1
|
de Oliveira MR, Souza TF, Arcos AN, Katak RDM, da Silva SRS, da Cruz JC, da Silva GF, Marinotti O, Terenius O, de Souza ADL, de Souza AQL. Fungi from Anopheles darlingi Root, 1926, larval breeding sites in the Brazilian Amazon. PLoS One 2024; 19:e0312624. [PMID: 39636874 PMCID: PMC11620424 DOI: 10.1371/journal.pone.0312624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
The fungi present in the breeding waters of mosquitoes have been scarcely investigated. This work explored the diversity of cultivable fungi present in the breeding sites of the South American malaria vector mosquito Anopheles darlingi. Water samples were collected from four sites located in the municipalities of Coari and São Gabriel da Cachoeira and four different culture media were used for the isolation of fungi. Two-hundred-and-six fungal strains were isolated and morphologically similar fungi were grouped into 30 morphotypes. Their taxonomic identities were assigned by macro and microscopic observations and sequencing of rDNA internal transcribed spacers (ITS1-5.8S-ITS2). Representatives of 26 morphotypes were identified at the genus level, one only at the family level, and three were not identified. The identified morphotypes belong to the phyla, Ascomycota (80.6%), Basidiomycota (11.7%), and Mucoromycota (2.4%), distributed in five classes, ten orders, 25 families, and 26 genera. This study fills a considerable knowledge gap about the fungi present in the breeding sites of An. darlingi mosquitoes.
Collapse
Affiliation(s)
- Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Department of Entomology and Acarology, School de Agricultura "Luiz de Queiroz", University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Thiago Fernandes Souza
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Adriano Nobre Arcos
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul / UFMS, Campo Grande, Mato Grosso do Sul, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Ricardo de Melo Katak
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | | | - Jeferson Chagas da Cruz
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Gilvan Ferreira da Silva
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Afonso Duarte Leão de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica—Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Departamento de Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica—Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Faculdade de Ciências Agrárias (FCA), Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
2
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Ragavendran C, Govindaraj A, Kamaraj C, Natarajan D, Malafaia G, Alrefaei AF, Almutairi MH. Fusarium begoniae metabolites: a promising larvicidal, pupicidal potential, histopathological alterations and detoxifications enzyme profiles of medically important mosquito vector Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. 3 Biotech 2024; 14:226. [PMID: 39263325 PMCID: PMC11384672 DOI: 10.1007/s13205-024-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Endophytic fungal molecules have the potential to be a cost-effective chemical source for developing eco-friendly disease-controlling pharmaceuticals that target mosquito-borne illnesses. The primary aims of the study were to identify the fungus Fusarium begoniae larvicidal ability against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The ethyl acetate extract demonstrated lethal concentrations that kill 50% of exposed larvae (LC50) and 90% of exposed larvae (LC90) for the 1st to 4th instar larvae of An. stephensi (LC50 = 54.821, 66.525, 68.250, and 73.614; LC90 = 104.56, 138.205, 150.415, and 159.466 μg/mL), Cx. quinquefasciatus (LC50 = 64.981, 36.505, 42.230, and 36.514; LC90 = 180.46, 157.105, 140.318, and 153.366 μg/ mL), and Ae. aegypti (LC50 = 74.890, 33.607, 52.173, and 26.974; LC90 = 202.56, 162.205, 130.518, and 163.286 μg/mL). Mycelium metabolites were evaluated for their pupicidal activity towards Ae. aegypti (LC50 = 80.669, LC90 = 119.904), Cx. quinquefasciatus (LC50 = 70.569, LC90 = 109.840), and An. stephensi (LC50 = 73.269, LC90 = 110.590 μg/mL). The highest larvicidal activity was recorded at 300 µg/mL, with 100% mortality against first and second-instar larvae of Cx. quinquefasciatus. Metabolite exposure to larvae exhibited several abnormal behavioral changes. The exposure to F. begoniae metabolite, key esterases such as acetylcholinesterase, α-and-β-carboxylesterase, and acid and alkaline phosphatase activity significantly decreased compared to control larvae. The outcomes of the histology analysis revealed that the mycelium metabolites-treated targeted larvae had a disorganized abdominal mid and hindgut epithelial cells. The is first-hand information on study of ethyl-acetate-derived metabolites from F. begoniae tested against larvae and pupae of Ae. aegypti, Cx. quinquefasciatus and An. stephensi. Bio-indicator toxicity findings demonstrate that A. nauplii displayed no mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04061-z.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077 Tamil Nadu India
| | - Annadurai Govindaraj
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Tamil Nadu, Kattankulathur, Chennai 603203 India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG Brazil
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO Brazil
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Zheng J, Shi J, Wang D. Diversity of soil fungi and entomopathogenic fungi in subtropical mountain forest in southwest China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13267. [PMID: 38943366 PMCID: PMC11213981 DOI: 10.1111/1758-2229.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/06/2024] [Indexed: 07/01/2024]
Abstract
Till now, the diversity of entomopathogenic fungi in subtropical mountain forest was less studied. Here, the vertical distribution of forest soil fungi, entomopathogenic fungi, and their environmental influencing factors in a subtropical mountain in western China were investigated. Soil samples were collected from four elevations in a subtropical forest in Shaanxi. The results indicated a greater richness of soil fungi at middle elevations and soil fungi were more even at low elevation. Soil pH, available iron, available potassium, total potassium, and available zinc were the most important influencing factors affecting this vertical distribution of fungi. Interestingly, the Isaria genus was predominant while Metarhizium and Beauveria showed decreasing abundance. The presence of Isaria showed a significant positive correlation with both total phosphorus and available iron, while, available zinc was negatively correlated. Metarhizium was influenced by elevation, pH, available phosphorus, and available copper and Beauveria was influenced by soil organic carbon, total nitrogen, total potassium, available potassium, and available zinc. Overall, as environmental factors affecting soil fungi, elevation, and plant species diversity were less important than soil physical and chemical properties. The virulence of isolated entomopathogenic fungi were tested against larvae of Tenebrio molitor, with mortality ranging from 31.11% to 100%. The above findings provide valuable data to deepen our understanding of the diversity of entomopathogenic fungi in subtropical mountain forests.
Collapse
Affiliation(s)
- Jiyang Zheng
- Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinduo Shi
- Forest Bureau of Ankang CityAnkangShaanxiChina
| | - Dun Wang
- Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
5
|
Vivekanandhan P, Kamaraj C, Alharbi SA, Ansari MJ. Novel report on soil infection with Metarhizium rileyi against soil-dwelling life stages of insect pests. J Basic Microbiol 2024; 64:e2400159. [PMID: 38771084 DOI: 10.1002/jobm.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Entomopathogenic fungi are the most effective control remedy against a wide range of medical and agricultural important pests. The present study aimed to isolate, identify, and assess the virulence of Metarhizium rileyi against Spodoptera litura and Spodoptera frugiperda pupae under soil conditions. The biotechnological methods were used to identify the isolate as M. rileyi. The fungal conidial pathogenicity (2.0 × 107, 2.0 × 108, 2.0 × 109, 2.0 × 1010, and 2.0 × 1011 conidia/mL-1) was tested against prepupae of S. litura and S. frugiperda at 3, 6, 9, and 12 days after treatments. Additionally, the artificial soil-conidial assay was performed on a nontarget species earthworm Eudrilus eugeniae, using M. rileyi conidia. The present results showed that the M. rileyi caused significant mortality rates in S. litura pupae (61-90%), and S. litura pupae were more susceptible than S. frugiperda pupae (46%-73%) at 12 day posttreatment. The LC50 and LC90 of M. rileyi against S. litura, were 3.4 × 1014-9.9 × 1017 conidia/mL-1 and 6.6 × 105-4.6 × 1014 conidia/mL-1 in S. frugiperda, respectively. The conidia of M. rileyi did not exhibit any sublethal effect on the adult stage of E. eugeniae, and Artemia salina following a 12-day treatment period. Moreover, in the histopathological evaluation no discernible harm was observed in the gut tissues of E. eugeniae, including the lumen and epithelial cells, as well as the muscles, setae, nucleus, mitochondria, and coelom. The present findings provide clear evidence that M. rileyi fungal conidia can be used as the foundation for the development of effective bio-insecticides to combat the pupae of S. litura and S. frugiperda agricultural pests.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sulaiman A Alharbi
- Department of Botany & Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Mohammad J Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Perumal V, Kannan S, Alford L, Pittarate S, Krutmuang P. Study on the virulence of Metarhizium anisopliae against Spodoptera frugiperda (J. E. Smith, 1797). J Basic Microbiol 2024; 64:e2300599. [PMID: 38308078 DOI: 10.1002/jobm.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study examined the impact of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) conidia on the eggs, larvae, pupae, and adults of Spodoptera frugiperda. The results showed that eggs, larvae, pupae, and adults exhibited mortality rates that were dependent on the dose. An increased amount of conidia (1.5 × 109 conidia/mL) was found to be toxic to larvae, pupae, and adults after 9 days of treatment, resulting in a 100% mortality rate in eggs, 98% in larvae, 76% in pupae, and 85% in adults. A study using earthworms as bioindicators found that after 3 days of exposure, M. anisopliae conidia did not cause any harmful effects on the earthworms. In contrast, the chemical treatment (positive control) resulted in 100% mortality at a concentration of 40 ppm. Histopathological studies showed that earthworm gut tissues treated with fungal conidia did not show significant differences compared with those of the negative control. The gut tissues of earthworms treated with monocrotophos exhibited significant damage, and notable differences were observed in the chemical treatment. The treatments with 70 and 100 µg/mL solutions of Eudrilus eugeniae epidermal mucus showed no fungal growth. An analysis of the enzymes at a biochemical level revealed a decrease in the levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase in S. frugiperda larvae after exposure to fungal conidia. This study found that M. anisopliae is effective against S. frugiperda, highlighting the potential of this entomopathogenic fungus in controlling this agricultural insect pest.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Swathy Kannan
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Patcharin Krutmuang
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| |
Collapse
|
7
|
Vivekanandhan P, Swathy K, Alahmadi TA, Ansari MJ. Biocontrol effects of chemical molecules derived from Beauveria bassiana against larvae of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Front Microbiol 2024; 15:1336334. [PMID: 38419636 PMCID: PMC10901010 DOI: 10.3389/fmicb.2024.1336334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
In this study, we conducted tests on the isolation, identification, characterization, and extraction of chemical molecules from Beauveria bassiana against Tuta absoluta larvae. The enzyme responses of T. absoluta to the crude extract were examined 24 h after treatment, and the number of dead larvae was calculated 24 and 48 h after treatment. Molecular docking studies were conducted to assess the interaction of important molecules with the acetylcholinesterase enzyme. The larvicidal activity of crude chemicals from fungi was high 24 h after treatment, with LC50 and LC90 values of 25.937 and 33.559 μg/mL, respectively. For a period of 48 h, the LC50 and LC90 values were 52.254 and 60.450 μg/mL, respectively. The levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase enzymes were lower in the treatment group after 24 h compared to the control group. The GC-MS test revealed that the crude extract consisted mainly of 9,10-octadecadienoic acid, which was the primary compound. Docking results indicated that 9,10-octadecadienoic acid showed a strong interaction with acetylcholinesterase (AChE). Our findings suggest that the chemical molecule 9,10-octadecadienoic acid derived from the entomopathogenic fungus B. bassiana is more toxic to T. absoluta larvae. We plan to conduct studies to test its effectiveness in semi-field conditions and to evaluate its stability in field conditions. We believe that this 9,10-octadecadienoic acid molecule could be used to control T. absoluta larvae in the near future without causing environmental pollution.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan Swathy
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Ahmedabad, Gujarat, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany,.Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
9
|
Vivekanandhan P, Swathy K, Lucy A, Sarayut P, Patcharin K. Entomopathogenic fungi based microbial insecticides and their physiological and biochemical effects on Spodoptera frugiperda (J.E. Smith). Front Cell Infect Microbiol 2023; 13:1254475. [PMID: 38149005 PMCID: PMC10750404 DOI: 10.3389/fcimb.2023.1254475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Background 'The fall armyworm, Spodoptera frugiperda', represents a significant threat to maize production, a major staple crop in Asian countries. Methods In pursuit of more effective control of this insect pest, our study assessed the physiological and biochemical effects of the entomopathogenic fungus Metarhizium anisopliae against the larvae of S. frugiperda. Results Results revealed that, following nine days of treatment, a high concentration of conidia (1.5x107 conidia/mL-1) was toxic to all stages of larvae (second to fifth instar), resulting in 97% mortality of the second instar, 89% mortality of the third instar, 77% mortality of the fourth instar, and 72% mortality of fifth instar. All larval instars were found to have dose-dependent mortality effects. Treated S. frugiperda larvae further displayed significant physiological, morphological, and behavioral changes. Here, treated larvae displayed significantly lower levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase enzyme activity when compared to control groups. Treated larvae underwent an outward morphological change as the result of a decrease in the exterior cuticle of the anal papillae and a demelanization of the interior cuticle. Treated larvae also exhibited abnormal feeding behaviors as a consequence of the negative impact of conidia treatment on the neuromuscular system. Investigation into the effect of M. anisopliae on the non-target organism, the earthworm Eudrilus eugeniae, revealed that M. anisopliae conidia did not produce significant pathogenicity following three days of treatment. Furthermore, histological analysis revealed no significant effect of the entomopathogenic fungi on the gut tissue of the non-target organism. Conclusion This study highlights the potential of M. anisopliae in the control of S. frugiperda.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Alford Lucy
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Liu M, Ding J, Lu M. Influence of symbiotic bacteria on the susceptibility of Plagiodera versicolora to Beauveria bassiana infection. Front Microbiol 2023; 14:1290925. [PMID: 38029157 PMCID: PMC10655113 DOI: 10.3389/fmicb.2023.1290925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The symbiotic bacterial microbiota of insects has been shown to play essential roles in processes related to physiology, metabolism, and innate immunity. In this study, the symbiotic microbiome of Plagiodera versicolora at different developmental stages was analyzed using 16S rRNA high-throughput sequencing. The result showed that symbiotic bacteria community in P. versicolora was primarily made up of Actinobacteriota, Proteobacteria, Firmicutes, Bacteroidota, and Dependentiae. The bacterial composition among different age individuals were highly diverse, while 65 core genera were distributed in all samples which recommend core bacterial microbiome. The 8 species core bacteria were isolated from all samples, and all of them were classified as Pseudomonas sp. Among them, five species have been proven to promote the vegetable growth of Beauveria bassiana. Moreover, the virulence of B. bassiana against nonaxenic larvae exceeded B. bassiana against axenic larvae, and the introduction of the Pseudomonas sp. to axenic larvae augmented the virulence of fungi. Taken together, our study demonstrates that the symbiotic bacteria of P. versicolora are highly dissimilar, and Pseudomonas sp. core bacteria can promote host infection by entomopathogenic fungus. This result emphasizes the potential for harnessing these findings in the development of effective pest management strategies.
Collapse
Affiliation(s)
| | | | - Min Lu
- Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
11
|
Perumal V, Kannan S, Alford L, Pittarate S, Mekchay S, Reddy GVP, Elangovan D, Marimuthu R, Krutmuang P. Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate-derived chemical molecules: An eco-friendly anti-malarial drug and insecticide. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-19. [PMID: 37497800 DOI: 10.1002/arch.22037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Gadi V P Reddy
- USDA-ARS-Southern Insect Management Research Unit, Stoneville, Mississippi, USA
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
12
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
13
|
Qin Y, Liu X, Peng G, Xia Y, Cao Y. Recent Advancements in Pathogenic Mechanisms, Applications and Strategies for Entomopathogenic Fungi in Mosquito Biocontrol. J Fungi (Basel) 2023; 9:746. [PMID: 37504734 PMCID: PMC10381795 DOI: 10.3390/jof9070746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Fungal diseases are widespread among insects and play a crucial role in naturally regulating insect populations. Mosquitoes, known as vectors for numerous infectious diseases, pose a significant threat to human health. Entomopathogenic fungi (EPF) have emerged as highly promising alternative agents to chemical mosquitocides for controlling mosquitoes at all stages of their life cycle due to their unique infection pathway through direct contact with the insect's cuticle. In recent years, significant advancements have been made in understanding the infection pathways and pathogenic mechanisms of EPF against mosquitoes. Various strategies involving the use of EPF alone or combinations with other approaches have been employed to target mosquitoes at various developmental stages. Moreover, the application of genetic technologies in fungi has opened up new avenues for enhancing the mosquitocidal efficacy of EPF. This review presents a comprehensive summary of recent advancements in our understanding the pathogenic mechanisms of EPF, their applications in mosquito management, and the combination of EPF with other approaches and employment of transgenic technologies. The biosafety concerns associated with their use and the corresponding approaches are also discussed. The recent progress suggests that EPF have the potential to serve as a future biorational tool for controlling mosquito vectors.
Collapse
Affiliation(s)
- Yujie Qin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Xiaoyu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
14
|
Umesh M, Suresh S, Santosh AS, Prasad S, Chinnathambi A, Al Obaid S, Jhanani GK, Shanmugam S. Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. ENVIRONMENTAL RESEARCH 2023; 229:115973. [PMID: 37088318 DOI: 10.1016/j.envres.2023.115973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The present study explores natural pigments as sustainable alternatives to synthetic textile dyes. Due to their therapeutic applications and easy production, fungal pigments have gained attention. However, data on pigment production using solid-state fermentation and optimization is limited. Milk whey was used to grow Talaromyces sp., followed by an evaluation of pigment production in solid and liquid media. Pineapple peels were used as a cost-effective substrate for pigment production, and a one-factor-at-a-time approach was used to enhance pigment production. Pineapple peel-based media produced 0.523 ± 0.231 mg/g of pigment after eight days of incubation. The crude pigment had promising antibacterial and significant antioxidant properties. The extraction fungal pigment's possible use as an eco-friendly textile dye was assessed through fabric dyeing experiments with different mordants. This work contributes to the valorization of agricultural waste and provides insight into using fungal pigments as sustainable alternatives to synthetic textile dyes.
Collapse
Affiliation(s)
- Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India.
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Adhithya Sankar Santosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Samyuktha Prasad
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- University Centre for Research & Development, Chandigarh University, Mohali, 140103, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, 51010, Estonia
| |
Collapse
|
15
|
Perumal V, Kannan S, Alford L, Pittarate S, Geedi R, Elangovan D, Marimuthu R, Krutmuang P. First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An ecofriendly microbial insecticide. Front Microbiol 2023; 14:1104079. [PMID: 36937255 PMCID: PMC10019823 DOI: 10.3389/fmicb.2023.1104079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- *Correspondence: Vivekanandhan Perumal,
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ruchika Geedi
- Geedi-Horticultural Insects Research Laboratory, USDA- Agricultural Research Services, Wooster, OH, United States
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Patcharin Krutmuang,
| |
Collapse
|
16
|
Rahman A, Pittarate S, Perumal V, Rajula J, Thungrabeab M, Mekchay S, Krutmuang P. Larvicidal and Antifeedant Effects of Copper Nano-Pesticides against Spodoptera  frugiperda (J.E. Smith) and Its Immunological Response. INSECTS 2022; 13:insects13111030. [PMID: 36354854 PMCID: PMC9692944 DOI: 10.3390/insects13111030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 05/25/2023]
Abstract
This study aimed to synthesize and evaluate the efficacy of CuO NPs (copper oxide nanoparticles) with varying test concentrations (10−500 ppm) against larvicidal, antifeedant, immunological, and enzymatic activities against larvae of S. frugiperda at 24 h of treatment. Copper nanoparticles were characterized by using a scanning electron microscope (SEM) and energy dispersive X-ray (EDaX) analysis. The EDaX analysis results clearly show that the synthesized copper nanoparticles contain copper as the main element, and the SEM analysis results show nanoparticle sizes ranging from 29 to 45 nm. The CuO NPs showed remarkable larvicidal activity (97%, 94%, and 81% were observed on the 3rd, 4th, and 5th instar larvae, respectively). The CuO NPs produced high antifeedant activity (98.25%, 98.01%, and 98.42%), which was observed on the 3rd, 4th, and 5th instar larvae, respectively. CuO NPs treatment significantly reduced larval hemocyte levels 24 h after treatment; hemocyte counts and sizes changed in the CuO NPs treatment compared to the control. After 24 h of treatment with CuO NPs, the larval acetylcholinesterase enzyme levels decreased with dose-dependent activity. The present findings conclude that CuO NPs cause remarkable larvicidal antifeedant activity and that CuO NPs are effective, pollution-free green nano-insecticides against S. frugiperda.
Collapse
Affiliation(s)
- Afroja Rahman
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Julius Rajula
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Malee Thungrabeab
- Agriculture Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Kirsch JM, Tay JW. Larval Mortality and Ovipositional Preference in Aedes albopictus (Diptera: Culicidae) Induced by the Entomopathogenic Fungus Beauveria bassiana (Hypocreales: Cordycipitaceae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1687-1693. [PMID: 35794805 PMCID: PMC9473649 DOI: 10.1093/jme/tjac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Entomopathogenic fungi allow chemical-free and environmentally safe vector management. Beauveria bassiana (Balsamo-Crivelli) Vuillemin is a promising biological control agent and an important component of integrated vector management. We investigated the mortality of Aedes albopictus (Skuse) larvae exposed to five concentrations of B. bassiana using Mycotrol ESO and adult oviposition behavior to analyze the egg-laying preferences of wild Ae. albopictus in response to different fungal concentrations. We examined the mortality of mid-instars exposed to B. bassiana concentrations of 1 × 104, 1 × 105, 1 × 106, 1 × 107, and 1 × 108 conidia/ml every 24 h for 12 d. In the oviposition behavior study, the fungus was applied to wooden paddles at 1 × 105, 1 × 107, and 1 × 109 conidia/ml, and the paddles were individually placed into quad-ovitraps. Both experiments contained control groups without B. bassiana. Kaplan-Meier survival analysis revealed that larval mortality was concentration dependent. The median lethal concentration was 2.43 × 105 conidia/ml on d 12. The median lethal time was 3.68 d at 1 × 106 conidia/ml. Oviposition monitoring revealed no significant difference in egg count between the control and treatment paddles. We observed an inverse relationship between the concentration of B. bassiana and the percentage of paddles with eggs. We concluded that concentrations above 1 × 106 conidia/ml are larvicidal, and Ae. albopictus laid similar numbers of eggs on fungus-impregnated and control wooden substrates; however, they were more likely to oviposit on substrates without B. bassiana. With these findings, we suggest that B. bassiana-infused ovitraps can be used for mosquito population monitoring while also delivering mycopesticides to adult mosquitoes.
Collapse
Affiliation(s)
- John M Kirsch
- Urban Entomology Laboratory, Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Gilmore, Honolulu, USA
| | | |
Collapse
|
18
|
Delivery and effectiveness of entomopathogenic fungi for mosquito and tick control: current knowledge and research challenges. Acta Trop 2022; 234:106627. [DOI: 10.1016/j.actatropica.2022.106627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
|
19
|
de Oliveira MR, Katak RDM, da Silva GF, Marinotti O, Terenius O, Tadei WP, de Souza ADL, de Souza AQL. Extracts of Amazonian Fungi With Larvicidal Activities Against Aedes aegypti. Front Microbiol 2021; 12:743246. [PMID: 34956113 PMCID: PMC8702858 DOI: 10.3389/fmicb.2021.743246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
The global increase in diseases transmitted by the vector Aedes aegypti, new and re-emerging, underscores the need for alternative and more effective methods of controlling mosquitoes. Our aim was to identify fungal strains from the Amazon rain forest that produce metabolites with larvicidal activity against Aedes aegypti. Thirty-six fungal strains belonging to 23 different genera of fungi, isolated from water samples collected in the state of Amazonas, Brazil were cultivated. The liquid medium was separated from the mycelium by filtration. Medium fractions were extracted with ethyl acetate and isopropanol 9:1 volume:volume, and the mycelia with ethyl acetate and methanol 1:1. The extracts were vacuum dried and the larvicidal activity was evaluated in selective bioassays containing 500 μg/ml of the dried fungal extracts. Larval mortality was evaluated up to 72 h. None of the mycelium extracts showed larvicidal activity greater than 50% at 72 h. In contrast, 15 culture medium extracts had larvicidal activity equal to or greater than 50% and eight killed more than 90% of the larvae within 72 h. These eight extracts from fungi belonging to seven different genera (Aspergillus, Cladosporium, Trichoderma, Diaporthe, Albifimbria, Emmia, and Sarocladium) were selected for the determination of LC50 and LC90. Albifimbria lateralis (1160) medium extracts presented the lowest LC50 value (0.268 μg/ml) after 24 h exposure. Diaporthe ueckerae (1203) medium extracts presented the lowest value of LC90 (2.928 μg/ml) at 24 h, the lowest values of LC50 (0.108 μg/ml) and LC90 (0.894 μg/ml) at 48 h and also at 72 h (LC50 = 0.062 μg/ml and LC90 = 0.476 μg/ml). Extracts from Al. lateralis (1160) and D. ueckerae (1203) showed potential for developing new, naturally derived products, to be applied in integrated vector management programs against Ae. aegypti.
Collapse
Affiliation(s)
- Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade Federal do Amazonas, Manaus, Brazil
| | - Ricardo de Melo Katak
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Wanderli Pedro Tadei
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade Federal do Amazonas, Manaus, Brazil.,Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Manaus, Brazil.,Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade Federal do Amazonas, Manaus, Brazil.,Central Analítica - Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Brazil.,Departamento de Química, Universidade Federal do Amazonas, Manaus, Brazil
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG-BIONORTE), Universidade Federal do Amazonas, Manaus, Brazil.,Central Analítica - Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Brazil.,Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Brazil
| |
Collapse
|
20
|
Vivekanandhan P, Swathy K, Thomas A, Kweka EJ, Rahman A, Pittarate S, Krutmuang P. Insecticidal Efficacy of Microbial-Mediated Synthesized Copper Nano-Pesticide against Insect Pests and Non-Target Organisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10536. [PMID: 34639837 PMCID: PMC8508597 DOI: 10.3390/ijerph181910536] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022]
Abstract
Currently, medical and stored grain pests are major concerns of public health and economies worldwide. The synthetic pesticides cause several side effects to human and non-target organisms. Copper nanoparticles (CuNPs) were synthesized from an aqueous extract of Metarhizium robertsii and screened for insecticidal activity against Anopheles stephensi, Aedes aegypti, Culex quinquefasciatus, Tenebrio molitor and other non-target organisms such as Artemia salina, Artemia nauplii, Eudrilus eugeniae and Eudrilus andrei. The synthesized copper nano-particles were characterized using, UV-vis spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Energy Dispersive X-Ray analysis (EDaX), High Resolution Scanning Electron Microscope (HR-SEM) and Atomic Force Microscope (AFM) analysis. Insects were exposed to 25 μg/mL concentration produced significant mortality against larvae of A. stephensi, A. aegypti, C. quinquefasciatus and T. molitor. The lower toxicity was observed on non-target organisms. Results showed that, M. robertsii mediated synthesized CuNPs is highly toxic to targeted pests while they had lower toxicity were observed on non-target organisms.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gandhinagar 382650, Gujarat, India;
- Department of Biotechnology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Kannan Swathy
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gandhinagar 382650, Gujarat, India;
- Department of Biotechnology, Periyar University, Salem 636011, Tamil Nadu, India
| | - Adelina Thomas
- School of Pharmacy, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania;
| | - Eliningaya J. Kweka
- Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha P.O. Box 3024, Tanzania;
- Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza P.O. Box 1464, Tanzania
| | - Afroja Rahman
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.P.)
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.P.)
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (A.R.); (S.P.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
21
|
Accoti A, Engdahl CS, Dimopoulos G. Discovery of Novel Entomopathogenic Fungi for Mosquito-Borne Disease Control. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:637234. [PMID: 37744144 PMCID: PMC10512396 DOI: 10.3389/ffunb.2021.637234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/28/2021] [Indexed: 09/26/2023]
Abstract
The increased application of chemical control programs has led to the emergence and spread of insecticide resistance in mosquitoes. Novel environmentally safe control strategies are currently needed for the control of disease vectors. The use of entomopathogenic fungi could be a suitable alternative to chemical insecticides. Currently, Beauveria spp. and Metarhizium spp. are the most widely used entomopathogenic fungi for mosquito control, but increasing the arsenal with additional fungi is necessary to mitigate the emergence of resistance. Entomopathogenic fungi are distributed in a wide range of habitats. We have performed a comprehensive screen for candidate mosquitocidal fungi from diverse outdoor environments in Maryland and Puerto Rico. An initial screening of 22 fungi involving exposure of adult Anopheles gambiae to 2-weeks-old fungal cultures identified five potent pathogenic fungi, one of which is unidentified and the remaining four belonging to the three genera Galactomyces sp., Isaria sp. and Mucor sp. These fungi were then screened against Aedes aegypti, revealing Isaria sp. as a potent mosquito killer. The entomopathogenic effects were confirmed through spore-dipping assays. We also probed further into the killing mechanisms of these fungi and investigated whether the mosquitocidal activities were the result of potential toxic fungus-produced metabolites. Preliminary assays involving the exposure of mosquitoes to sterile filtered fungal liquid cultures showed that Galactomyces sp., Isaria sp. and the unidentified isolate 1 were the strongest producers of factors showing lethality against An. gambiae. We have identified five fungi that was pathogenic for An. gambiae and one for Ae. aegypti, among these fungi, four of them (two strains of Galactomyces sp., Mucor sp., and the unidentified isolate 1) have never previously been described as lethal to insects. Further characterization of these entomopathogenic fungi and their metabolites needs to be done to confirm their potential use in biologic control against mosquitoes.
Collapse
Affiliation(s)
| | | | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Abundance of Entomopathogenic Fungi in Leaf Litter and Soil Layers in Forested Habitats in Poland. INSECTS 2021; 12:insects12020134. [PMID: 33562439 PMCID: PMC7915602 DOI: 10.3390/insects12020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
This study aims to determine the species composition and density of colony-forming units (CFU) of entomopathogenic fungi (EPF) in leaf litter at different depths of the top layer of forest soils depending on the type of forest (coniferous, deciduous and mixed forest), and the date of sampling (spring, autumn). In each type of forest, leaf litter and soil were collected using a soil stick from four depths of soil: 0-5, 5-10, 10-15 and 15-20 cm. Entomopathogenic fungi were isolated by a soil or litter dilution plating method on a selective medium. Four fungal genera were found: Beauveria spp., Cordyceps spp., Metarhizium spp., and Lecanicillium spp. The density of EPF was usually higher in leaf litter than in the layers of soil below, and the most frequently isolated species from both environments were Beauveria spp. among soil samples from all forest types; Beauveria spp. were most abundant in the top layer (0-5 cm), and their density of CFUs gradually decreased deeper into the soil profile.
Collapse
|