1
|
McNew JF, Davis DJ, Grimsrud KN, Bryda EC. Comparison of Thermal and Mechanical Pain Testing Modalities in Sprague Dawley and Fischer 344 Rats ( Rattus norvegicus). Comp Med 2024; 74:173-178. [PMID: 39107939 PMCID: PMC11267441 DOI: 10.30802/aalas-cm-24050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 02/13/2024] [Indexed: 08/10/2024]
Abstract
While rodents are used extensively for studying pain, there is a lack of reported direct comparisons of thermal and mechanical pain testing methods in rats of different genetic backgrounds. Understanding the range of interindividual variability of withdrawal thresholds and thermal latencies based on these testing methods and/or genetic background is important for appropriate experimental design. Testing was performed in two common rat genetic backgrounds: outbred Sprague-Dawley (SD) and inbred Fischer 344 (F344). Male and female, 10- to 14-wk-old F344 and SD rats were used to assess withdrawal thresholds in 3 different modalities: the Randall-Selitto test (RST), Hargreaves test (HT), and tail flick test (TFT). The RST was performed by using an operator-controlled handheld instrument to generate a noxious pressure stimulus to the left hind paw. The HT and the TFT used an electronically controlled light source to deliver a noxious thermal stimulus to the left hind paw or tail tip, respectively. Rats of each sex and genetic background underwent one type of test on day 0 and day 7. Withdrawal thresholds and thermal latencies were compared among tests. No significant differences were observed. Our findings can serve as a guide for researchers considering these nociceptive tests for their experiments.
Collapse
Affiliation(s)
- James F McNew
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Comparative Medicine Program, University of Missouri, Columbia, Missouri
| | - Daniel J Davis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Comparative Medicine Program, University of Missouri, Columbia, Missouri
- Animal Modeling Core, University of Missouri, Columbia, Missouri
| | - Kristin N Grimsrud
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, California
- Mouse Biology Program, University of California, Davis, Davis, California; and
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Comparative Medicine Program, University of Missouri, Columbia, Missouri
- Animal Modeling Core, University of Missouri, Columbia, Missouri
- Rat Resource and Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
2
|
Bigiarelli KJ. Rodent Thermoregulation: Considerations for Tail-Cuff Blood Pressure Measurements. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:406-411. [PMID: 35948400 PMCID: PMC9536829 DOI: 10.30802/aalas-jaalas-22-000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Noninvasive blood pressure measurement devices have gained popularity in recent years as an alternative to radiotelemetry and other invasive blood pressure measurement techniques. While many factors must be considered when choosing a measurement method, specific variables should be evaluated when using a tail-cuff blood pressure technique. Rodents have complex and dynamic thermal biology processes that involve fluctuating vasomotor tone of the tail. This and other factors that affect vascular tone, such as the autonomic response to stress, significantly affect peripheral blood flow. Awareness and consideration of thermoregulatory states and vasomotor tone can increase success and decrease variability when measuring blood pressure measurements using a tail-cuff measurement technique.
Collapse
Affiliation(s)
- Krista J Bigiarelli
- Pre-Clinical Research and Development, Kent Scientific Corporation, Torrington, Connecticut,Corresponding author.
| |
Collapse
|
3
|
Yamashita H, Zeredo JLL, Toda K. Age Differences in Naloxone Reversibility of Electroacupuncture on the Jaw Opening Reflex in Rats. J Acupunct Meridian Stud 2021; 14:167-172. [DOI: 10.51507/j.jams.2021.14.4.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Hiromi Yamashita
- Forensic Dental Science, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Jorge Luis Lopes Zeredo
- Graduate Program in Health Science and Technology, Ceilandia Campus, University of Brasilia, Brasilia, Brazil
| | - Kazuo Toda
- Integrative Sensory Physiology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Skin temperature contribution to the decrease in withdrawal latency following chronic constriction injury. Physiol Behav 2020; 227:113147. [PMID: 32835779 DOI: 10.1016/j.physbeh.2020.113147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/26/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic constriction injury (CCI) is widely used as an animal neuropathic pain model. Neuropathic pain is considered to exist when withdrawal latency to thermal stimulation is decreased after inducing a CCI to the sciatic nerve. However, it is known that CCI leads to changes in skin temperature and that skin temperature can affect withdrawal latency. Aim of this study was to compare withdrawal latencies of constricted and contralateral hind limbs, to thermal stimulation, at the same artificially-induced skin temperatures. METHODS Neuropathic pain was induced by four ligatures on the left sciatic nerve in adult male Wistar rats. Withdrawal latencies were measured from the 11th to 14th day after ligation, in different ambient temperatures, using the plantar test (Hargreaves method). By changing ambient we produced different hind limb skin temperatures. RESULTS Our results show that (1) CCI cause an increase in skin temperature; (2) the withdrawal latency was inversely related to ambient and skin temperature in the same manner for both the ligated and contralateral hind limbs; and (3) withdrawal latencies did not differ significantly for the ligated and contralateral hind limbs when the temperature of the hind limbs was artificially made the same (i.e., by changing the ambient temperature). CONCLUSIONS Withdrawal latencies to thermal stimulation did not differ on ligated and contralateral hind limb after CCI to the sciatic nerve if the temperature of the hind limbs was artificially or mathematically made the same. This finding may have significant impact on the interpretation results of neuropathic pain research.
Collapse
|
5
|
Mei J, Riedel N, Grittner U, Endres M, Banneke S, Emmrich JV. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry. Sci Rep 2018; 8:3526. [PMID: 29476115 PMCID: PMC5824949 DOI: 10.1038/s41598-018-22020-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.
Collapse
Affiliation(s)
- Jie Mei
- Department of Neurology and Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nico Riedel
- QUEST - Center for Transforming Biomedical Research, Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrike Grittner
- Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Biostatistics and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stefanie Banneke
- German Federal Institute for Risk Assessment, German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Julius Valentin Emmrich
- Department of Neurology and Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
El Bitar N, Pollin B, Karroum E, Pincedé I, Le Bars D. Entanglement between thermoregulation and nociception in the rat: the case of morphine. J Neurophysiol 2016; 116:2473-2496. [PMID: 27605533 PMCID: PMC5133307 DOI: 10.1152/jn.00482.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/03/2016] [Indexed: 11/22/2022] Open
Abstract
In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED50 in the 0.5-1 mg/kg range. Given the pivotal functional role of the rostral ventromedial medulla (RVM) in nociception and the rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, the RVM/rMR was blocked by muscimol: it suppressed the effects of morphine. "On-" and "off-" neurons recorded in the RVM/rMR are activated and inhibited by thermal nociceptive stimuli, respectively. They are also implicated in regulating the cyclic variations of the vasomotion of the tail and paws seen in thermoneutral conditions. Morphine elicited abrupt inhibition and activation of the firing of on- and off-cells recorded in the RVM/rMR. By using a model that takes into account the power of the radiant heat source, initial skin temperature, core body temperature, and peripheral nerve conduction distance, one can argue that the morphine-induced increase of reaction time is mainly related to the morphine-induced vasoconstriction. This statement was confirmed by analyzing in psychophysical terms the tail-flick response to random variations of noxious radiant heat. Although the increase of a reaction time to radiant heat is generally interpreted in terms of analgesia, the present data question the validity of using such an approach to build a pain index.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Elias Karroum
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Ivanne Pincedé
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| |
Collapse
|
7
|
Vainer BG. Lasers and infrared thermography: advantageous cooperation. APPLIED OPTICS 2016; 55:D95-D100. [PMID: 27958431 DOI: 10.1364/ao.55.000d95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In a brief review, the beneficial outcomes that have arisen from simultaneous use of laser- and infrared thermography (IRT)-based techniques are demonstrated. The most recent literary and original experimental results collected from different research and practical areas are presented. It is shown that modern IRT acts as an indispensable laser partner in various biomedical and many other applications and technologies. And vice versa, the laser-based methods and techniques often serve as an appropriate research instrument enriching IRT measurement data with independently obtained information.
Collapse
|
8
|
Abstract
Natural selection has shaped the physiological properties of sensory systems across species, yielding large variations in their sensitivity. Here, we used laser stimulation of skin nociceptors, a widely used technique to investigate pain in rats and humans, to provide a vivid example of how ignoring these variations can lead to serious misconceptions in sensory neuroscience. In 6 experiments, we characterized and compared the physiological properties of the electrocortical responses elicited by laser stimulation in rats and humans. We recorded the electroencephalogram from the surface of the brain in freely moving rats and from the scalp in healthy humans. Laser stimuli elicited 2 temporally distinct responses, traditionally interpreted as reflecting the concomitant activation of different populations of nociceptors with different conduction velocities: small-myelinated Aδ-fibres and unmyelinated C-fibres. Our results show that this interpretation is valid in humans, but not in rats. Indeed, the early response recorded in rats does not reflect the activation of the somatosensory system, but of the auditory system by laser-generated ultrasounds. These results have wide implications: retrospectively, as they prompt for a reconsideration of a large number of previous interpretations of electrocortical rat recordings in basic, preclinical, and pharmacological research, and prospectively, as they will allow recording truly pain-related cortical responses in rats.
Collapse
|
9
|
Cho SH, Ko SH, Lee MS, Koo BS, Lee JH, Kim SH, Chae WS, Jin HC, Lee JS, Kim YI. Development of the Geop-Pain questionnaire for multidisciplinary assessment of pain sensitivity. Korean J Anesthesiol 2016; 69:492-505. [PMID: 27703631 PMCID: PMC5047986 DOI: 10.4097/kjae.2016.69.5.492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 02/02/2023] Open
Abstract
Background To assess the multidisciplinary aspects of pain, various self-rating questionnaires have been developed, but there have not been sufficient relevant studies on this topic in South Korea. The aim of this study was to develop a new pain sensitivity-related questionnaire in the Korean language that would be simple and would well reflect Koreans' senses. Methods A new pain assessment questionnaire was developed through a pre-survey on "geop", which is the Korean word expressing fear, anxiety, or catastrophizing. We named the new assessment questionnaire the Geop-Pain Questionnaire (GPQ). The GPQ was composed of 15 items divided into three categories and rated on a 5-point scale. As a preliminary study, internal consistency and test-retest reliability analyses were conducted. Subsequently, 109 individuals completed the GPQ along with three pain-related questionnaires translated into Korean (Pain Sensitivity Questionnaire [PSQ], Pain Anxiety Symptoms Scale [PASS], and Pain Catastrophizing Scale [PCS]), and the correlations were analyzed. Results All items in the GPQ showed appropriate internal consistency, and the test-retest reliability analysis showed no statistically significant differences. The correlations between the GPQ and the existing questionnaires revealed that the GPQ scores had mid-positive correlations with the PSQ scores and strong positive correlations with the PASS and PCS scores. Conclusions This study attempted to develop a questionnaire assessing pain sensitivity multidimensionally using the Korean word geop for the first time. The self-rating GPQ showed high correlations with the existing questionnaires and demonstrated potential to be utilized as a pain prediction index in clinical practice.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Su-Hwan Ko
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Mi-Soon Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Bon-Sung Koo
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Joon-Ho Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Sang-Hyun Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Seok Chae
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Hee Cheol Jin
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jeong Seok Lee
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Yong-Ik Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
10
|
Nazeri M, Shabani M, Parsania S, Golchin L, Razavinasab M, Abareghi F, Kermani M. Simultaneous impairment of passive avoidance learning and nociception in rats following chronic swim stress. Adv Biomed Res 2016; 5:93. [PMID: 27308265 PMCID: PMC4908791 DOI: 10.4103/2277-9175.183141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/23/2014] [Indexed: 01/05/2023] Open
Abstract
Background: Stress can alter response to nociception. Under certain circumstances stress enhances nociception, a phenomenon which is called stress-induced hyperalgesia (SIH). While nociception has been studied in this paradigm, possible alterations occurring in passive avoidance (PA) learning after exposing rats to this type of stress has not been studied before. Materials and Methods: In the current study, we evaluated the effect of chronic swim stress (FS) or sham swim (SS) on nociception in both spinal (tail-flick) and supraspinal (53.5°C hot-pate) levels. Furthermore, PA task was performed to see whether chronic swim stress changes PA learning or not. Mobility of rats and anxiety-like behavior were assessed using open-field test (OFT). Results: Supraspinal pain response was altered by swim stress (hot-plate test). PA learning was impaired by swim stress, rats in SS group did not show such impairments. Rats in the FS group showed increased mobility (rearing, velocity, total distant moved (TDM) and decreased anxiety-like behavior (time spent in center and grooming) compared to SS rats. Conclusions: This study demonstrated the simultaneous impairment of PA and nociception under chronic swim stress, whether this is simply a co-occurrence or not is of special interest. This finding may implicate a possible role for limbic structures, though this hypothesis should be studied by experimental lesions in different areas of rat brain to assess their possible role in the pathophysiology of SIH.
Collapse
Affiliation(s)
- Masoud Nazeri
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran; Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Shahrnaz Parsania
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | - Leila Golchin
- Department of Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman, Iran
| | | | - Fatemeh Abareghi
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moein Kermani
- Department of Neuroscience, Medical Students Research Committee, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
El Bitar N, Pollin B, Huang G, Mouraux A, Le Bars D. The rostral ventromedial medulla control of cutaneous vasomotion of paws and tail in the rat: implication for pain studies. J Neurophysiol 2015; 115:773-89. [PMID: 26581872 DOI: 10.1152/jn.00695.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/13/2015] [Indexed: 11/22/2022] Open
Abstract
Thermal neutrality in rodents is achieved by large cyclic variations of the sympathetic drive of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Given the pivotal functional role of rostral ventromedial medulla (RVM) in nociception and rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, we aimed at circumscribing the brainstem regions that are the source of premotor afferents to sympathetic preganglionic neurons that control the vasomotor tone of the tail and hind paws. A thermometric infrared camera recorded indirectly the vasomotor tone of the tail and hind paws. During the control period, the rat was maintained in vasoconstriction by preserving a stable, homogeneous, and constant surrounding temperature, slightly below the core temperature. The functional blockade of the RVM/rMR by the GABAA receptor agonist muscimol (0.5 nmol, 50 nl) elicited an extensive increase of the temperature of the paws and tail, associated with a slight decrease of blood pressure and heart rate. Both the increased heat loss through vasodilatation and the decrease heart-induced heat production elicited a remarkable reduction of the central temperature. The effective zones were circumscribed to the parts of the RVM/rMR facing the facial nucleus. They match very exactly the brain regions often described as specifically devoted to the control of nociception. Our data support and urge on the highest cautiousness regarding the interpretation of results aimed at studying the effects of any pharmacological manipulations of RVM/rMR with the usual tests of pain.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Gan Huang
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| |
Collapse
|
12
|
Fei Y, Zong GQ, Chen J, Liu RM. Fast-track protocols in devascularization for cirrhotic portal hypertension. Rev Assoc Med Bras (1992) 2015; 61:250-7. [PMID: 26248248 DOI: 10.1590/1806-9282.61.03.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION/OBJECTIVE fast-tract surgery (FTS) has been rapidly embraced by surgeons as a mechanism for improving patient care and driving down complications and costs. The aim of this study was to determine if any improvement in outcomes occurred after FTS protocol for selective double portazygous disconnection with preserving vagus (SDPDPV) compared with non-FTS postoperative care. METHODS patients eligible for SDPDPV in the period January 2012-April 2014 were randomly selected for the FTS group or non-FTS group. A designed protocol was used in the FTS group with emphasis on an interdisciplinary approach. The non-FTS group was treated using previously established standard procedures. The number of postoperative complications, time of functional recovery and duration of hospital stay were recorded. RESULTS patients in the FTS group (n=59) and non-FTS group (n=57) did not differ in terms of preoperative data and operative details (p>0.05). The FTS procedure led to significantly better control and faster restoration of gastrointestinal functions, food tolerance, rehabilitation and hospital discharge (p<0.05). Postoperative complications, including nausea/vomiting, severe ascites, wound infection, urinary tract infection and pulmonary infection were all significantly lower in the FTS group (p<0.05). According to the postoperative morbidity classification used by Clavien, overall complications and grade I complications were both significantly lower in the FTS group compared with the non-FTS group (p<0.05). CONCLUSION adopting the FTS protocol helped to recover gastrointestinal functions, to reduce frequency of postoperative complications and to reduce hospital stay. The FTS strategy is safe and effective in improving postoperative outcomes.
Collapse
Affiliation(s)
- Yang Fei
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| | - Guang-quan Zong
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| | - Jian Chen
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| | - Ren-min Liu
- Department of General Surgery, 81st Hospital of P.L.A., Nanjing, China
| |
Collapse
|
13
|
Experimental design and reporting standards for improving the internal validity of pre-clinical studies in the field of pain: Consensus of the IMI-Europain consortium. Scand J Pain 2015; 7:58-70. [DOI: 10.1016/j.sjpain.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/19/2015] [Indexed: 01/31/2023]
Abstract
Abstract
Background and aims
Pain is a subjective experience, and as such, pre-clinical models of human pain are highly simplified representations of clinical features. These models are nevertheless critical for the delivery of novel analgesics for human pain, providing pharmacodynamic measurements of activity and, where possible, on-target confirmation of that activity. It has, however, been suggested that at least 50% of all pre-clinical data, independent of discipline, cannot be replicated. Additionally, the paucity of “negative” data in the public domain indicates a publication bias, and significantly impacts the interpretation of failed attempts to replicate published findings. Evidence suggests that systematic biases in experimental design and conduct and insufficiencies in reporting play significant roles in poor reproducibility across pre-clinical studies. It then follows that recommendations on how to improve these factors are warranted.
Methods
Members of Europain, a pain research consortium funded by the European Innovative Medicines Initiative (IMI), developed internal recommendations on how to improve the reliability of pre-clinical studies between laboratories. This guidance is focused on two aspects: experimental design and conduct, and study reporting.
Results
Minimum requirements for experimental design and conduct were agreed upon across the dimensions of animal characteristics, sample size calculations, inclusion and exclusion criteria, random allocation to groups, allocation concealment, and blinded assessment of outcome. Building upon the Animals in Research: Reportingin vivo Experiments (ARRIVE) guidelines, reporting standards were developed for pre-clinical studies of pain. These include specific recommendations for reporting on ethical issues, experimental design and conduct, and data analysis and interpretation. Key principles such as sample size calculation, a priori definition of a primary efficacy measure, randomization, allocation concealments, and blinding are discussed. In addition, considerations of how stress and normal rodent physiology impact outcome of analgesic drug studies are considered. Flow diagrams are standard requirements in all clinical trials, and flow diagrams for preclinical trials, which describe number of animals included/excluded, and reasons for exclusion are proposed. Creation of a trial registry for pre-clinical studies focused on drug development in order to estimate possible publication bias is discussed.
Conclusions
More systematic research is needed to analyze how inadequate internal validity and/or experimental bias may impact reproducibility across pre-clinical pain studies. Addressing the potential threats to internal validity and the sources of experimental biases, as well as increasing the transparency in reporting, are likely to improve preclinical research broadly by ensuring relevant progress is made in advancing the knowledge of chronic pain pathophysiology and identifying novel analgesics.
Implications
We are now disseminating these Europain processes for discussion in the wider pain research community. Any benefit from these guidelines will be dependent on acceptance and disciplined implementation across pre-clinical laboratories, funding agencies and journal editors, but it is anticipated that these guidelines will be a first step towards improving scientific rigor across the field of pre-clinical pain research.
Collapse
|
14
|
Comparison of operant escape and reflex tests of nociceptive sensitivity. Neurosci Biobehav Rev 2015; 51:223-42. [PMID: 25660956 DOI: 10.1016/j.neubiorev.2015.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/17/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
Abstract
Testing of reflexes such as flexion/withdrawal or licking/guarding is well established as the standard for evaluating nociceptive sensitivity and its modulation in preclinical investigations of laboratory animals. Concerns about this approach have been dismissed for practical reasons - reflex testing requires no training of the animals; it is simple to instrument; and responses are characterized by observers as latencies or thresholds for evocation. In order to evaluate this method, the present review summarizes a series of experiments in which reflex and operant escape responding are compared in normal animals and following surgical models of neuropathic pain or pharmacological intervention for pain. Particular attention is paid to relationships between reflex and escape responding and information on the pain sensitivity of normal human subjects or patients with pain. Numerous disparities between results for reflex and operant escape measures are described, but the results of operant testing are consistent with evidence from humans. Objective reasons are given for experimenters to choose between these and other methods of evaluating the nociceptive sensitivity of laboratory animals.
Collapse
|
15
|
Abstract
BACKGROUND The hot water tail-flick test is widely used to measure the degree of nociception experienced by laboratory animals. This study was carried out to optimise interval times for the hot water immersion tail-flick tests in rats. METHOD Ten different intervals from 10 s to 1 h were tested in 60 Sprague-Dawley male rats. At least eight rats were tested for each interval in three consecutive hot water tail-flick tests. Dixon's up-and-down method was also used to find the optimal intervals. The same rats were then divided into two groups. In Group N, naloxone was injected to reverse the prolonged latency times, whereas saline was used in the control Group S. RESULTS Intervals of 10 s, 20 s, 30 min and 1 h did not significantly impact latencies, yielding similar results in three consecutive tests (p > 0.05). However, interval times of between 30 s and 20 min, inclusively, caused significantly prolonged latencies in the second and third tests (p < 0.001). Dixon's up-and-down method showed that 95% of the rats had prolonged latencies in hot water tail-flick tests at intervals longer than 32 s. Naloxone reversed prolonged latencies in Group N, whereas the latencies in Group S were further prolonged in 5 min interval tests. CONCLUSION The optimal intervals for hot water tail-flick tests are either shorter than 20 s or longer than 20 min. The prolonged latencies after repetitive tests were attributable to an endocrine opioid.
Collapse
|
16
|
El Bitar N, Pollin B, Le Bars D. "On-" and "off-" cells in the rostral ventromedial medulla of rats held in thermoneutral conditions: are they involved in thermoregulation? J Neurophysiol 2014; 112:2199-217. [PMID: 25008415 DOI: 10.1152/jn.00722.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In thermal neutral condition, rats display cyclic variations of the vasomotion of the tail and paws, synchronized with fluctuations of blood pressure, heart rate, and core body temperature. "On-" and "off-" cells located in the rostral ventromedial medulla, a cerebral structure implicated in somatic sympathetic drive, 1) exhibit similar spontaneous cyclic activities in antiphase and 2) are activated and inhibited by thermal nociceptive stimuli, respectively. We aimed at evaluating the implication of such neurons in autonomic regulation by establishing correlations between their firing and blood pressure, heart rate, and skin and core body temperature variations. When, during a cycle, a relative high core body temperature was reached, the on-cells were activated and within half a minute, the off-cells and blood pressure were depressed, followed by heart rate depression within a further minute; vasodilatation of the tail followed invariably within ∼3 min, often completed with vasodilatation of hind paws. The outcome was an increased heat loss that lessened the core body temperature. When the decrease of core body temperature achieved a few tenths of degrees, sympathetic activation switches off and converse variations occurred, providing cycles of three to seven periods/h. On- and off-cell activities were correlated with inhibition and activation of the sympathetic system, respectively. The temporal sequence of events was as follows: core body temperature → on-cell → off-cell ∼ blood pressure → heart rate → skin temperature → core body temperature. The function of on- and off-cells in nociception should be reexamined, taking into account their correlation with autonomic regulations.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Faculté de Médecine, Paris, France; and Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Faculté de Médecine, Paris, France; and Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Faculté de Médecine, Paris, France; and Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| |
Collapse
|
17
|
El Bitar N, Pollin B, Karroum E, Pincedé I, Mouraux A, Le Bars D. Thermoregulatory vasomotor tone of the rat tail and paws in thermoneutral conditions and its impact on a behavioral model of acute pain. J Neurophysiol 2014; 112:2185-98. [PMID: 25008410 DOI: 10.1152/jn.00721.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The tail and paws in rodents are heat exchangers involved in the maintenance of core body temperature (T(core)). They are also the most widely used target organs to study acute or chronic "models" of pain. We describe the fluctuations of vasomotor tone in the tail and paws in conditions of thermal neutrality and the constraints of these physiological processes on the responses to thermal nociceptive stimuli, commonly used as an index of pain. Skin temperatures were recorded with a calibrated thermal camera to monitor changes of vasomotor tone in the tail and paws of awake and anesthetized rats. In thermoneutral conditions, the sympathetic tone fluctuated at a rate of two to seven cycles/h. Increased mean arterial blood pressure (MAP; ∼46 mmHg) was followed by increased heart rate (HR; ∼45 beats/min) within 30 s, vasoconstriction of extremities (3.5-7°C range) within 3-5 min, and increased T(core) (∼0.7°C) within 6 min. Decreased MAP was followed by opposite events. There was a high correlation between HR and T(core) recorded 5-6 min later. The reaction time of the animal's response to a radiant thermal stimulus-heat ramp (6°C/s, 20 mm(2) spot) generated by a CO2 laser-directed to the tail depends on these variations. Consequently, the fluctuations in tail and paw temperature thus represent a serious confound for thermal nociceptive tests, particularly when they are conducted at thermal neutrality.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Elias Karroum
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - Ivanne Pincedé
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine Paris, France; Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France; and
| |
Collapse
|
18
|
Vítková J, Loučka M, Boček J, Vaculín S. The effect of acclimatization and ambient temperature on heat withdrawal threshold in rats. Eur J Pain 2014; 19:21-7. [PMID: 24782065 DOI: 10.1002/ejp.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nociception in rats is frequently measured in terms of latency of withdrawal reaction to radiant heat (thermal nociceptive threshold). The aim of this study was to determine how much housing acclimatization and ambient temperature affect the results of thermal pain threshold testing. METHODS All experiments used adult male Wistar rats. Thermal pain thresholds were tested using the radiant heat withdrawal reaction at three different body sites: forepaws, hind paws and tail. Skin temperature was measured using an Infrared thermometer and ambient temperature was set at 18, 20, 24 or 26 °C. RESULTS The results demonstrate that (1) thermal pain threshold was inversely related to both ambient and skin temperature; (2) housing acclimatization and repeated testing had no effect on nociceptive thresholds at any of the three body sites; (3) a resting, cranio-caudal distribution, of nociceptive sensitivity was observed; (4) hind paws and tail were more sensitive to changes of skin and ambient temperature than forepaws. CONCLUSION These findings show the importance of recording laboratory conditions in experiments and their influence on results.
Collapse
Affiliation(s)
- J Vítková
- Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Charles University in Prague, Czech Republic
| | | | | | | |
Collapse
|
19
|
Role of nitric oxide in altered nociception and memory following chronic stress. Physiol Behav 2014; 129:214-20. [DOI: 10.1016/j.physbeh.2014.02.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/05/2014] [Accepted: 02/28/2014] [Indexed: 01/28/2023]
|
20
|
Cleary DR, Heinricher MM. Adaptations in responsiveness of brainstem pain-modulating neurons in acute compared with chronic inflammation. Pain 2013; 154:845-55. [PMID: 23588008 PMCID: PMC3661698 DOI: 10.1016/j.pain.2013.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/15/2013] [Accepted: 02/19/2013] [Indexed: 12/23/2022]
Abstract
Despite similar behavioral hypersensitivity, acute and chronic pain have distinct neural bases. We used intraplantar injection of complete Freund's adjuvant to directly compare activity of pain-modulating neurons in the rostral ventromedial medulla (RVM) in acute vs chronic inflammation. Heat-evoked and von Frey-evoked withdrawal reflexes and corresponding RVM neuronal activity were recorded in lightly anesthetized animals either during the first hour after complete Freund's adjuvant injection (acute) or 3 to 10 days later (chronic). Thermal and modest mechanical hyperalgesia during acute inflammation were associated with increases in the spontaneous activity of pain-facilitating ON-cells and suppression of pain-inhibiting OFF-cells. Acute hyperalgesia was reversed by RVM block, showing that the increased activity of RVM ON-cells is necessary for acute behavioral hypersensitivity. In chronic inflammation, thermal hyperalgesia had resolved but mechanical hyperalgesia had become pronounced. The spontaneous discharges of ON- and OFF-cells were not different from those in control subjects, but the mechanical response thresholds for both cell classes were reduced into the innocuous range. RVM block in the chronic condition worsened mechanical hyperalgesia. These studies identify distinct contributions of RVM ON- and OFF-cells to acute and chronic inflammatory hyperalgesia. During early immune-mediated inflammation, ON-cell spontaneous activity promotes hyperalgesia. After inflammation is established, the antinociceptive influence of OFF-cells is dominant, yet the lowered threshold for the OFF-cell pause allows behavioral responses to stimuli that would normally be considered innocuous. The efficacy of OFF-cells in counteracting sensitization of ascending transmission pathways could therefore be an important determining factor in development of chronic inflammatory pain.
Collapse
Affiliation(s)
- Daniel R Cleary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA.
| | | |
Collapse
|
21
|
Morgenweck J, Griggs RB, Donahue RR, Zadina JE, Taylor BK. PPARγ activation blocks development and reduces established neuropathic pain in rats. Neuropharmacology 2013; 70:236-46. [PMID: 23415633 DOI: 10.1016/j.neuropharm.2013.01.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/18/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is emerging as a new pharmacotherapeutic target for chronic pain. When oral (3-30 mg/kg/day in chow for 7 wk) or twice-daily intraperitoneal (1-10 mg/kg/day for 2 wk) administration began before spared nerve injury (SNI), pioglitazone, a PPARγ agonist, dose-dependently prevented multiple behavioral signs of somatosensory hypersensitivity. The highest dose of intraperitoneal pioglitazone did not produce ataxia or reductions in transient mechanical and heat nociception, indicating that inhibitory effects on hypersensitivity were not secondary to adverse drug-induced behaviors or antinociception. Inhibitory effects on hypersensitivity persisted at least one week beyond cessation of pioglitazone administration, suggestive of long-lasting effects on gene expression. Blockade of PPARγ with GW9662, an irreversible and selective PPARγ antagonist, dose-dependently reduced the inhibitory effect of pioglitazone on hypersensitivity, indicating a PPARγ-dependent action. Remarkably, a single preemptive injection of pioglitazone 15 min before SNI attenuated hypersensitivity for at least 2 weeks; this was enhanced with a second injection delivered 12 h after SNI. Pioglitazone injections beginning after SNI also reduced hypersensitivity, albeit to a lesser degree than preemptive treatment. Intraperitoneal pioglitazone significantly reduced the nerve injury-induced up-regulation of cd11b, GFAP, and p-p38 in the dorsal horn, indicating a mechanism of action involving spinal microglia and/or astrocyte activation. Oral pioglitazone significantly reduced touch stimulus-evoked phospho-extracellular signal-related kinase (p-ERK) in lamina I-II, indicating a mechanism of action involving inhibition of central sensitization. We conclude that pioglitazone reduces spinal glial and stimulus-evoked p-ERK activation and that PPARγ activation blocks the development of and reduces established neuropathic pain.
Collapse
Affiliation(s)
- J Morgenweck
- Department of Physiology, University of Kentucky Research Foundation, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
22
|
Ängeby Möller K, Kinert S, Størkson R, Berge OG. Gait analysis in rats with single joint inflammation: influence of experimental factors. PLoS One 2012; 7:e46129. [PMID: 23071540 PMCID: PMC3465303 DOI: 10.1371/journal.pone.0046129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/28/2012] [Indexed: 01/18/2023] Open
Abstract
Disability and movement-related pain are major symptoms of joint disease, motivating the development of methods to quantify motor behaviour in rodent joint pain models. We used observational scoring and automated methods to compare weight bearing during locomotion and during standing after single joint inflammation induced by Freund's complete adjuvant (0.12–8.0 mg/mL) or carrageenan (0.47–30 mg/mL). Automated gait analysis was based on video capture of prints generated by light projected into the long edge of the floor of a walkway, producing an illuminated image of the contact area of each paw with light intensity reflecting the contact pressure. Weight bearing was calculated as an area-integrated paw pressure, that is, the light intensity of all pixels activated during the contact phase of a paw placement. Automated static weight bearing was measured with the Incapacitance tester. Pharmacological sensitivity of weight-bearing during locomotion was tested in carrageenan-induced monoarthritis by administration of the commonly used analgesics diclofenac, ibuprofen, and naproxen, as well as oxycodone and paracetamol. Observational scoring and automated quantification yielded similar results. We found that the window between control rats and monoarthritic rats was greater during locomotion. The response was more pronounced for inflammation in the ankle as compared to the knee, suggesting a methodological advantage of using this injection site. The effects of both Freund's complete adjuvant and carrageenan were concentration related, but Freund's incomplete adjuvant was found to be as effective as lower, commonly used concentrations of the complete adjuvant. The results show that gait analysis can be an effective method to quantify behavioural effects of single joint inflammation in the rat, sensitive to analgesic treatment.
Collapse
|
23
|
Spradley JM, Davoodi A, Carstens MI, Carstens E. Effects of acute stressors on itch- and pain-related behaviors in rats. Pain 2012; 153:1890-1897. [PMID: 22770638 DOI: 10.1016/j.pain.2012.05.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 05/26/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022]
Abstract
Many acute stressors reduce pain, a phenomenon called stress-induced antinociception (SIA). Stress also is associated with increased scratching in chronic itch conditions. We investigated effects of acute stressors on facial itch and pain using a recently introduced rat model. Under baseline (no-swim) conditions, intradermal (id) cheek microinjection of the pruritogen serotonin (5-HT) selectively elicited hindlimb scratch bouts, whereas the algogen mustard oil (allyl isothiocyanate [AITC]) selectively elicited ipsilateral forepaw swipes, directed to the cheek injection site. To test effects of swim stress, rats received id cheek microinjection of 5-HT (1%), AITC (10%), or vehicle, and were then subjected to one of the following swim conditions: (1) weak SIA (W-SIA), (2) naltrexone-sensitive SIA (intermediate or I-SIA), or (3) naltrexone-insensitive SIA (strong or S-SIA). After the swim, we recorded the number of hindlimb scratch bouts and forelimb swipes directed to the cheek injection site, as well as facial grooming by both forepaws. Under S-SIA, AITC-evoked swiping and 5-HT-evoked scratching were both reduced. I-SIA reduced AITC-evoked swiping with no effect on 5-HT-evoked scratching. Facial grooming immediately post-swim was suppressed by S-SIA, but not I- or W-SIA. W-SIA tended to equalize scratching and swiping elicited by 5-HT and AITC compared with no-swim controls, suggesting altered itch and pain processing. Exercise (wheel-running), novelty, cold exposure, and fear (shaker table), key components of swim stress, differentially affected tail-flick latencies and 5-HT-evoked swiping and scratching behavior. Thus, itch and pain can be simultaneously suppressed by a combination of acute stress-related factors via an opioid-independent mechanism.
Collapse
Affiliation(s)
- Jessica Marie Spradley
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
24
|
Pincedé I, Pollin B, Meert T, Plaghki L, Le Bars D. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation. PLoS One 2012; 7:e36699. [PMID: 22629325 PMCID: PMC3356344 DOI: 10.1371/journal.pone.0036699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/12/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process. METHODOLOGY/PRINCIPAL FINDINGS Basically, the procedures involved heating of the tail with a CO(2) laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making. CONCLUSIONS/SIGNIFICANCE We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as "pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of mice.
Collapse
Affiliation(s)
- Ivanne Pincedé
- Team “Pain", INSERM UMRS 975, CNRS UMR 7225, Paris, France
- Université Pierre et Marie Curie, Faculté de Médecine UPMC, Paris, France
| | - Bernard Pollin
- Team “Pain", INSERM UMRS 975, CNRS UMR 7225, Paris, France
- Université Pierre et Marie Curie, Faculté de Médecine UPMC, Paris, France
| | - Theo Meert
- Department of Psychology, University of Leuven, Leuven, Belgium
| | - Léon Plaghki
- Unité READ, Université Catholique de Louvain, Brussels, Belgium
| | - Daniel Le Bars
- Team “Pain", INSERM UMRS 975, CNRS UMR 7225, Paris, France
- Université Pierre et Marie Curie, Faculté de Médecine UPMC, Paris, France
| |
Collapse
|