1
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
2
|
Silva LMR, Velásquez ZD, López-Osorio S, Hermosilla C, Taubert A. Novel Insights Into Sterol Uptake and Intracellular Cholesterol Trafficking During Eimeria bovis Macromeront Formation. Front Cell Infect Microbiol 2022; 12:809606. [PMID: 35223543 PMCID: PMC8878908 DOI: 10.3389/fcimb.2022.809606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Apicomplexan parasites are considered as defective in cholesterol synthesis. Consequently, they need to scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating host cellular de-novo biosynthesis. Given that Eimeria bovis macromeront formation in bovine lymphatic endothelial host cells in vivo is a highly cholesterol-demanding process, we here examined host parasite interactions based on host cellular uptake of different low-density lipoprotein (LDL) types, i.e., of non-modified (LDL), oxidized (oxLDL), and acetylated LDL (acLDL). Furthermore, the expression of lipoprotein-oxidized receptor 1 (LOX-1), which mediates acLDL and oxLDL internalization, was monitored throughout first merogony, in vitro and ex vivo. Moreover, the effects of inhibitors blocking exogenous sterol uptake or intracellular transport were studied during E. bovis macromeront formation in vitro. Hence, E. bovis-infected primary bovine umbilical vein endothelial cells (BUVEC) were treated with inhibitors of sterol uptake (ezetimibe, poly-C, poly-I, sucrose) and of intracellular sterol transport and release from endosomes (progesterone, U18666A). As a read-out system, the size and number of macromeronts as well as merozoite I production were estimated. Overall, the internalization of all LDL modifications (LDL, oxLDL, acLDL) was observed in E. bovis-infected BUVEC but to different extents. Supplementation with oxLDL and acLDL at lower concentrations (5 and 10 µg/ml, respectively) resulted in a slight increase of both macromeront numbers and size; however, at higher concentrations (25-50 µg/ml), merozoite I production was diminished. LOX-1 expression was enhanced in E. bovis-infected BUVEC, especially toward the end of merogony. As an interesting finding, ezetimibe treatments led to a highly significant blockage of macromeront development and merozoite I production confirming the relevance of sterol uptake for intracellular parasite development. Less prominent effects were induced by non-specific inhibition of LDL internalization via sucrose, poly-I, and poly-C. In addition, blockage of cholesterol transport via progesterone and U18666A treatments resulted in significant inhibition of parasite development. Overall, current data underline the relevance of exogenous sterol uptake and intracellular cholesterol transport for adequate E. bovis macromeront development, unfolding new perspectives for novel drug targets against E. bovis.
Collapse
Affiliation(s)
- Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin, Colombia
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Vandendoren M, O'Toole D, Gigley J, Zhang R, Bangoura B. Establishment of a cell culture-qPCR system to quantify early developmental stages of Eimeria zuernii. Vet Parasitol 2021; 301:109621. [PMID: 34844139 DOI: 10.1016/j.vetpar.2021.109621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/27/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022]
Abstract
Bovine coccidiosis is caused by apicomplexans of the genus Eimeria and results in significant economic losses in the cattle industry worldwide. Numerous anticoccidial drugs are available for the treatment of bovine Eimeria infections. However, many compounds have been on the market for decades, and multidrug resistance is commonly observed in avian Eimeria. Recent reports of anticoccidial resistance in ovine Eimeria indicate the need for a rapid and inexpensive in vitro method to assess drug efficacy against ruminant Eimeria. Currently, no such assay exists for bovine Eimeria. The aim of this study was to develop a Madin-Darby bovine kidney (MDBK) cell culture-qPCR model to support the development of Eimeria (E.) zuernii in laboratory settings. The established in vitro assay was applied on three field strains of E. zuernii from the western United States to identify its general suitability for a variety of field strains. Infected cells were observed microscopically and analyzed by quantitative PCR (qPCR) at 48 and 192 h post infection (hpi). Light microscopy observations demonstrated E. zuernii sporozoite invasion as early as 24 hpi, while confocal laser scanning microscopy revealed early meront formation by 48 hpi. Gene copy numbers displayed variations in parasite copy numbers directly after infection and over the observation period over 192 h. Based on these findings, this assay is suitable for detecting E. zuernii gene copies in MDBK cells over an experimental period of 192 h. Though total gene copy numbers did not increase over time, we conclude that this assay is a suitable for sustaining the growth and development of E. zuernii stages in vitro. This testing system will allow for further investigations of bovine Eimeria while reducing the use of animal experiments.
Collapse
Affiliation(s)
- Morgane Vandendoren
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, USA.
| | - Donal O'Toole
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, USA.
| | - Jason Gigley
- Department of Molecular Biology, University of Wyoming, 1000 E. University Ave., Laramie, WY, 82071, USA.
| | - Runhui Zhang
- Department of Veterinary Medicine, Southwest Minzu University, Chengdu, China; Institute of Parasitology, Centre for Infectious Diseases, Leipzig University, Leipzig, Germany.
| | - Berit Bangoura
- Department of Veterinary Sciences, University of Wyoming, 1174 Snowy Range Road, Laramie, WY, 82070, USA.
| |
Collapse
|
4
|
Thiosemicarbazone Copper Chelator BLT-1 Blocks Apicomplexan Parasite Replication by Selective Inhibition of Scavenger Receptor B Type 1 (SR-BI). Microorganisms 2021; 9:microorganisms9112372. [PMID: 34835496 PMCID: PMC8622581 DOI: 10.3390/microorganisms9112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Coccidian parasites are obligate intracellular pathogens that affect humans and animals. Apicomplexans are defective in de novo synthesis of cholesterol, which is required for membrane biosynthesis and offspring formation. In consequence, cholesterol has to be scavenged from host cells. It is mainly taken up from extracellular sources via LDL particles; however, little is known on the role of HDL and its receptor SR-BI in this process. Here, we studied effects of the SR-BI-specific blocker BLT-1 on the development of different fast (Toxoplasma gondii, Neospora caninum, Besnoitia besnoiti) and slow (Eimeria bovis and Eimeria arloingi) replicating coccidian species. Overall, development of all these parasites was significantly inhibited by BLT-1 treatment indicating a common SR-BI-related key mechanism in the replication process. However, SR-BI gene transcription was not affected by T. gondii, N. caninum and B. besnoiti infections. Interestingly, BLT-1 treatment of infective stages reduced invasive capacities of all fast replicating parasites paralleled by a sustained increase in cytoplasmic Ca++ levels. Moreover, BLT1-mediated blockage of SR-BI led to enhanced host cell lipid droplet abundance and neutral lipid content, thereby confirming the importance of this receptor in general lipid metabolism. Finally, the current data suggest a conserved role of SR-BI for successful coccidian infections.
Collapse
|
5
|
Lopez-Osorio S, Velasquez ZD, Conejeros I, Taubert A, Hermosilla C. Morphometric analysis of aerobic Eimeria bovis sporogony using live cell 3D holotomographic microscopy imaging. Parasitol Res 2021; 121:1179-1189. [PMID: 34633548 PMCID: PMC8986681 DOI: 10.1007/s00436-021-07338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
M
onoxenous Eimeria species are widespread enteropathogenic apicomplexan protozoa with a high economic impact on livestock. In cattle, tenacious oocysts shed by E. bovis-infected animals are ubiquitously found and making infection of calves almost inevitable. To become infectious oocysts, exogenous oxygen-dependent E. bovis sporogony must occur leading to the formation of sporulated oocysts containing four sporocysts each harboring two sporozoites. Investigations on sporogony by live cell imaging techniques of ruminant Eimeria species are still absent in literature as commonly used fluorescent dyes do not penetrate resistant oocyst bi-layered wall. Sporogonial oocysts were daily analyzed by a 3D Cell Explorer Nanolive microscope to explore ongoing aerobic-dependent sporogony as close as possible to an in vivo situation. Subsequently, 3D holotomographic images of sporulating E. bovis oocysts were digitally stained based on refractive indices (RI) of oocyst bi-layered wall and sub-compartments of circumplasm using STEVE software (Nanolive), and the cellular morphometric parameters were obtained. Overall, three different E. bovis sporogony phases, each of them divided into two sub-phases, were documented: (i) sporoblast/sporont transformation into sporogonial stages, (ii) cytokinesis followed by nuclear division, and finally (iii) formation of four sporocysts with two fully developed sporozoites. Approximately 60% of sporulating E. bovis oocysts accomplished aerobic sporogony in a synchronized manner. E. bovis sporogony was delayed (i.e., 6 days) when compared to an in vivo situation where 2–3 days are required but under optimal environmental conditions. Live cell 3D holotomography analysis might facilitate the evaluation of either novel disinfectants- or anti-coccidial drug-derived effects on ruminant/avian Eimeria sporogony in vitro as discrimination of sporogony degrees based on compactness, and dry mass was here successfully achieved. Main changes were observed in the oocyst area, perimeter, compactness, extent, and granularity suggesting those parameters as an efficient tool for a fast evaluation of the sporulation degree.
Collapse
Affiliation(s)
- Sara Lopez-Osorio
- CIBAV Research Group, Faculty of Agrarian Sciences, University of Antioquia, Medellín, Colombia.,Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| | - Zahady D Velasquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schuberstrasse 81, 35392, Giessen, Germany
| |
Collapse
|
6
|
Cha JO, Shim KS, Lee HW, Kim HC. Statistical Prediction of the Peak Point (Time) Required for Release of Maximum Number of Sporocysts after Eimeria Tenella Oocyst Excystation. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2021. [DOI: 10.1590/1806-9061-2020-1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- JO Cha
- Jeonbuk National University, Republic of Korea
| | - KS Shim
- Jeonbuk National University, Republic of Korea; Jeonbuk National University, Republic of Korea
| | - HW Lee
- Kangwon National University, Republic of Korea
| | - HC Kim
- Kangwon National University, Republic of Korea
| |
Collapse
|
7
|
Blake DP, Worthing K, Jenkins MC. Exploring Eimeria Genomes to Understand Population Biology: Recent Progress and Future Opportunities. Genes (Basel) 2020; 11:E1103. [PMID: 32967167 PMCID: PMC7564333 DOI: 10.3390/genes11091103] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
Eimeria, protozoan parasites from the phylum Apicomplexa, can cause the enteric disease coccidiosis in all farmed animals. Coccidiosis is commonly considered to be most significant in poultry; due in part to the vast number of chickens produced in the World each year, their short generation time, and the narrow profit margins associated with their production. Control of Eimeria has long been dominated by routine chemoprophylaxis, but has been supplemented or replaced by live parasite vaccination in a minority of production sectors. However, public and legislative demands for reduced drug use in food production is now driving dramatic change, replacing reliance on relatively indiscriminate anticoccidial drugs with vaccines that are Eimeria species-, and in some examples, strain-specific. Unfortunately, the consequences of deleterious selection on Eimeria population structure and genome evolution incurred by exposure to anticoccidial drugs or vaccines are unclear. Genome sequence assemblies were published in 2014 for all seven Eimeria species that infect chickens, stimulating the first population genetics studies for these economically important parasites. Here, we review current knowledge of eimerian genomes and highlight challenges posed by the discovery of new, genetically cryptic Eimeria operational taxonomic units (OTUs) circulating in chicken populations. As sequencing technologies evolve understanding of eimerian genomes will improve, with notable utility for studies of Eimeria biology, diversity and opportunities for control.
Collapse
Affiliation(s)
- Damer P. Blake
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms AL9 7TA, UK
| | - Kate Worthing
- Animal Parasitic Diseases Laboratory, Building 1040, Agricultural Research Service, USDA, Beltsville, MD 20705, USA; (K.W.); (M.C.J.)
| | - Mark C. Jenkins
- Animal Parasitic Diseases Laboratory, Building 1040, Agricultural Research Service, USDA, Beltsville, MD 20705, USA; (K.W.); (M.C.J.)
| |
Collapse
|
8
|
López-Osorio S, Chaparro-Gutiérrez JJ, Gómez-Osorio LM. Overview of Poultry Eimeria Life Cycle and Host-Parasite Interactions. Front Vet Sci 2020; 7:384. [PMID: 32714951 PMCID: PMC7351014 DOI: 10.3389/fvets.2020.00384] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites of the genus Eimeria are organisms which invade the intestinal tract, causing coccidiosis, an enteric disease of major economic importance worldwide. The disease causes high morbidity ranging from an acute, bloody enteritis with high mortality, to subclinical disease. However, the presence of intestinal lesions depends on the Eimeria species. The most important poultry Eimeria species are: E. tenella, E. necatrix, E. acervulina, E. maxima, E. brunetti, E. mitis, and E. praecox. Key points to better understanding the behavior of this species are the host-parasite interactions and its life cycle. The present paper reviews the literature available regarding the life cycle and the initial host-parasite interaction. More studies are needed to better understand these interactions in poultry Eimerias, taking into account that almost all the information available was generated from other apicomplexan parasites that generate human disease.
Collapse
Affiliation(s)
- Sara López-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
| | | | - Luis M. Gómez-Osorio
- CIBAV Research Group, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia
- Alura Animal Health and Nutrition, Medellin, Colombia
| |
Collapse
|