacts implanted in the medial temporal lobe for the treatment of epilepsy, and causal influences were analyzed by Granger causality (GRC). This analysis indicates that the dorsal amygdala exerts a pre-stimulus causal influence upon the hippocampus, consistent with an attention-related response to the painful laser. Within the amygdala, the analysis indicates that the ventral contacts exert a causal influence upon dorsal contacts, consistent with the human (putative) indirect pathway. Potentials evoked by the laser (LEPs) were not recorded in the ventral nuclei, but were recorded at dorsal amygdala contacts which were not preferentially those receiving causal influences from the ventral contacts. Therefore, it seems likely that the putative indirect pathway is associated with causal influences from the ventral to the dorsal amygdala, and is distinct from the human (putative) indirect pathway which mediates LEPs in the dorsal amygdala.
Collapse
Affiliation(s)
- C C Liu
- Department of Neurosurgery, Johns Hopkins University, 600 North Wolfe Street, Baltimore, MD 2105, USA
| | | | | | | | | | | | | |
Collapse
|