1
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
2
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Gołąbek K, Hudy D, Gaździcka J, Miśkiewicz-Orczyk K, Nowak-Chmura M, Asman M, Komosińska-Vassev K, Ścierski W, Golusiński W, Misiołek M, Strzelczyk JK. The Analysis of Selected miRNAs and Target MDM2 Gene Expression in Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:3053. [PMID: 38002053 PMCID: PMC10668942 DOI: 10.3390/biomedicines11113053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MiRNAs could play an important role in tumorigenesis and progression. The oncoprotein MDM2 (murine double minute 2) was identified as a negative regulator of the tumour suppressor p53. This study aims to analyse the expression of the MDM2 target miRNA candidates (miR-3613-3p, miR-371b-5p and miR-3658) and the MDM2 gene in oral squamous cell carcinoma tumour and margin samples and their association with the selected socio-demographic and clinicopathological characteristics. The study group consisted of 50 patients. The miRNAs and MDM2 gene expression levels were assessed by qPCR. The expression analysis of the miRNAs showed the expression of only one of them, i.e., miR-3613-3p. We found no statistically significant differences in the miR-3613-3p expression in tumour samples compared to the margin samples. When analysing the effect of smoking on miR-3613-3p expression, we demonstrated a statistically significant difference between smokers and non-smokers. In addition, we showed an association between the miR-3613-3p expression level and some clinical parameters in tumour samples (T, N and G). Our study demonstrates that miR-3613-3p overexpression is involved in the tumour progression of OSCC. This indicates that miR-3613-3p possesses potential prognostic values.
Collapse
Affiliation(s)
- Karolina Gołąbek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Miśkiewicz-Orczyk
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Magdalena Nowak-Chmura
- Department of Invertebrate Zoology and Parasitology, Institute of Biology, Pedagogical University of Cracov, Podbrzezie 3 St., 31-054 Kraków, Poland
| | - Marek Asman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności St., 41-200 Sosnowiec, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 10 C Skłodowska St., 41-800 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
4
|
Kulkarni AS, Dash A, Shingare RD, Chand J, Manhas D, Singh A, Nandi U, Goswami A, Srinivasa Reddy D. Identification of new modulator of DNA repairing pathways based on natural product (±)-peharmaline A. Bioorg Med Chem 2023; 91:117365. [PMID: 37392722 DOI: 10.1016/j.bmc.2023.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/27/2023] [Indexed: 07/03/2023]
Abstract
The complex heterogenic environment of tumour mass often leads to drug resistance and facilitate chemo insensitivity triggering more malignant phenotypes among cancer patients. Major DNA-damaging cancer drugs have been consistently proven unsuccessful in terms of elevating chemo-resistance. (±)-peharmaline A, a hybrid natural product isolated from seeds of Peganum harmala L. possesses significant cytotoxic activities. Herein, we have described the design, and synthesis of a novel library of close and simplified analogues around the anticancer natural product (±)-peharmaline A and investigated their cytotoxic activities, which led to the identification of three structurally simplified lead compounds exhibiting better potency than parent natural product. Among them, demethoxy analogue of peharmaline A was further investigated for its anticancer potential eliciting demethoxy analogue as potent DNA-damage inducing agent attenuating the expression of the proteins responsible for the DNA damage repair. Therefore, this demethoxy analogue warrants detailed investigations for the confirmations of the molecular mechanism-based studies responsible for its anticancer activity. ______________________________________________________________________________.
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshurekha Dash
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rahul D Shingare
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagdish Chand
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Aman Singh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Bhat JA, Akther T, Najar RA, Rasool F, Hamid A. Withania somnifera (L.) Dunal (Ashwagandha); current understanding and future prospect as a potential drug candidate. Front Pharmacol 2022; 13:1029123. [PMID: 36578541 PMCID: PMC9790970 DOI: 10.3389/fphar.2022.1029123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer and Neurodegenerative diseases are one of the most dreadful diseases to cure and chemotherapy has found a prime place in cancerous treatments while as different strategies have been tested in neurodegenerative diseases as well. However, due to adverse shortcomings like the resistance of cancerous cells and inefficiency in neurodegenerative disease, plant sources have always found a prime importance in medicinal use for decades, Withania somnifera (L.) Dunal (W. somnifera) is a well-known plant with medicinal use reported for centuries. It is commonly known as winter cherry or ashwagandha and is a prime source of pharmaceutically active compounds withanolides. In recent years research is being carried in understanding the extensive role of W. somnifera in cancer and neurological disorders. W. somnifera has been reported to be beneficial in DNA repair mechanisms; it is known for its cellular repairing properties and helps to prevent the apoptosis of normal cells. This review summarizes the potential properties and medicinal benefits of W. somnifera especially in cancer and neurodegenerative diseases. Available data suggest that W. somnifera is effective in controlling disease progressions and could be a potential therapeutic target benefiting human health status. The current review also discusses the traditional medicinal applications of W. somnifera, the experimental evidence supporting its therapeutical potential as well as obstacles that necessitate being overcome for W. somnifera to be evaluated as a curative agent in humans.
Collapse
Affiliation(s)
- Javeed Ahmad Bhat
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, United States,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| | - Tahira Akther
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Pediatrics (Neonatology), Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Faheem Rasool
- Government College for Women, Jammu, Jammu and Kashmir, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India,Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Srinagar, India,*Correspondence: Javeed Ahmad Bhat, ; Abid Hamid,
| |
Collapse
|
6
|
Ur Rahim J, Ahmad SM, Amin T, Chowdhary R, Goswami A, Rai R. Synthesis, conformation and cytotoxic activity of short hybrid peptides containing conformationally constrained 1-(aminomethyl)cyclohexanecarboxylic acid and gabapentin. Peptides 2022; 158:170897. [PMID: 36279986 DOI: 10.1016/j.peptides.2022.170897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
The present work describes the synthesis,conformation and cytotoxic activities of short β/γ hybrid peptides, Boc-β2,2-Ac6c-Gpn-NHMe, BG1; Boc-(β2,2-Ac6c-Gpn)2-OMe, BG2; Boc-(β2,2-Ac6c-Gpn)3-OMe, BG3; H-β2,2-Ac6c-Gpn-NHMe, BG4; H-(β2,2-Ac6c-Gpn)2-OMe, BG5; H-(β2,2-Ac6c-Gpn)3-OMe, BG6, Boc-β2,2-Ac6c-Gpn-OMe, BG7 and H-β2,2-Ac6c-Gpn-OMe, BG8. Mixed C6/C7 conformations were observed for β/γ hybrid peptides. Further, BG1-BG8 were screened against MCF-7 (Breast cancer), A549 (Lung Cancer), PC-3 (Prostate cancer), HCT-116 (Colon cancer), and MDA-MB-231 (Breast cancer) cell lines. Among all, BG6 exhibited potent cytotoxicity against all cancer cell lines with IC50 ranging from 1.6 μM to 6.3 μM with relatively low cytotoxicity against normal epithelial breast cell line fR-2 and human embryonic kidney cell line HEK-293. Minimal hemolytic activity was observed for BG6 against human erythrocytes. Peptide BG6 displayed anti-migratory and anti-invasive potentials showing strong interactions with intrinsic apoptotic markers Bcl-2, Bax, and cleaved-PARP, as well as the induction of the mitochondria maladjustment mediated apoptosis.
Collapse
Affiliation(s)
- Junaid Ur Rahim
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Syed Mudabir Ahmad
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rubina Chowdhary
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajkishor Rai
- Natural Products and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Mir KB, Faheem MM, Ahmad SM, Rasool JU, Amin T, Chakraborty S, Bhagat M, Ahmed Z, Ali A, Goswami A. β-(4-fluorobenzyl) Arteannuin B induced interaction of ATF-4 and C/EBPβ mediates the transition of breast cancer cells from autophagy to senescence. Front Oncol 2022; 12:1013500. [PMID: 36465376 PMCID: PMC9713483 DOI: 10.3389/fonc.2022.1013500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 08/06/2023] Open
Abstract
ATF-4 is a master regulator of transcription of genes essential for cellular-adaptive function. In response to the quantum and duration of stress, ATF-4 diligently responds to both pro-apoptotic and pro-survival signals converging into either autophagy or apoptosis/senescence. Despite emerging cues implying a relationship between autophagy and senescence, how these two processes are controlled remains unknown. Herein, we demonstrate β-(4-fluorobenzyl) Arteannuin B (here after Arteannuin 09), a novel semisynthetic derivative of Arteannuin B, as a potent ER stress inducer leading to the consistent activation of ATF-4. Persistent ATF-4 expression at early time-points facilitates the autophagy program and consequently by upregulating p21 at later time-points, the signaling is shifted towards G2/M cell cycle arrest. As bZIP transcription factors including ATF-4 are obligate dimers, and because ATF-4 homodimers are not highly stable, we hypothesized that ATF-4 may induce p21 expression by physically interacting with another bZIP family member i.e., C/EBPβ. Our co-immunoprecipitation and co-localization studies demonstrated that ATF-4 is principally responsible for the autophagic potential of Arteannuin 09, while as, induction of both ATF-4 and C/EBPβ is indispensable for the p21 regulated-cell cycle arrest. Interestingly, inhibition of autophagy signaling switches the fate of Arteannuin 09 treated cells from senescence to apoptosis. Lastly, our data accomplished that Arteannuin 09 is a potent inhibitor of tumor growth and inducer of premature senescence in vivo.
Collapse
Affiliation(s)
- Khalid Bashir Mir
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | - Mir Mohd Faheem
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
- School of Biotechnology, University of Jammu, Jammu, India
| | - Syed Mudabir Ahmad
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | - Javeed Ur Rasool
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Natural Product and Medicinal Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Tanzeeba Amin
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | | | | | - Zabeer Ahmed
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | - Asif Ali
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Natural Product and Medicinal Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Division of Medicinal and Process Chemistry, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
8
|
Rottlerin promotes anti-metastatic events by ameliorating pharmacological parameters of paclitaxel: An in-vivo investigation in the orthotopic mouse model of breast cancer. Chem Biol Interact 2022; 366:110109. [PMID: 35995259 DOI: 10.1016/j.cbi.2022.110109] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Despite substantial breakthroughs in cancer research, there is hardly any specific therapy available to date that can alleviate triple-negative breast cancer (TNBC). Paclitaxel is the first-line chemotherapy option, but its treatment is often associated with early discontinuation of therapy due to the development of resistance and/or precipitation of severe side effects. In the quest to establish a suitable combination therapy with a low dose of paclitaxel, we explored rottlerin (a pure and characterized phytoconstituent from Mallotus philippensis) because of its multifaceted pharmacological actions against cancer. The study was performed to assess the therapeutic effects of rottlerin (5-20 mg/kg) with a low dose of paclitaxel (5 mg/kg) using a highly aggressive mouse mammary carcinoma model. Rottlerin augmented the paclitaxel effect by reducing tumor burden as well as metastatic lung nodules formation. Rottlerin in combination with paclitaxel remarkably altered the expression of vital epithelial-mesenchymal transition (EMT) markers such as E-cadherin, Snail 1, & Vimentin and thus improved the anti-metastatic efficacy of paclitaxel. Significant attenuation of anti-apoptotic protein (Bcl-2) along with amplification of pro-apoptotic (cleaved PARP) marker confers that rottlerin could ameliorate the pro-apoptotic potential of paclitaxel. In this study, a rational combination of rottlerin and paclitaxel treatment curtailed CYP2J2 expression and epoxyeicosatrienoic acids (EETs) levels, responsible for restrain tumor growth and metastasis. Additionally, rottlerin lessened paclitaxel treatment-mediated hematological alterations and prevented paclitaxel treatment-linked key serum biochemical changes related to organ toxicities. These rottlerin treatment-mediated protective changes are closely associated with the lower paclitaxel accumulation in the corresponding tissues. Rottlerin caused significant pharmacokinetic interaction with paclitaxel to boost the plasma level of paclitaxel in a typical mouse model and possibly helpful towards the use of a low dose of paclitaxel in combination. Overall, it can be stated that rottlerin has significant potential to augment the anti-metastatic efficacy of paclitaxel via impeding EMT activation along with attenuating its treatment-associated toxicological alterations. Hence, rottlerin has significant potential to explore further as a suitable neoadjuvant therapy with paclitaxel against TNBC.
Collapse
|
9
|
Isolation and anticancer activity evaluation of rare Bisaryl anthraquinone antibiotics from novel Streptomyces sp. strain of NW Himalayan region. Chem Biol Interact 2022; 365:110093. [PMID: 35985519 DOI: 10.1016/j.cbi.2022.110093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Biosynthesis of bisaryl preanthraquinone antibiotics by various microorganisms differs in monomeric subunits as well as their dimerization positions leading to different configurations. The present study relates to the production of rare bisaryl anthraquinone antibiotics by a new Streptomyces strain isolated from Shivalik region of NW Himalayas. In vitro anticancer and anti-migratory effects of Setomimycin (9,9' bisanthraquinone antibiotic) was seen with a significant reduction in the expression of both MEK as well as ERK pathways in a dose dependent manner at 6.5 μM & 8 μM concentration in HCT-116 and 5.5 μM & 7 μM concentration in MCF-7 cells. In vivo studies in aggressive orthotopic mouse mammary carcinoma model (4T1) demonstrated about 76% reduction of primary tumor weight and 90.5% reduction in the tumor volume within two weeks. In vivo pharmacokinetics study of setomimycin revealed that it can be rapidly absorbed with an adequate plasma exposure and half-life which can be linked to its in vivo efficacy.
Collapse
|
10
|
Ur Rasool J, Bashir Mir K, Shaikh M, Bhat AH, Nalli Y, Khalid A, Mudabir Ahmad S, Goswami A, Ali A. Palladium Catalyzed Migratory Heck Coupling of Arteannuin B and Boronic Acids: An Approach Towards the Synthesis of Antiproliferative agents in Breast and Lung Cancer cells. Bioorg Chem 2022; 122:105694. [DOI: 10.1016/j.bioorg.2022.105694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
|
11
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [PMID: 34861354 DOI: 10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Globally, pancreatic cancer (PC) is a common and highly malignant gastrointestinal tumor that is characterized by an insidious onset and ready metastasis and recurrence. Over recent decades, the incidence of PC has been increasing on an annual basis; however, the pathogenesis of this condition remains enigmatic. PC is not sensitive to radio- or chemotherapy, and except for early surgical resection, there is no curative treatment regime; consequently, the prognosis for patients with PC is extremely poor. Transcription factor p53 is known to play key roles in many important biological processes in vertebrates, including normal cell growth, differentiation, cell cycle progression, senescence, apoptosis, metabolism, and DNA damage repair. However, there is a significant paucity of basic and clinical studies to describe how p53 gene mutations or protein dysfunction facilitate the occurrence, progression, invasion, and resistance to therapy, of malignancies, including PC. Herein, we describe the involvement of p53 signaling reactivation in PC treatment as well as its underlying molecular mechanisms, thereby providing useful insights for targeting p53-related signal pathways in PC therapy.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
12
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [DOI: doi10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|