1
|
Hovd LBN, Jiménez-Meléndez A, Varegg MS, Woolsey ID, Olstad I, Mathisen SJ, Reksen O, Robertson LJ. From the field: a cryptosporidiosis outbreak among veterinary students associated with activities during the lambing period in Norway during 2024. Epidemiol Infect 2024; 152:e178. [PMID: 39725662 PMCID: PMC11696588 DOI: 10.1017/s0950268824001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
A recent outbreak of cryptosporidiosis (Cryptosporidium parvum, subtype IIdA23G1) among veterinary students associated with extracurricular activities concerned with lambs is described from Norway. Although cryptosporidiosis outbreaks among veterinary students have been frequently reported, this is among the first from lamb contact. Cryptosporidium oocysts were detected in samples from two students and three lambs. A questionnaire distributed immediately after the outbreak was recognized, identified an assumed attack rate of 50% based on exposure and illness among exposed students (28 of 56), despite most reporting good or very good hygiene measures. Laboratory diagnostics confirmed infection in two of these. The illness lasted over a week in most students (up to 15 days), but contact with health services was negligible. In addition to implementing measures to reduce the likelihood of further such outbreaks among veterinary students, it is recommended that future outbreaks of diarrhoea among ruminants on the farm should be investigated for aetiological agents.
Collapse
Affiliation(s)
- Lise B. N. Hovd
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Alejandro Jiménez-Meléndez
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Mathilde S. Varegg
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ian D. Woolsey
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ingrid Olstad
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Sigurd J. Mathisen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Reksen
- Herd Health Services, Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Lucy J. Robertson
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Estrada R, Romero Y, Quilcate C, Dipaz D, Alejos-Asencio CS, Leon S, Alvarez-García WY, Rojas D, Alvarado W, Maicelo JL, Arbizu CI. Age-Dependent Changes in Protist and Fungal Microbiota in a Peruvian Cattle Genetic Nucleus. Life (Basel) 2024; 14:1010. [PMID: 39202752 PMCID: PMC11355802 DOI: 10.3390/life14081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
In this research, the connection between age and microbial diversity in cattle was explored, revealing significant changes in both protist diversity and fungal microbiota composition with age. Using fecal samples from 21 Simmental cattle, microbial communities were analyzed through 18S rRNA gene sequencing. Results indicated significant differences in alpha protist diversity among the three age groups, while fungal composition varied notably with age and was linked to hematological parameters. Despite the stability of fungal alpha diversity, compositional changes suggest the gut as a stable niche for microbial colonization influenced by diet, clinical parameters, and microbial interactions. All cattle were maintained on a consistent diet, tailored to meet the specific nutritional needs of each age group. These findings emphasize the importance of understanding age-related microbial dynamics to enhance livestock management and animal health, contributing to broader ecological and biomedical research. This study was limited by the lack of comprehensive metabolic analyses correlating microbiota changes with specific age-related variations, indicating a need for further research in this area.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Deisy Dipaz
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Carol S. Alejos-Asencio
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Silvia Leon
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Wuesley Yusmein Alvarez-García
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Diorman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru
| |
Collapse
|
3
|
Baz-González E, Foronda P. Genetic characterization of Cryptosporidium spp. in the North African hedgehog (Atelerix algirus) in the Canary Islands, Spain. Parasitol Res 2024; 123:274. [PMID: 39017738 DOI: 10.1007/s00436-024-08290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
The North African hedgehog (Atelerix algirus) is an introduced species from Northwest Africa and is currently distributed in the Canary Islands. This species of hedgehog has been studied as a reservoir of enteropathogens, including Cryptosporidium spp. However, there are no data at species level. Therefore, the aim of the present study was to identify the Cryptosporidium species present in a population of hedgehogs (n = 36) in the Canary Islands. Molecular screening was performed using conventional polymerase chain reaction (PCR) targeting the small subunit ribosomal RNA (18S rRNA) gene of Cryptosporidium spp. Seven of the 36 fecal samples (19.45%) were positive and confirmed by nested PCR targeting the 18S rRNA gene and Sanger sequencing. Cryptosporidium parvum and Cryptosporidium muris were identified in 11.1% (4/36) and 5.6% (2/36) of the samples, respectively, while one sample could only be identified at the genus level. The zoonotic subtypes IIdA15G1 (n = 1), IIdA16G1b (n = 1), and IIdA22G1 (n = 1) of C. parvum were identified by nested PCR followed by analysis of the 60 kDa glycoprotein (gp60) gene sequence. This study is the first genetic characterization of Cryptosporidium spp. in A. algirus, identifying zoonotic species and subtypes of the parasite.
Collapse
Affiliation(s)
- Edgar Baz-González
- Departamento Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Pilar Foronda
- Departamento Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain.
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
4
|
Hasapis KA, Charalambidou I, Schou C, O'Dowd Phanis C, Kazamia S, Kassinis N, Hadjisterkotis E, Karanis P. First Detection of Cryptosporidium parvum in the Endemic Cyprus Mouflon (Ovis gmelini ophion). Acta Parasitol 2024; 69:1035-1040. [PMID: 38062227 PMCID: PMC11001731 DOI: 10.1007/s11686-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024]
Abstract
PURPOSE Cryptosporidium is an intestinal zoonotic protozoan parasite that infects domesticated and wild animals. There are no reports on the prevalence and molecular characterisation of Cryptosporidium in the endemic Cyprus mouflon. The mouflon is strictly protected by national and international legislation. Its main distribution is Paphos State Forest and surrounding areas, where it may share the same water sources as free-ranging domestic goats. Therefore, the present study aimed to determine the prevalence of Cryptosporidium spp. and genotypes in mouflon and free-ranging goats within the mouflon range. METHODS Faecal samples of 70 mouflons and 34 free-ranging goats were screened for Cryptosporidium by PCR amplification and sequencing. RESULTS Only one sample (1/70) belonging to a mouflon was PCR positive for Cryptosporidium. Based on sequencing of the 18S rRNA locus, this species was identified as Cryptosporidium parvum (C. parvum). No positive sample was detected in the free-ranging goats (0/34). CONCLUSION This is the first report on the molecular identification of this Cryptosporidium species in a Cyprus mouflon. The results indicate that the prevalence of Cryptosporidium in Cyprus mouflon is low.
Collapse
Affiliation(s)
- Kyriacos A Hasapis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Iris Charalambidou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Chad Schou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Catherine O'Dowd Phanis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | - Stefanie Kazamia
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus
| | | | - Eleftherios Hadjisterkotis
- Agricultural Research Institute, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Panagiotis Karanis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, 1700, Nicosia, Cyprus.
- Medical Faculty and University Hospital, University of Cologne, 50923, Cologne, Germany.
| |
Collapse
|
5
|
Louro M, Bexiga R, da Fonseca IP, Gomes J. Detection and molecular characterization of Cryptosporidium spp. in dairy calves in Lisbon and Tagus Valley, Portugal. Vet Parasitol Reg Stud Reports 2024; 47:100964. [PMID: 38199683 DOI: 10.1016/j.vprsr.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Cryptosporidium is a protozoan parasite with worldwide distribution, infecting a wide range of hosts with some zoonotic species. Calves have been identified as one of the most common reservoirs of this parasite. However, little is known about the genetics of Cryptosporidium in calves in Portugal. This study aimed to molecularly characterize infections of Cryptosporidium in pre-weaned calves from the Lisbon and Tagus Valley (LTV) in Portugal. Fifty-two samples were collected from calves from eight dairy and two beef farms in LTV, Portugal. Cryptosporidium oocysts were detected by Modified Ziehl-Neelsen staining (MZN) and direct immunofluorescent assay (DFA). MZN and DFA revealed the presence of Cryptosporidium oocysts in 40.4% (21/52) and 67.3% (35/52) samples, respectively. Positive samples were analyzed by PCR-RFLP of the 18 s rRNA gene for species identification. DNA amplification of the 18S rRNA gene was successful for 88.6% (31/35) of samples. Cryptosporidium parvum was identified in 96.8% (30/31) of the samples, and from one sample Cryptosporidium bovis was identified. Cryptosporidium parvum positive samples were subtyped by sequencing the PCR product of a partial fragment of the 60 kDa glycoprotein (gp60) gene. Subtype analysis of the C. parvum isolates revealed that all isolates belonged to subtype family IIa. Four subtypes were recognized within this subtype family, including the hyper-transmissible IIaA15G2R1 subtype that is the most frequently reported worldwide (27/30), IIaA14G2R1 (1/30), IIaA16G2R1 (1/30) and IIaA19G2R1 (1/30). To our knowledge, this is the first report of C. bovis, and C. parvum subtypes IIaA14G2R1 and IIaA19G2R1 in cattle in LTV, Portugal. The presence of the zoonotic C. parvum subtype in this study suggests that pre-weaned calves are likely to be a significant reservoir of zoonotic C. parvum, highlighting the importance of animal-to-human infection transmission risk. Further molecular studies are required to better understand the epidemiology of cryptosporidiosis in Portugal.
Collapse
Affiliation(s)
- Mariana Louro
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Ricardo Bexiga
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Isabel Pereira da Fonseca
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal.
| | - Jacinto Gomes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal; Agrarian School of Elvas, Polytechnic Institute of Portalegre, Portugal
| |
Collapse
|
6
|
Wang Z, Peng X, Bo X, Zhang B, Zhang Y, Yu F, Zhao A, Zhang Z, Qi M. Molecular evaluation of Cryptosporidium spp. in sheep in southern Xinjiang, China. Parasitol Res 2023; 122:2989-2997. [PMID: 37792051 DOI: 10.1007/s00436-023-07988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023]
Abstract
Cryptosporidium spp. are diarrheagenic intestinal parasites with multiple hosts worldwide. A total of 1252 fresh fecal samples of sheep were collected from 10 large-scale farms in southern Xinjiang. Based on the small subunit ribosomal (SSU rRNA) gene of Cryptosporidium, 100 Cryptosporidium-positive samples (8.0%, 100/1252) were detected by PCR. Nine out of 10 farms were positive for Cryptosporidium, with the highest infection rate being 18.4% (23/125) on farm 9 in Qira. The infection rates of Cryptosporidium in pre-weaned lambs, weaned lambs, fattening sheep, and adult sheep were 20.3% (61/301), 10.3% (34/329), 0.9% (3/327), and 0.7% (2/295), respectively. Three Cryptosporidium species were identified, namely, C. xiaoi (n = 61), C. parvum (n = 22), and C. ubiquitum (n = 17). Of them, C. xiaoi was detected on all positive farms and in different age groups of sheep. The subtypes of C. parvum and C. ubiquitum were identified by PCR at the 60 kDa glycoprotein (gp60) gene. Two C. parvum subtypes were identified: IIdA19G1 (n = 21) and IIdA15G1 (n = 1). One C. ubiquitum subtype was identified with XIIa (n = 17). These results indicated the common transmission and genetic diversity of Cryptosporidium in sheep in southern Xinjiang, and further investigations are needed on the zoonotic potential of C. parvum and C. ubiquitum in this region.
Collapse
Affiliation(s)
- Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Xia Peng
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Bowen Zhang
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Aiyun Zhao
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China
| | - Zhenjie Zhang
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China.
| | - Meng Qi
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
- College of Animal Science and Technology, Tarim University, Alaer, Xinjiang, 843300, China.
| |
Collapse
|
7
|
Kim AY, Alkathiri B, Lee S, Min KD, Kim S, Lee SM, Lee WK, Kwak D, Lee SH. Outbreak of severe diarrhea due to zoonotic Cryptosporidium parvum and C. xiaoi in goat kids in Chungcheongbuk-do, Korea. Parasitol Res 2023; 122:2045-2054. [PMID: 37347287 DOI: 10.1007/s00436-023-07904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Severe diarrhea was reported in goat kids in Chungcheongbuk-do, Korea, from 2021 to 2023, and Cryptosporidium infection was suspected. To confirm the cause of this outbreak, fecal samples were collected from goat farms where diarrhea had been reported and analyzed for Cryptosporidium infection using a molecular assay. A total of 65 fecal samples, including 37 from goats with diarrhea and 28 from goats without diarrhea, were collected from six goat farms. Forty-eight of the goats were kids (<2 months) and 17 were adults (>1 year). Cryptosporidium was identified in 53.8% (35/65) of total samples. Overall, 86.5% (32/37) of the diarrheic fecal samples tested positive; however, Cryptosporidium was not detected in any fecal sample from non-diarrheic adult goats. Therefore, cryptosporidiosis was significantly associated with diarrhea in goat kids, and adult goats were not responsible for transmission of Cryptosporidium to them. Phylogenetic analysis and molecular characterization revealed two Cryptosporidium species, namely, C. parvum (n = 28) and C. xiaoi (n = 7). In the C. parvum-positive samples, gp60 gene analysis revealed three zoonotic subtypes-IIaA18G3R1, IIdA15G1, and IIdA16G1. To the best of our knowledge, this study is the first to identify C. parvum IIaA18G3R1 and IIdA16G1 in goats, as well as the first to identify C. xiaoi in goats in Korea. These results suggest that goat kids play an important role as reservoir hosts for different Cryptosporidium species and that continuous monitoring with biosecurity measures is necessary to control cryptosporidiosis outbreaks.
Collapse
Affiliation(s)
- Ah-Young Kim
- Animal Quarantine Division, Agricultural Policy Bureau, Chungcheongbuk-do, Korea
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
| | - Badriah Alkathiri
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Subin Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Duk Min
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Soochong Kim
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Wan-Kyu Lee
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, Daegu, Korea
| | - Seung-Hun Lee
- Graduate of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Korea.
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
8
|
Aboelsoued D, Abdel Megeed KN. Diagnosis and control of cryptosporidiosis in farm animals. J Parasit Dis 2022; 46:1133-1146. [PMID: 36457776 PMCID: PMC9606155 DOI: 10.1007/s12639-022-01513-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cryptosporidium is a pathogenic protozoan parasite infecting the gastrointestinal epithelium of human and animal hosts. In farm animals, cryptosporidiosis causes significant economic losses including deaths in newborn animals, retarded growth, increased labor involved and high cost of drugs. The detection of Cryptosporidium oocysts in fecal samples is traditionally dependent on examination of stained slides by light microscope or by advanced microscopical tools such as: electron microscopy and phase contrast microscopy. Immunological diagnosis using either antibody or antigen detection could offer high sensitivity and specificity. Examples for these tests are Enzyme Linked Immunosorbent Assay (ELISA), Immunochromatographic tests, Immunochromatographic lateral flow (ICLF), Immunofluorescence assays (IFA) and Flow cytometry coupled with cell sorting. Molecular methods could differentiate species and genotypes of Cryptosporidium and help in studying the epidemiological features of this parasite with rapid, simple and sensitive procedures. Nanotechnology-based platforms could improve the sensitivity and specificity of other detection methods like: ELISA, ICLF, IFA and polymerase chain reaction. As the available prophylactic and therapeutic drugs or natural products treatments are insufficient and no approved vaccines are available, the best approach to control this parasite is by following firm hygienic measures. Many vaccine attempts were performed using hyperimmune colostrum, live or attenuated vaccines, recombinant and Deoxyribonucleic acid vaccines. Also, Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 technology could help in Cryptosporidium genome editing to improve drug and vaccine discovery. Another approach that could be useful for assigning drug targets is metabolomics. Probiotics were also used successfully in the treatment of acute diarrhea and they proved a limiting effect on cryptosporidiosis in animal models. In addition, nanotherapy-based approaches could provide a good strategy for improving the potency of any type of drugs against Cryptosporidium and give good anti-cryptosporidial effects. In conclusion, accurate diagnosis using advanced techniques is the key to the control and prevention of cryptosporidiosis.
Collapse
Affiliation(s)
- Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Kadria Nasr Abdel Megeed
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| |
Collapse
|
9
|
Papanikolopoulou V, Lafi SQ, Papadopoulos E, Diakou A, Xiao L, Giadinis ND. Risk factors for Cryptosporidium infection in small ruminants in northern Greece. Vet Parasitol 2022; 309:109769. [PMID: 35907380 DOI: 10.1016/j.vetpar.2022.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/17/2022]
Abstract
The knowledge of risk factors for Cryptosporidium spp. infection in small ruminants is based on limited data. Therefore, the current research aimed to describe the prevalence and risk factors associated with the occurrence of Cryptosporidium infection in sheep and goat herds in northern Greece. Hence, 530 fresh fecal samples from 59 sheep and goat farms were collected and examined for Cryptosporidium oocysts using microscopy of fecal smears stained by the modified Ziehl-Neelsen technique. The overall prevalence of Cryptosporidium infection for both host species was 34% (180/530; 95% confidence interval (CI): 29.9-38). Specifically, the prevalence for sheep and goats was 33.5% (112/334; 95% CI: 28.4-35.6) and 34.7% (68/196; 95% CI: 28-41.4), respectively. Additionally, standardized questionnaires were filled-in to collect data regarding animals' health status, feeding, and other management practices in each farm. In total 22 risk factors hypothesized to be associated with Cryptosporidium infection were investigated. Multiple logistic regression analysis showed that farms with stagnant water were 11.78 (95% CI: 66-61.5) times more likely to be infected with Cryptosporidium than farms without stagnant water (p < 0.05). Furthermore, farms with more than 25% of their animals suffering from diarrhea were 17.39 (95% CI: 3.43-88.3) times more likely to be infected with Cryptosporidium than farms with ≤ 25% of the animals having diarrhea (p < 0.05). These results suggest that the animal health status and the prevailing environmental conditions play an important role in transmitting Cryptosporidium spp. infection.
Collapse
Affiliation(s)
- Vasiliki Papanikolopoulou
- Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece; Laboratory of Animal Husbandry, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece.
| | - Shwakat Q Lafi
- Department of Pathology and Animal Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid, Jordan
| | - Elias Papadopoulos
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Room 303, Administrative Building of Veterinary Medicine, Guangzhou 510642, China
| | - Nektarios D Giadinis
- Clinic of Farm Animals, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Zhong T, Wang C, Wang X, Freitas-de-Melo A, Zeng B, Zhao Q, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. Early Weaning and Milk Substitutes Affect the Gut Microbiome, Metabolomics, and Antibody Profile in Goat Kids Suffering From Diarrhea. Front Microbiol 2022; 13:904475. [PMID: 35801115 PMCID: PMC9253616 DOI: 10.3389/fmicb.2022.904475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Early weaning and milk substitutes increase the incidence of diarrhea in young ruminants, which may modify their gut microbiota, metabolism, immunity, and health. The aim of the study was to determine if early weaning and milk substitutes affect the gut microbiota, metabolism, and immunological status of goat kids suffering from diarrhea. The 16S rRNA gene and metagenomic sequencing in feces and serum metabolomics of early-weaned and artificially reared goat kids suffering from diarrhea (DK group) and healthy goat kids reared by their mothers (HK group) were analyzed. The serum biochemistry and immunoglobulin concentration were also determined. Several probiotics, such as Streptococcus and Lactobacillus, were higher in the feces of the DK group than in feces of the HK group. Ruminococcus sp. was elevated in the feces of HKs, likely being a biomarker for goat health. Taking all the carbohydrate-active enzyme (CAZyme) families into consideration, 20 CAZyme families were different between the groups. Compared with the DK group, the relative quantity of glycoside hydrolases (GH) and glycosyltransferase (GT) families in the HK group decreased. GT70 was only identified in HK kids participating in the activity of β-glucuronosyltransferase during the carbohydrate metabolism. Overall, 24 metabolites were different between the groups, which were mainly involved in protein digestion and absorption, cyanoamino acid metabolism, and cholesterol metabolism. The concentrations of immunoglobulins G and M were significantly lower in the DK than in the HK group. In conclusion, our study characterized the fecal microbiota, metabolism, and immunological status of early-weaned and artificially reared goat kids suffering from diarrhea.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Cheng Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinlu Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Aline Freitas-de-Melo
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Bo Zeng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Delling C, Daugschies A. Literature Review: Coinfection in Young Ruminant Livestock- Cryptosporidium spp. and Its Companions. Pathogens 2022; 11:103. [PMID: 35056051 PMCID: PMC8777864 DOI: 10.3390/pathogens11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The protozoan Cryptosporidium parvum is one of the major causative pathogens of diarrhoea in young ruminants; therefore, it causes economic losses and impairs animal welfare. Besides C. parvum, there are many other non-infectious and infectious factors, such as rotavirus, Escherichia coli, and Giardia duodenalis, which may lead to diarrhoeic disease in young livestock. Often, more than one infectious agent is detected in affected animals. Little is known about the interactions bet-ween simultaneously occurring pathogens and their potential effects on the course of disease. In this review, a brief overview about pathogens associated with diarrhoea in young ruminants is presented. Furthermore, information about coinfections involving Cryptosporidium is provided.
Collapse
Affiliation(s)
- Cora Delling
- Institute of Parasitology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103 Leipzig, Germany;
| | | |
Collapse
|
12
|
Kifleyohannes T, Nødtvedt A, Debenham JJ, Terefe G, Robertson LJ. Cryptosporidium and Giardia in Livestock in Tigray, Northern Ethiopia and Associated Risk Factors for Infection: A Cross-Sectional Study. Front Vet Sci 2022; 8:825940. [PMID: 35097057 PMCID: PMC8795829 DOI: 10.3389/fvets.2021.825940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and species/genotypes of Cryptosporidium and Giardia duodenalis infecting young livestock in selected districts of Tigray, Ethiopia were investigated, along with risks associated with infection. A total of 757 faecal samples were collected from calves, lambs, and goat kids from four rural districts in Tigray, and also from calves in periurban Mekelle, Tigray's main city, and analysed for Cryptosporidium oocysts and Giardia cysts. Farmers answered questionnaires regarding potential risk factors at sample collection. Immunofluorescent antibody staining was used for parasite detection, and PCR at selected genes and sequencing of positive samples was used for molecular characterisation. The occurrence of Cryptosporidium infection was 10, 9, and 4% in calves, lambs, and goat kids, respectively; equivalent figures for Giardia infection were 39, 32, and 21%. Molecular characterisation of Cryptosporidium isolates revealed C. ubiquitum, subtype XIIa in all three host species; C. ryanae in calves and goat kids; C. andersoni and C. bovis were identified only in calves, and C. xiaoi was identified in lambs. For Giardia, Assemblage E predominated in all host species, but among calf isolates we also identified a few potentially zoonotic genotypes (assemblages A (AI) and Assemblage B). Periparturient care was shown to be a particularly relevant risk factor for infection, and infections were less likely to occur under extensive management systems. Our major findings were widespread occurrence of both parasites in livestock, and the apparent lack of the most common zoonotic species. Our results are discussed in relation to other relevant studies. As our study was conducted in Tigray, further investigation in different settings in Ethiopia could provide relevant information on transmission and zoonotic potential. In addition, given the dependency on healthy animals for the livelihoods of the population of Tigray, investigation of the effect of these common parasites on livestock productivity is important.
Collapse
|
13
|
Hotchkiss EJ. Zoonotic cryptosporidiosis - challenges for control and source attribution. Vet Rec 2021; 189:150-152. [PMID: 34415616 DOI: 10.1002/vetr.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Emily J Hotchkiss
- Scottish Centre for Production Animal Health and Food Safety, School of Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
14
|
Small ruminants and zoonotic cryptosporidiosis. Parasitol Res 2021; 120:4189-4198. [PMID: 33712929 DOI: 10.1007/s00436-021-07116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Sheep and goats are commonly infected with three Cryptosporidium species, including Cryptosporidium parvum, Cryptosporidium ubiquitum, and Cryptosporidium xiaoi, which differ from each in prevalence, geographic distribution, and public health importance. While C. parvum appears to be a dominant species in small ruminants in European countries, its occurrence in most African, Asian, and American countries appear to be limited. As a result, zoonotic infections due to contact with lambs and goat kids are common in European countries, leading to frequent reports of outbreaks of cryptosporidiosis on petting farms. In contrast, C. xiaoi is the dominant species elsewhere, and mostly does not infect humans. While C. ubiquitum is another zoonotic species, it occurs in sheep and goats at much lower frequency. Host adaptation appears to be present in both C. parvum and C. ubiquitum, consisting of several subtype families with different host preference. The host-adapted nature of C. parvum and C. ubiquitum has allowed the use of subtyping tools in tracking infection sources. This has led to the identification of geographic differences in the importance of small ruminants in epidemiology of human cryptosporidiosis. These tools have also been used effectively in linking zoonotic transmission of C. parvum between outbreak cases and the suspected animals. Further studies should be directly elucidating the reasons for differences in the distribution and public health importance of major Cryptosporidium species in sheep and goats.
Collapse
|
15
|
Abstract
Cryptosporidiosis is recognized as being a significant cause of gastrointestinal illness due to its wide range of vertebrate hosts, including humans. Infection with Cryptosporidium spp. is especially common in young domestic ruminants (calves, lambs and goat kids) and has been associated with economic losses worldwide. In contrast to cattle, to date, detailed studies on Cryptosporidium infections in sheep from Europe are still limited; thus, their importance as reservoirs of Cryptosporidium species with implications on animal and public health still needs to be clarified. This study evaluates the prevalence and zoonotic potential of Cryptosporidium spp. in sheep farms in Italy. A total of 915 individual faecal samples divided into three different animal categories were collected from 61 sheep farms. Each sample was examined by microscopy of faecal smears stained by modified Ziehl-Neelsen and by biomolecular techniques. Cryptosporidium oocysts were detected in 10.1% of the animals examined and in 34.4% of the farms. The prevalence of Cryptosporidium spp. was significantly higher (χ2 = 51.854; P < 0.001) in diarrhoeic samples than in pasty or normal faeces. Genotype analyses showed the presence of two Cryptosporidium species: C. parvum and C. ubiquitum. Subtyping analysis of C. parvum isolates revealed the presence of subtypes IIa15G2R1 and IIdA20G1 and of subtype XIIa for C. ubiquitum. These findings have public health implications since both Cryptosporidium species identified are considered zoonotic, and C. parvum is the second-most common Cryptosporidium species infecting humans. Our data reveal that lambs, especially those excreting diarrhoeic faeces, may be important reservoirs of Cryptosporidium. We also highlight the need to establish adequate control and monitoring programmes for the control of this infection in sheep farms primarily through coprological monitoring.
Collapse
|
16
|
Bordes L, Houert P, Costa D, Favennec L, Vial-Novella C, Fidelle F, Grisez C, Prévot F, Jacquiet P, Razakandrainibe R. Asymptomatic Cryptosporidium infections in ewes and lambs are a source of environmental contamination with zoonotic genotypes of Cryptosporidium parvum. ACTA ACUST UNITED AC 2020; 27:57. [PMID: 33141660 PMCID: PMC7608980 DOI: 10.1051/parasite/2020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023]
Abstract
Protozoan parasites of the Cryptosporidium genus cause severe cryptosporidiosis in newborn lambs. However, asymptomatic infections also occur frequently in lambs and ewes. In sheep, the most commonly detected Cryptosporidium species are C. ubiquitum, C. xiaoi and C. parvum. Due to a lack of relevant information about such infections in France, we investigated the situation on five dairy sheep farms in the Pyrénées-Atlantiques Department in south-western France in December 2017. Individual fecal samples were collected from 79 female lambs (5–17 days old) and their mothers (72 ewes). Oocysts were screened using Heine staining before and after Bailenger concentrations. Cryptosporidium species identification and genotyping were performed using real-time PCR and gp60 gene sequencing. No cases of clinical cryptosporidiosis were observed in the 79 lambs. Microscopically, Cryptosporidium spp. oocysts were observed in only one lamb on one farm (prevalence 1.3%) and one ewe on another farm (prevalence 1.4%). By contrast, Cryptosporidium spp. DNA was detected in 17 ewes (prevalence ranging from 10.5% to 50% depending on the farm) and in 36 lambs (prevalence ranging from 0% to 77.8% depending on the farm). Only zoonotic Cryptosporidium parvum IId and IIa genotypes were identified when genotyping was possible. Cryptosporidium ubiquitum and C. xiaoi were detected on one and three farms, respectively. We conclude that healthy young lambs and their mothers during the peripartum period could be a source of environmental contamination with oocysts.
Collapse
Affiliation(s)
- Léa Bordes
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Pauline Houert
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Damien Costa
- Centre Hospitalier Universitaire, Centre National de Référence - Laboratoire Expert des Cryptosporidioses, 76031 Rouen, France
| | - Loïc Favennec
- Centre Hospitalier Universitaire, Centre National de Référence - Laboratoire Expert des Cryptosporidioses, 76031 Rouen, France
| | - Corinne Vial-Novella
- Centre Départemental pour l'Elevage Ovin, Quartier Ahetzia, 64130 Ordiarp, France
| | - Francis Fidelle
- Centre Départemental pour l'Elevage Ovin, Quartier Ahetzia, 64130 Ordiarp, France
| | - Christelle Grisez
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Françoise Prévot
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Philippe Jacquiet
- IHAP, UMT Pilotage de la Santé des Ruminants, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Romy Razakandrainibe
- Centre Hospitalier Universitaire, Centre National de Référence - Laboratoire Expert des Cryptosporidioses, 76031 Rouen, France
| |
Collapse
|
17
|
Qian W, Zhang Y, Jiang Y, Zhao A, Lv C, Qi M. Molecular characterization of Cryptosporidium spp. in minks (Neovison vison), blue foxes (Vulpes lagopus), and raccoon dogs (Nyctereutes procyonoides) in farms from Xinjiang, Northwest China. Parasitol Res 2020; 119:3923-3927. [PMID: 33009948 DOI: 10.1007/s00436-020-06909-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine the infection rate and genetic diversity of Cryptosporidium spp. in minks, foxes, and raccoon dogs, farmed in the Xinjiang Uygur Autonomous Region, Northwest China. Fresh fecal specimens were collected from individual cages of farmed minks (n = 214), blue foxes (n = 35), and raccoon dogs (n = 39) and examined using nested PCR based on the Cryptosporidium spp. small subunit rRNA gene. Cryptosporidium spp. was detected in 35 cages (12.2%, 35/288), with a higher infection rate detected in raccoon dogs (20.5%) compared with minks (12.1%) and blue foxes (2.9%). Sequence analysis showed that Cryptosporidium canis was the only species identified in blue foxes and raccoon dogs, while in the 26 Cryptosporidium-positive mink specimens, Cryptosporidium mink genotype (n = 17), C. canis (n = 7), and Cryptosporidium parvum (n = 2) were identified. Further analysis based on the 60-kDa glycoprotein (gp60) gene determined that both C. parvum isolates belonged to the subtype IIdA15G1, while eight of the 17 Cryptosporidium mink genotype isolates were a novel subtype that we have named XeA5G1. To the best of our knowledge, this is the first report of C. parvum subtype IIdA15G1 infection in minks. Since all the Cryptosporidium species/genotypes identified in minks, foxes, and raccoon dogs from Xinjiang have been previously found in humans, our results suggest that these fur animals may play a role in the transmission of zoonotic Cryptosporidium.
Collapse
Affiliation(s)
- Weifeng Qian
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China.,College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, China
| | - Ying Zhang
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, China
| | - Yuxi Jiang
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, China
| | - Aiyun Zhao
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, China
| | - Chaochao Lv
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Meng Qi
- College of Animal Science, Tarim University, Tarim Road 1487, Alar, 843300, Xinjiang, China.
| |
Collapse
|
18
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
19
|
Ahmed SA, Karanis P. Cryptosporidium and Cryptosporidiosis: The Perspective from the Gulf Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6824. [PMID: 32962045 PMCID: PMC7558405 DOI: 10.3390/ijerph17186824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
The present review discusses the burden of cryptosporidiosis in the Gulf Cooperation Council (GCC), which is underreported and underestimated. It emphasizes that the Cryptosporidium parasite is infecting inhabitants and expatriates in the Gulf countries. Children under 5 years are a vulnerable group that is particularly affected by this parasitic disease and can act as carriers, who contribute to the epidemiology of the disease most probably via recreational swimming pools. Various risk factors for cryptosporidiosis in the GCC countries are present, including expatriates, predisposing populations to the infection. Water contamination, imported food, animal contact, and air transmission are also discussed in detail, to address their significant role as a source of infection and, thus, their impact on disease epidemiology in the Gulf countries' populations.
Collapse
Affiliation(s)
- Shahira A. Ahmed
- Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Panagiotis Karanis
- Medical Faculty and University Hospital, University of Cologne, 50937 Cologne, Germany
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, CY-1700 Nicosia 24005, Cyprus
| |
Collapse
|
20
|
Ligda P, Claerebout E, Kostopoulou D, Zdragas A, Casaert S, Robertson LJ, Sotiraki S. Cryptosporidium and Giardia in surface water and drinking water: Animal sources and towards the use of a machine-learning approach as a tool for predicting contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114766. [PMID: 32417583 DOI: 10.1016/j.envpol.2020.114766] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidium and Giardia are important parasites due to their zoonotic potential and impact on human health, often causing waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and few countries have legislated water monitoring for their presence. The aim of this study was to investigate the presence and origin of these parasites in different water sources in Northern Greece and identify interactions between biotic/abiotic factors in order to develop risk-assessment models. During a 2-year period, using a longitudinal, repeated sampling approach, 12 locations in 4 rivers, irrigation canals, and a water production company, were monitored for Cryptosporidium and Giardia, using standard methods. Furthermore, 254 faecal samples from animals were collected from 15 cattle and 12 sheep farms located near the water sampling points and screened for both parasites, in order to estimate their potential contribution to water contamination. River water samples were frequently contaminated with Cryptosporidium (47.1%) and Giardia (66.2%), with higher contamination rates during winter and spring. During a 5-month period, (oo)cysts were detected in drinking-water (<1/litre). Animals on all farms were infected by both parasites, with 16.7% of calves and 17.2% of lambs excreting Cryptosporidium oocysts and 41.3% of calves and 43.1% of lambs excreting Giardia cysts. The most prevalent species identified in both water and animal samples were C. parvum and G. duodenalis assemblage AII. The presence of G. duodenalis assemblage AII in drinking water and C. parvum IIaA15G2R1 in surface water highlights the potential risk of waterborne infection. No correlation was found between (oo)cyst counts and faecal-indicator bacteria. Machine-learning models that can predict contamination intensity with Cryptosporidium (75% accuracy) and Giardia (69% accuracy), combining biological, physicochemical and meteorological factors, were developed. Although these prediction accuracies may be insufficient for public health purposes, they could be useful for augmenting and informing risk-based sampling plans.
Collapse
Affiliation(s)
- Panagiota Ligda
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium; Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Despoina Kostopoulou
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Antonios Zdragas
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Lucy J Robertson
- Parasitology, Department of Paraclinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway.
| | - Smaragda Sotiraki
- Laboratory of Infectious and Parasitic Diseases, Veterinary Research Institute, Hellenic Agricultural Organization - DEMETER, 57001, Thermi, Thessaloniki, Greece.
| |
Collapse
|
21
|
First report of Cryptosporidium spp. infection and risk factors in black-boned goats and black-boned sheep in China. Parasitol Res 2020; 119:2813-2819. [PMID: 32583163 DOI: 10.1007/s00436-020-06781-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
Cryptosporidium is an opportunistic protozoan parasite that can inhabit in the gastrointestinal tract of various hosts. Cryptosporidium infection in black-boned goats and black-boned sheep may pose a threat to the survival and productivity, causing considerable economic losses to the livestock industry. However, it is yet to know whether black-boned goats and black-boned sheep in China are infected with Cryptosporidium. Thus, the objective of the present study was to investigate the prevalence and associated risk factors of Cryptosporidium infection in black-boned goats and black-boned sheep in Yunnan province, China. A total of 590 fecal samples were obtained from black-boned goats and black-boned sheep from five counties in Yunnan province, and the prevalence and species distribution of Cryptosporidium were determined by amplification of the 18S rDNA fragment using the nested PCR. The overall Cryptosporidium prevalence was 13.2% (78/590), with 18.0% (55/305) in black-boned goats and 8.1% (23/285) in black-boned sheep. The age and sampling site were identified as main factors that result in significant differences in Cryptosporidium prevalence. Three species, namely C. muris, C. xiaoi, and C. ubiquitum, were identified in black-boned goats and black-boned sheep in the present study, with C. muris (46/78) as the predominant species. This is the first report of Cryptosporidium infection in black-boned goats and black-boned sheep in China, and the findings will facilitate better understanding, prevention, and control of Cryptosporidium infection in black-boned goats and black-boned sheep in China.
Collapse
|
22
|
Kabir MHB, Ceylan O, Ceylan C, Shehata AA, Bando H, Essa MI, Xuan X, Sevinc F, Kato K. Molecular detection of genotypes and subtypes of Cryptosporidium infection in diarrheic calves, lambs, and goat kids from Turkey. Parasitol Int 2020; 79:102163. [PMID: 32589940 DOI: 10.1016/j.parint.2020.102163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/01/2022]
Abstract
The studies on Cryptosporidium infections of animals in Turkey mostly rely on microscopic observation. Few data are available regarding the prevalence of Cryptosporidium genotypes and subtypes infection. The aim of this study is to analyse the detection of Cryptosporidium genotypes and subtypes from young ruminants. A total of 415 diarrheic fecal specimens from young ruminants were examined for the Cryptosporidium detection by use of nested PCR of the small subunit ribosomal RNA (SSU rRNA) gene and the highly polymorphic 60 kDa glycoprotein (gp60) gene followed by sequence analyses. The results of this study revealed that 25.6% (106 of 415) of the specimens were positive for Cryptosporidium spp. infection. We identified 27.4% (91/333), 19.4% (13/67), and 13.4% (2/15) of positivity in calves, lambs and goat kids, respectively. Genotyping of the SSU rRNA indicated that almost all positive specimens were of C. parvum, except for one calf which was of C. bovis. Sequence analysis of the gp60 gene revealed the most common zoonotic subtypes (IIa and IId) of C. parvum. We detected 11 subtypes (IIaA11G2R1, IIaA11G3R1, IIaA12G3R1, IIaA13G2R1, IIaA13G4R1, IIaA14G1R1, IIaA14G3R1, IIaA15G2R1, IIdA16G1, IIdA18G1, IIdA22G1); three of them (IIaA12G3R1, IIaA11G3R1 and IIaA13G4R1) was novel subtypes found in calves and lambs. Additionally, three subtypes (IIaA11G2R1, IIaA14G3R1, and IIdA16G1) were detected in young ruminants for the first time in Turkey. These results indicate the high infection of Cryptosporidium in Turkey and propose that young ruminants are likely a major reservoir of C. parvum and a potential source of zoonotic transmission.
Collapse
Affiliation(s)
- Mohammad Hazzaz Bin Kabir
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42042 Konya, Turkey
| | - Ceylan Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42042 Konya, Turkey
| | - Ayman Ahmed Shehata
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, El-Shohada, Moawwad, Qesm Awel AZ, Zagazig, 44511, Egypt
| | - Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| | - Mohamed Ibrahim Essa
- Department of Animal Medicine, Infectious Diseases, Faculty of Veterinary Medicine, Zagazig University, El-Shohada, Moawwad, Qesm Awel AZ, Zagazig, 44511, Egypt
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Ferda Sevinc
- Department of Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42042 Konya, Turkey.
| | - Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
| |
Collapse
|
23
|
Abstract
Cryptosporidium and Giardia are ubiquitous protozoan parasites that infect a broad range of vertebrate hosts, including domestic and wild animals as well as humans. Both parasites are of medical and veterinary importance. Infections with Cryptosporidium and Giardia in ruminants are associated with diarrhea outbreaks, mainly in young animals. Ruminants are potential sources of infection for humans because some species of Cryptosporidium and assemblages of Giardia duodenalis have been isolated from both ruminants and humans. Knowledge of these parasites has greatly expanded in the last 2 decades from simple microscopic observations of organisms to the knowledge acquired from molecular tools.
Collapse
Affiliation(s)
- Monica Santin
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, BARC-East, Building 173, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
24
|
Qi M, Zhang Z, Zhao A, Jing B, Guan G, Luo J, Zhang L. Distribution and molecular characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi amongst grazing adult sheep in Xinjiang, China. Parasitol Int 2019; 71:80-86. [PMID: 30974206 DOI: 10.1016/j.parint.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 10/27/2022]
Abstract
To assess the prevalence and molecular characteristics of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in grazing adult sheep from Xinjiang Uygur Autonomous Region, China, 318 fecal samples were collected and screened for the presence of these parasites by polymerase chain reaction. The overall infection rate for the three pathogens was 13.5% (43/318), with observed individual infection rates of 0.9% (3/318), 7.5% (24/318), and 6.3% (20/318) for Cryptosporidium spp., G. duodenalis, and E. bieneusi, respectively. Three Cryptosporidium species were identified amongst the samples, including C. xiaoi (n = 1), C. ubiquitum (n = 1), and C. parvum (n = 1), with gp60-based subtyping analysis identifying C. parvum as subtype IIdA15G1 and C. ubiquitum as subtype XIIa. Eight E. bieneusi genotypes were identified based on internal transcribed spacer region sequencing, including six known (BEB6, CHG1, CHG3, CHS3, CHS8, and COS-I) and two novel (designated XJS1 and XJS2) genotypes. All G. duodenalis-positive samples were identified as assemblage E based on small subunit rRNA (n = 24) and gdh (n = 10) gene sequence analysis. These data support the occurrence of host adaptation by Cryptosporidium spp., G. duodenalis, and E. bieneusi in sheep, and the zoonotic risk may posed by these parasites in Xinjiang, China.
Collapse
Affiliation(s)
- Meng Qi
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; College of Animal Science, Tarim University, Alar, Xinjiang 843300, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zhenjie Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Aiyun Zhao
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Bo Jing
- College of Animal Science, Tarim University, Alar, Xinjiang 843300, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
25
|
Čondlová Š, Horčičková M, Havrdová N, Sak B, Hlásková L, Perec-Matysiak A, Kicia M, McEvoy J, Kváč M. Diversity of Cryptosporidium spp. in Apodemus spp. in Europe. Eur J Protistol 2019; 69:1-13. [PMID: 30826667 DOI: 10.1016/j.ejop.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/28/2019] [Accepted: 02/08/2019] [Indexed: 11/18/2022]
Abstract
The genetic diversity of Cryptosporidium spp. in Apodemus spp. (striped field mouse, yellow-necked mouse and wood mouse) from 16 European countries was examined by PCR/sequencing of isolates from 437 animals. Overall, 13.7% (60/437) of animals were positive for Cryptosporidium by PCR. Phylogenetic analysis of small-subunit rRNA, Cryptosporidium oocyst wall protein and actin gene sequences showed the presence of Cryptosporidium ditrichi (22/60), Cryptosporidium apodemi (13/60), Cryptosporidium apodemus genotype I (8/60), Cryptosporidium apodemus genotype II (9/60), Cryptosporidium parvum (2/60), Cryptosporidium microti (2/60), Cryptosporidium muris (2/60) and Cryptosporidium tyzzeri (2/60). At the gp60 locus, novel gp60 families XVIIa and XVIIIa were identified in Cryptosporidium apodemus genotype I and II, respectively, subtype IIaA16G1R1b was identified in C. parvum, and subtypes IXaA8 and IXcA6 in C. tyzzeri. Only animals infected with C. ditrichi, C. apodemi, and Cryptosporidium apodemus genotypes shed oocysts that were detectable by microscopy, with the infection intensity ranging from 2000 to 52,000 oocysts per gram of faeces. None of the faecal samples was diarrheic in the time of the sampling.
Collapse
Affiliation(s)
- Šárka Čondlová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Michaela Horčičková
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Nikola Havrdová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Agnieszka Perec-Matysiak
- Department of Parasitology, Institute of Genetics and Microbiology, University of Wrocław, Poland
| | - Marta Kicia
- Department of Biology and Medical Parasitology, Wroclaw Medical University, Poland
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, Fargo, USA
| | - Martin Kváč
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|