1
|
Oliveira TAS, Silva JBA, Silva NBS, Félix PCA, Dos Santos DA, de Oliveira AM, Martins CHG, Magalhães LG, Crotti AEM. Antibacterial and Antileishmanial Activity of 1,4-Dihydropyridine Derivatives. Chem Biodivers 2024:e202401300. [PMID: 39231212 DOI: 10.1002/cbdv.202401300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
We have synthesized twenty-three 1,4-dihydropyridine derivatives (1,4-DHPs) by using a microwave-assisted one-pot multicomponent Hantzsch reaction and evaluated their antibacterial activity against a representative panel of cariogenic bacteria and their in vitro antileishmanial activity against Leishmania (L.) amazonensis promastigotes and amastigotes. Thirteen compounds were moderately active against Streptococcus sanguinis, Streptococcus mitis, and Lactobacillus paracasei. Compound 22 (diethyl 4-(3-methoxy-4-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) displayed moderate antibacterial activity against S. mitis and S. sanguinis, with a Minimum Inhibitory Concentration (MIC) of 500 μg/mL); compounds 8 (ethyl 2,7,7-trimethyl-4-(3-chlorophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) and 10 (ethyl 2,7,7-trimethyl-4-(3-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) were moderately active against S. sanguinis (MIC=500 μg/mL) and very active against L. amazonensis promastigotes (IC50=43.08 and 34.29 μM, respectively). Among the eight 1,4-DHPs that were active (IC50 <50 μM) against L. amazonensis promastigotes, compound 13 (ethyl 2,7,7-trimethyl-4-(3,4,5-trimethoxyphenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) was the most active (IC50=24.62 μM) and had a Selectivity Index (SI) higher than 4 compared to GM07492 A cells. On the other hand, compounds 7 (ethyl 2,7,7-trimethyl-4-(3-fluorophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) and 9 (ethyl 2,7,7-trimethyl-4-(2-nitrophenyl)-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate) were the most active against L. amazonensis amastigotes (IC50=12.53 and 13.67 μM, respectively; SI>7.9 and >7.3, respectively) after 24 h of treatment. Our results indicated that asymmetric 1,4-DHPs derived from dimedone exhibit antileishmanial potential.
Collapse
Affiliation(s)
- Thaís A S Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Jackson B A Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Nagela B S Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Paulo C A Félix
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Daiane A Dos Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brazil
| | - Andreia M de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Carlos H G Martins
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Lizandra G Magalhães
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Molaei S, Farhadi G, Talezari M, Gholizadeh N, Mahnam K, Keivanloo A, Sepehri S. One-pot synthesis of polyhydroquinoline-1,2,3-triazole hybrids in deep eutectic solvent as anti-leishmanial agents and molecular modeling studies. J Biomol Struct Dyn 2024; 42:4834-4850. [PMID: 37325813 DOI: 10.1080/07391102.2023.2224897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The novel hybrids with 1,2,3-triazole and polyhydroquinoline scaffolds were successfully synthesized by multicomponent reaction of propargyloxybenzaldehyde, 1,3-cyclohexadione, ethylacetoacetate and ammonium acetate followed through click reaction in the presence of deep eutectic solvent ChCl/ZnCl2 as an efficient catalyst. Their anti-leishmanial activity was evaluated against amastigote and promastigote forms of L. tropica, L. major, and two different species of L. infantum. Furthermore, to determine the cytotoxicity of the hybrids, they were evaluated against the murine macrophage cell line J774.A1. Based on the results, three hybrids showed the highest antileishmanial activity. However, they revealed low cytotoxicity. Hybrid 6j was the most potent compound against both the forms of all leishmanial types, with IC50 = 13.5 and 11.9 µg/mL for L. major, 37.5 and 25 µg/mL for L. tropica, 17.5 and 20 µg/mL for L. infantum (MCAN/IR//96/LON49) and 35.5 and 30 µg/mL for L. infantum (MCAN/ES/98/LIM-877), respectively. Finally, molecular docking and molecular dynamics simulations were also performed to identify possible mechanism antileishmanial activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ghazaleh Farhadi
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Talezari
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Negin Gholizadeh
- Students Research Committee, Public Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Saghi Sepehri
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Facchin BM, Lubschinski TL, Moon YJK, de Oliveira PGF, Beck BK, da Silva Buss Z, Pollo LAE, Biavatti MW, Sandjo LP, Dalmarco EM. Evaluation of the anti-inflammatory effect of 1,4-dihydropyridine derivatives. Fundam Clin Pharmacol 2024; 38:168-182. [PMID: 37558213 DOI: 10.1111/fcp.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Inflammation is a physiological event that protects the organism against different factors that lead to loss of tissue homeostasis. Dihydropyridine (DHP) derivatives are heterocyclic compounds known for their different biological activities, including anti-inflammatory activities. OBJECTIVE To evaluate the anti-inflammatory activity of 1,4-dihydropyridine (1,4-DHP) derivatives using anti-inflammatory models in vitro, in RAW264.7 cells induced by lipopolysaccharide (LPS) and in vivo using the acute lung injury (ALI) model in mice. RESULTS Fifteen compounds derived from 1,4-DHP were tested in RAW264.7 cells for their cytotoxic effect and cell viability. Thereafter, only the six compounds that showed the highest cell viability were tested for the production or inhibition of the pro-inflammatory cytokine interleukin 6 (IL-6). The best compound (compound 4) was tested for its anti-inflammatory effects in vitro and in vivo, showing inhibition of nitric oxide (NO), pro-inflammatory cytokines, increased phagocytic activity, and an increase in IL-10 in vitro. In in vivo tests, compound 4 also reduces the levels of NO, myeloperoxidase (MPO) activity, leukocyte migration, and exudation, as well as reducing the levels of tumor necrosis factor-alpha (TNF-α) and IL-6 and preventing the loss in the lung architecture. CONCLUSION This compound showed important anti-inflammatory activity, with a significant ability to reduce the production of pro-inflammatory mediators and increase the phagocytic activity of macrophages and anti-inflammatory mediator secretion (IL-10). These findings led us to hypothesize that this compound can repolarize the macrophage response to an anti-inflammatory profile (M2). Moreover, it was also able to maintain its anti-inflammatory activity in vivo experiments.
Collapse
Affiliation(s)
- Bruno Matheus Facchin
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Yeo Jim Kinoshita Moon
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Bianca Klafke Beck
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ziliani da Silva Buss
- Department of Clinical Analysis, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
4
|
3-Methyl 5-{3-[(4-Methylbenzenesulfonyl)oxy]propyl} 4-(2,3-Dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. MOLBANK 2022. [DOI: 10.3390/m1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 1,4-dihydropyridine is a ubiquitous scaffold employed not only in medicinal chemistry but also in organic synthesis, given its ability to act as a hydrogen transfer reagent, thus emulating NAD(P)H reducing agents. In this work, we describe the synthesis of 3-methyl 5-{3-[(4-methylbenzenesulfonyl)oxy]propyl} 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate as scaffold, which enables downstream derivatization towards new 1,4-dihydropyridine molecules. Inspired by the literature, a new two-step synthesis was planned that involved: (i) synthesis of a silylated 1,4-dihydropyridine derivative and (ii) deprotection and tosylation in one step using tosyl fluoride.
Collapse
|
5
|
González A, Casado J, Gündüz MG, Santos B, Velázquez-Campoy A, Sarasa-Buisan C, Fillat MF, Montes M, Piazuelo E, Lanas Á. 1,4-Dihydropyridine as a Promising Scaffold for Novel Antimicrobials Against Helicobacter pylori. Front Microbiol 2022; 13:874709. [PMID: 35694298 PMCID: PMC9174938 DOI: 10.3389/fmicb.2022.874709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022] Open
Abstract
The increasing occurrence of multidrug-resistant strains of the gastric carcinogenic bacterium Helicobacter pylori threatens the efficacy of current eradication therapies. In a previous work, we found that several 1,4-dihydropyridine (DHP)-based antihypertensive drugs exhibited strong bactericidal activities against H. pylori by targeting the essential response regulator HsrA. To further evaluate the potential of 1,4-DHP as a scaffold for novel antimicrobials against H. pylori, we determined the antibacterial effects of 12 novel DHP derivatives that have previously failed to effectively block L- and T-type calcium channels. Six of these molecules exhibited potent antimicrobial activities (MIC ≤ 8 mg/L) against three different antibiotic-resistant strains of H. pylori, while at least one compound resulted as effective as metronidazole. Such antimicrobial actions appeared to be specific against Epsilonproteobacteria, since no deleterious effects were appreciated on Escherichia coli and Staphylococcus epidermidis. The new bactericidal DHP derivatives targeted the H. pylori regulator HsrA and inhibited its DNA binding activity according to both in vitro and in vivo analyses. Molecular docking predicted a potential druggable binding pocket in HsrA, which could open the door to structure-based design of novel anti-H. pylori drugs.
Collapse
Affiliation(s)
- Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Miyase Gözde Gündüz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Brisa Santos
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza, Spain
| | - Cristina Sarasa-Buisan
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - María F. Fillat
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Milagrosa Montes
- Department of Microbiology, Donostia University Hospital-Biodonostia Health Research Institute, San Sebastian, Spain
- Biomedical Research Networking Center in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Piazuelo
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Aragón Health Sciences Institute (IACS), Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| |
Collapse
|
6
|
Correa ITS, da Costa-Silva TA, Tempone AG. Bioenergetics impairment of Trypanosoma cruzi by the antihypertensive manidipine: A drug repurposing strategy. Acta Trop 2021; 214:105768. [PMID: 33245907 DOI: 10.1016/j.actatropica.2020.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
Considering the lack of effective and safe therapy for the treatment of Chagas disease, the antihypertensive drug manidipine (MDP) was in vitro evaluated against Trypanosoma cruzi. The bioenergetics of trypomastigotes was studied in the presence of the drug using fluorimetric and luminescent assays. Manidipine showed a potent antiparasitic activity, with IC50 values of 0.1 μM (intracellular amastigotes) and 3 μM (trypomastigotes), resulting in a promising selectivity index against the amastigotes (>1459). Using fluorimetric analysis, the drug showed depolarisation of the electric potential of the plasma membrane with no alteration of the permeability. A decrease in ATP levels suggested a bioenergetic alteration of the mitochondria, which was confirmed by the depolarisation of the mitochondrial membrane potential and a slight increase of the ROS levels. This is the first study to show the promising in vitro effectiveness of the antihypertensive MDP against T. cruzi, which may represent a candidate for future investigations in animal models.
Collapse
|
7
|
Pollo LAE, Martin EF, Machado VR, Cantillon D, Wildner LM, Bazzo ML, Waddell SJ, Biavatti MW, Sandjo LP. Search for Antimicrobial Activity Among Fifty-Two Natural and Synthetic Compounds Identifies Anthraquinone and Polyacetylene Classes That Inhibit Mycobacterium tuberculosis. Front Microbiol 2021; 11:622629. [PMID: 33537021 PMCID: PMC7847937 DOI: 10.3389/fmicb.2020.622629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 11/13/2022] Open
Abstract
Drug-resistant tuberculosis threatens to undermine global control programs by limiting treatment options. New antimicrobial drugs are required, derived from new chemical classes. Natural products offer extensive chemical diversity and inspiration for synthetic chemistry. Here, we isolate, synthesize and test a library of 52 natural and synthetic compounds for activity against Mycobacterium tuberculosis. We identify seven compounds as antimycobacterial, including the natural products isobavachalcone and isoneorautenol, and a synthetic chromene. The plant-derived secondary metabolite damnacanthal was the most active compound with the lowest minimum inhibitory concentration of 13.07 μg/mL and a favorable selectivity index value. Three synthetic polyacetylene compounds demonstrated antimycobacterial activity, with the lowest MIC of 17.88 μg/mL. These results suggest new avenues for drug discovery, expanding antimicrobial compound chemistries to novel anthraquinone and polyacetylene scaffolds in the search for new drugs to treat drug-resistant bacterial diseases.
Collapse
Affiliation(s)
- Luiz A E Pollo
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Erlon F Martin
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa R Machado
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Leticia Muraro Wildner
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Maria Luiza Bazzo
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Maique W Biavatti
- Programa de Pós-Graduação em Farmácia, CCS, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Louis P Sandjo
- Programa de Pós-Graduação em Química, CFM, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Antiprotozoal investigation of 20 plant metabolites on Trypanosoma cruzi and Leishmania amazonensis amastigotes. Atalantoflavone alters the mitochondrial membrane potential. Parasitology 2019; 146:849-856. [PMID: 30755289 DOI: 10.1017/s0031182019000052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The study aims to evaluate the antiprotozoal activities of 20 plant metabolites on Trypanosoma cruzi and Leishmania amazonensis amastigotes. Compounds 1-20 were obtained and identified by using chromatographic and spectroscopic techniques. The antiparasitic assays were performed on the intracellular form of T. cruzi and L. amazonensis using human leukaemic THP-1 cells as the host. The mechanism of action of the most active compounds was explored in silico by molecular docking using T. cruzi trypanothione reductase (TR) as a target, whereas the in vitro studies were performed by enzymatic assay using T. cruzi recombinant TR. In addition, the mitochondrial membrane potential was evaluated by flow cytometry. Two flavonoids, one triterpene and three acetogenins showed from high to moderate trypanocidal activities with IC50 values ranging 3.6-37.2 µm while three of the metabolites were moderately leishmanicidal. The molecular docking study revealed interactions between TR and the most trypanocidal compounds 1 (abyssinone IV) and 2 (atalantoflavone). In contrast, both showed no effect on TR in vitro. For the mitochondrial membrane potential assay, atalantoflavone (2) displayed a dose-dependent depolarization. On the basis of the aforementioned results, this compound's structure could be chemically explored in order to develop more potent trypanocidal derivatives.
Collapse
|
9
|
Martin EF, Mbaveng AT, de Moraes MH, Kuete V, Biavatti MW, Steindel M, Efferth T, Sandjo LP. Prospecting for cytotoxic and antiprotozoal 4-aryl-4H
-chromenes and 10-aryldihydropyrano[2,3-f
]chromenes. Arch Pharm (Weinheim) 2018; 351:e1800100. [DOI: 10.1002/ardp.201800100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Erlon F. Martin
- Department of Pharmaceutical Sciences; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Armelle T. Mbaveng
- Faculty of Science, Department of Biochemistry; University of Dschang; Dschang Cameroon
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry; Johannes Gutenberg University; Mainz Germany
| | - Milene H. de Moraes
- Department of Microbiology, Immunology and Parasitology; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Victor Kuete
- Faculty of Science, Department of Biochemistry; University of Dschang; Dschang Cameroon
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry; Johannes Gutenberg University; Mainz Germany
| | - Maique W. Biavatti
- Department of Pharmaceutical Sciences; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Mario Steindel
- Department of Microbiology, Immunology and Parasitology; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry; Johannes Gutenberg University; Mainz Germany
| | - Louis P. Sandjo
- Department of Pharmaceutical Sciences; Universidade Federal de Santa Catarina; Florianópolis Brazil
| |
Collapse
|
10
|
D'Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci 2018; 19:E2465. [PMID: 30134544 PMCID: PMC6164603 DOI: 10.3390/ijms19092465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Immunosuppression may occur for a number of reasons related to an individual's frailty, debility, disease or from therapeutic iatrogenic intervention or misadventure. A large percentage of morbidity and mortality in immunodeficient populations is related to an inadequate response to infectious agents with slow response to antibiotics, enhancements of antibiotic resistance in populations, and markedly increased prevalence of acute inflammatory response, septic and infection related death. Given known relationships between intracellular calcium ion concentrations and cytotoxicity and cellular death, we looked at currently available data linking blockade of calcium ion channels and potential decrease in expression of sepsis among immunosuppressed patients. Notable are relationships between calcium, calcium channel, vitamin D mechanisms associated with sepsis and demonstration of antibiotic-resistant pathogens that may utilize channels sensitive to calcium channel blocker. We note that sepsis shock syndrome represents loss of regulation of inflammatory response to infection and that vitamin D, parathyroid hormone, fibroblast growth factor, and klotho interact with sepsis defense mechanisms in which movement of calcium and phosphorus are part of the process. Given these observations we consider that further investigation of the effect of relatively inexpensive calcium channel blockade agents of infections in immunosuppressed populations might be worthwhile.
Collapse
Affiliation(s)
- John A D'Elia
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA. jd'
| | - Larry A Weinrauch
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA.
| |
Collapse
|