1
|
Reus LM, Jansen IE, Tijms BM, Visser PJ, Tesi N, van der Lee SJ, Vermunt L, Peeters CFW, De Groot LA, Hok-A-Hin YS, Chen-Plotkin A, Irwin DJ, Hu WT, Meeter LH, van Swieten JC, Holstege H, Hulsman M, Lemstra AW, Pijnenburg YAL, van der Flier WM, Teunissen CE, del Campo Milan M. Connecting dementia risk loci to the CSF proteome identifies pathophysiological leads for dementia. Brain 2024; 147:3522-3533. [PMID: 38527854 PMCID: PMC11449142 DOI: 10.1093/brain/awae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Genome-wide association studies have successfully identified many genetic risk loci for dementia, but exact biological mechanisms through which genetic risk factors contribute to dementia remains unclear. Integrating CSF proteomic data with dementia risk loci could reveal intermediate molecular pathways connecting genetic variance to the development of dementia. We tested to what extent effects of known dementia risk loci can be observed in CSF levels of 665 proteins [proximity extension-based (PEA) immunoassays] in a deeply-phenotyped mixed memory clinic cohort [n = 502, mean age (standard deviation, SD) = 64.1 (8.7) years, 181 female (35.4%)], including patients with Alzheimer's disease (AD, n = 213), dementia with Lewy bodies (DLB, n = 50) and frontotemporal dementia (FTD, n = 93), and controls (n = 146). Validation was assessed in independent cohorts (n = 99 PEA platform, n = 198, mass reaction monitoring-targeted mass spectroscopy and multiplex assay). We performed additional analyses stratified according to diagnostic status (AD, DLB, FTD and controls separately), to explore whether associations between CSF proteins and genetic variants were specific to disease or not. We identified four AD risk loci as protein quantitative trait loci (pQTL): CR1-CR2 (rs3818361, P = 1.65 × 10-8), ZCWPW1-PILRB (rs1476679, P = 2.73 × 10-32), CTSH-CTSH (rs3784539, P = 2.88 × 10-24) and HESX1-RETN (rs186108507, P = 8.39 × 10-8), of which the first three pQTLs showed direct replication in the independent cohorts. We identified one AD-specific association between a rare genetic variant of TREM2 and CSF IL6 levels (rs75932628, P = 3.90 × 10-7). DLB risk locus GBA showed positive trans effects on seven inter-related CSF levels in DLB patients only. No pQTLs were identified for FTD loci, either for the total sample as for analyses performed within FTD only. Protein QTL variants were involved in the immune system, highlighting the importance of this system in the pathophysiology of dementia. We further identified pQTLs in stratified analyses for AD and DLB, hinting at disease-specific pQTLs in dementia. Dissecting the contribution of risk loci to neurobiological processes aids in understanding disease mechanisms underlying dementia.
Collapse
Affiliation(s)
- Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095 CA, USA
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Department of Psychiatry, Maastricht University, 6229 ET Maastricht, The Netherlands
| | - Niccoló Tesi
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Lisa Vermunt
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Carel F W Peeters
- Mathematical and Statistical Methods group (Biometris), Wageningen University and Research, Wageningen, 6708 PB Wageningen, The Netherlands
| | - Lisa A De Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yanaika S Hok-A-Hin
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Rutgers-RWJ Medical School, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, New Brunswick, NJ 08901, USA
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus Medical Center Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HZ Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
| | - Marta del Campo Milan
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, 1081 HZ Amsterdam, The Netherlands
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, 28003 Madrid, Spain
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, 08005 Barcelona, Spain
| |
Collapse
|
2
|
Wu LY, Real R, Martinez-Carrasco A, Chia R, Lawton MA, Shoai M, Bresner C, Blauwendraat C, Singleton AB, Ryten M, Scholz SW, Traynor BJ, Williams NM, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Investigation of the genetic aetiology of Lewy body diseases with and without dementia. Brain Commun 2024; 6:fcae190. [PMID: 38978726 PMCID: PMC11228432 DOI: 10.1093/braincomms/fcae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be the key to understanding disease pathways and, ultimately, therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7804 patients of European ancestry from Tracking Parkinson's, The Oxford Discovery Cohort, and Accelerating Medicine Partnership-Parkinson's Disease Initiative. We conducted a discrete phenotype genome-wide association study comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk allele rs429358 tagging APOEe4 increases the odds of developing dementia, and that rs7668531 near the MMRN1 and SNCA-AS1 genes and an intronic variant rs17442721 tagging LRRK2 G2019S on chromosome 12 are protective against dementia. These results should be validated in autopsy-confirmed cases in future studies.
Collapse
Affiliation(s)
- Lesley Yue Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20814, USA
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, National Institute on Aging, Bethesda, MD 20814, USA
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine, NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, The University of Cambridge, Cambridge, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Nigel M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, UK
| | - John Hardy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
3
|
Dodel R, Berg D, Duning T, Kalbe E, Meyer PT, Ramirez A, Storch A, Aarsland D, Jessen F. [Dementia with Lewy bodies: old and new knowledge - Part 1: clinical aspects and diagnostics]. DER NERVENARZT 2024; 95:353-361. [PMID: 38092983 PMCID: PMC11014876 DOI: 10.1007/s00115-023-01576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 04/13/2024]
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease. Patients with DLB often have a poor prognosis, with worse outcomes than patients with Alzheimer's disease in terms of important parameters, such as quality of life, caregiver burden, health-related costs, frequency of hospital and nursing home admissions, shorter time to severe dementia, and lower survival. The DLB is frequently misdiagnosed and often undertreated. Therefore, it is critical to diagnose DLB as early as possible to ensure optimal care and treatment. OBJECTIVE The aim of this review article is to summarize the main recent findings on diagnostic tools, epidemiology and genetics of DLB. RESULTS Precise clinical diagnostic criteria exist for DLB that enable an etiologic assignment. Imaging techniques are used as standard in DLB, especially also to exclude non-neurodegenerative causes. In particular, procedures in nuclear medicine have a high diagnostic value. DISCUSSION The diagnosis is primarily based on clinical symptoms, although the development of in vivo neuroimaging and biomarkers is changing the scope of clinical diagnosis as well as research into this devastating disease.
Collapse
Affiliation(s)
- Richard Dodel
- Lehrstuhl für Geriatrie, Universität Duisburg-Essen, Virchowstraße 171, 45147, Essen, Deutschland.
| | - Daniela Berg
- Neurologische Klinik, Universität Kiel, Kiel, Deutschland
| | - Thomas Duning
- Neurologische Klinik, Universität Münster, Münster, Deutschland
| | - Elke Kalbe
- Medizinische Psychologie, Neuropsychologie und Gender Studies & Centrum für Neuropsychologische Diagnostik und Intervention (CeNDI), Universität Köln, Köln, Deutschland
| | - Philipp T Meyer
- Klinik für Nuklearmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Freiburg, Deutschland
| | - Alfredo Ramirez
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Köln, Köln, Deutschland
| | - Alexander Storch
- Klinik für Neurologie, Universität Rostock, Rostock, Deutschland
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norwegen
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, Großbritannien
| | - Frank Jessen
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universität Köln, Köln, Deutschland
| |
Collapse
|
4
|
Wu L, Real R, Martinez A, Chia R, Lawton MA, Shoai M, Bresner C, Hubbard L, Blauwendraat C, Singleton AB, Ryten M, Scholz SW, Traynor BJ, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Investigation of the genetic aetiology of Lewy body diseases with and without dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.17.23297157. [PMID: 37987016 PMCID: PMC10659505 DOI: 10.1101/2023.10.17.23297157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be key to understanding disease pathways and ultimately therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7,804 patients of European ancestry from Tracking Parkinson's (PRoBaND), The Oxford Discovery Cohort, and AMP-PD. We conducted a discrete phenotype genome-wide association studies comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk alleles rs429358 tagging APOEe4 and rs7668531 near the MMRN1 and SNCA-AS1 genes, increase the odds of developing dementia and that an intronic variant rs17442721 tagging LRRK2 G2019S, on chromosome 12 is protective against dementia. These results should be validated in autopsy confirmed cases in future studies.
Collapse
Affiliation(s)
- Lesley Wu
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Maryam Shoai
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
5
|
Levy G, Levin B, Engelhardt E. Advancing the Genetics of Lewy Body Disorders with Disease-Modifying Treatments in Mind. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2200011. [PMID: 36911298 PMCID: PMC9993470 DOI: 10.1002/ggn2.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/13/2022] [Indexed: 11/06/2022]
Abstract
In this article, a caveat for advancing the genetics of Lewy body disorders is raised, given the nosological controversy about whether to consider dementia with Lewy bodies (DLB) and Parkinson's disease (PD) as one entity or two separate entities. Using the framework of the sufficient and component causes model of causation, as further developed into an evolution-based model of causation, it is proposed that a disease of complex etiology is defined as having a relatively high degree of sharing of the component causes (a genetic or environmental factor), that is, a low degree of heterogeneity of the sufficient causes. Based on this definition, only if the sharing of component causes within each of two diseases is similar to their combined sharing can lumping be warranted. However, it is not known whether the separate and combined sharing are similar before conducting the etiologic studies. This means that lumping DLB and PD can be counterproductive as it can decrease the ability to detect component causes despite the potential benefit of conducting studies with larger sample sizes. In turn, this is relevant to the development of disease-modifying treatments, because non-overlapping causal genetic factors may result in distinct pathogenetic pathways providing promising targets for interventions.
Collapse
Affiliation(s)
| | - Bruce Levin
- Department of BiostatisticsMailman School of Public HealthColumbia UniversityNew York10032USA
| | - Eliasz Engelhardt
- Instituto de Neurologia Deolindo Couto and Instituto de PsiquiatriaUniversidade Federal do Rio de JaneiroRio de Janeiro22290‐140Brazil
| |
Collapse
|
6
|
Takada LT. Genetic investigation of dementias in clinical practice. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:36-41. [PMID: 35976293 PMCID: PMC9491423 DOI: 10.1590/0004-282x-anp-2022-s103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The field of neurodegenerative dementia genetics has advanced significantly over the past two decades, but there are still more to be discovered (such as the gene mutation in some familial forms of dementia). OBJECTIVE to provide a brief review of the most recent discoveries regarding monogenic dementia, and covering the most frequent genetic diseases that can cause dementia (neurodegenerative or not). METHODS a review of the literature will be carried out. RESULTS neurodegenerative dementias, vascular dementias and leukoencephalopathies caused by single pathogenic variants are presented. CONCLUSION The spectrum of clinical presentations for most of the genes discussed is wide, and hence genetic testing in clinic should try to cover as many genes as possible.
Collapse
Affiliation(s)
- Leonel Tadao Takada
- , Faculdade de Medicina, Hospital das Clinicas, Divisão de Clínica Neurológica, São Paulo SP, Brazil
| |
Collapse
|
7
|
Maneval J, Woods JK, Feany MB, Miller MB, Silbersweig DA, Gale SA, Daffner KR, McGinnis SM. Case Study 3: A 58-Year-Old Woman Referred for Evaluation of Suspected Alzheimer Dementia. J Neuropsychiatry Clin Neurosci 2022; 34:307-315. [PMID: 36239480 PMCID: PMC9823288 DOI: 10.1176/appi.neuropsych.20220113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jeffrey Maneval
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Jared K. Woods
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Mel B. Feany
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Michael B. Miller
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - David A. Silbersweig
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Seth A. Gale
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Kirk R. Daffner
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Scott M. McGinnis
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| |
Collapse
|
8
|
Goldstein O, Gana‐Weisz M, Shiner T, Attar R, Mordechai Y, Waldman YY, Bar‐Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Orr‐Urtreger A. R869C mutation in molecular motor KIF17 gene is involved in dementia with Lewy bodies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12143. [PMID: 34124335 PMCID: PMC8176903 DOI: 10.1002/dad2.12143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION THE GBA-N370S mutation is one of the most frequent risk factors for dementia with Lewy bodies (DLB) and Parkinson's disease (PD). We looked for genetic variations that contribute to the outcome in N370S-carriers, whether PD or DLB. METHODS Whole-genome sequencing of 95 Ashkenazi-N370S-carriers affected with either DLB (n = 19) or PD (n = 76) was performed, and 564 genes related to dementia and PD analyzed. RESULTS We identified enrichment of linked alleles in PINK1 locus in DLB patients (false discovery rate P = .0412). Haplotype analysis delineated 1.8 Mb interval encompassing 29 genes and 87 unique variants, of them, KIF17-R869C received the highest functional prediction score (Combined Annotation Dependent Depletion = 34). Its frequency was significantly higher in 26 DLB-N370S-carriers compared to 140 PD-N370S-carriers (odds ratio [OR] = 33.4 P = .001, and OR = 70.2 when only heterozygotes were included). DISCUSSION Because KIF17 was shown to be important for learning and memory in mice, our data further suggest, for the first time, its involvement in DLB, and possibly in human dementia.
Collapse
Affiliation(s)
- Orly Goldstein
- The Genomic Research Laboratory for Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Mali Gana‐Weisz
- The Genomic Research Laboratory for Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Tamara Shiner
- Cognitive Neurology Unit, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Movement Disorders Unit, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, and Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Reut Attar
- The Genomic Research Laboratory for Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Yael Mordechai
- The Genomic Research Laboratory for Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | | | - Anat Bar‐Shira
- The Genomic Research Laboratory for Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Avner Thaler
- Movement Disorders Unit, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, and Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Laboratory for Early Markers of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, and Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Anat Mirelman
- Movement Disorders Unit, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, and Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Laboratory for Early Markers of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Nir Giladi
- Movement Disorders Unit, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, and Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- Laboratory for Early Markers of Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Avi Orr‐Urtreger
- The Genomic Research Laboratory for Neurodegeneration, Neurological InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of Medicine, and Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
9
|
Vergouw LJM, Geut H, Breedveld G, Kuipers DJS, Quadri M, Rozemuller AJM, van Swieten JC, de Jong FJ, van de Berg WDJ, Bonifati V. Clinical and Pathological Phenotypes of LRP10 Variant Carriers with Dementia. J Alzheimers Dis 2021; 76:1161-1170. [PMID: 32597809 PMCID: PMC7505004 DOI: 10.3233/jad-200318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Rare variants in the low-density lipoprotein receptor related protein 10 gene (LRP10) have recently been implicated in the etiology of Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Objective: We searched for LRP10 variants in a new series of brain donors with dementia and Lewy pathology (LP) at autopsy, or dementia and parkinsonism without LP but with various other neurodegenerative pathologies. Methods: Sanger sequencing of LRP10 was performed in 233 donors collected by the Netherlands Brain Bank. Results: Rare, possibly pathogenic heterozygous LRP10 variants were present in three patients: p.Gly453Ser in a patient with mixed Alzheimer’s disease (AD)/Lewy body disease (LBD), p.Arg151Cys in a DLB patient, and p.Gly326Asp in an AD patient without LP. All three patients had a positive family history for dementia or PD. Conclusion: Rare LRP10 variants are present in some patients with dementia and different brain pathologies including DLB, mixed AD/LBD, and AD. These findings suggest a role for LRP10 across a broad neurodegenerative spectrum.
Collapse
Affiliation(s)
- Leonie J M Vergouw
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Hanneke Geut
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Guido Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Demy J S Kuipers
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | - Marialuisa Quadri
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| | | | - Annemieke J M Rozemuller
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - John C van Swieten
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Frank Jan de Jong
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, Rotterdam, the Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Vergouw LJM, Bosman B, van de Beek M, Salomé M, Hoogers SE, van Steenoven I, Roks G, Bonifati V, van Swieten JC, Lemstra AW, de Jong FJ. Family History is Associated with Phenotype in Dementia with Lewy Bodies. J Alzheimers Dis 2021; 73:269-275. [PMID: 31771063 PMCID: PMC7029358 DOI: 10.3233/jad-190825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It is currently unknown whether patients with dementia with Lewy bodies (DLB) with relatives with dementia or Parkinson’s disease (familial DLB patients) have a different phenotype than sporadic DLB patients. In this study, we aimed to examine disease onset, rate of cognitive decline, survival, and Alzheimer’s disease (AD) biomarkers in patients with familial DLB (n = 154) and sporadic DLB (n = 137), using linear mixed model analysis and Cox regression analysis, among others. Familial patients had a shorter survival (8.0 years) and more often elevated cerebrospinal fluid AD biomarkers (47%) than sporadic patients (9.0 years; p≤0.001; 30%, p = 0.037). Our findings suggest that genetic factors are important in DLB and that the identification of new genetic factors will probably improve the prediction of prognosis.
Collapse
Affiliation(s)
- Leonie J M Vergouw
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Brechje Bosman
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marleen van de Beek
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mariet Salomé
- Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, The Netherlands.,Department of Neurology, St Jansdal Ziekenhuis, Harderwijk, The Netherlands
| | - Susanne E Hoogers
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inger van Steenoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerwin Roks
- Department of Neurology, Elisabeth-TweeSteden Ziekenhuis, Tilburg, The Netherlands
| | - Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John C van Swieten
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
11
|
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int J Mol Sci 2021; 22:3960. [PMID: 33921279 PMCID: PMC8069386 DOI: 10.3390/ijms22083960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is one of the most common causes of dementia and belongs to the group of α-synucleinopathies. Due to its clinical overlap with other neurodegenerative disorders and its high clinical heterogeneity, the clinical differential diagnosis of DLB from other similar disorders is often difficult and it is frequently underdiagnosed. Moreover, its genetic etiology has been studied only recently due to the unavailability of large cohorts with a certain diagnosis and shows genetic heterogeneity with a rare contribution of pathogenic mutations and relatively common risk factors. The rapid increase in the reported cases of DLB highlights the need for an easy, efficient and accurate diagnosis of the disease in its initial stages in order to halt or delay the progression. The currently used diagnostic methods proposed by the International DLB consortium rely on a list of criteria that comprises both clinical observations and the use of biomarkers. Herein, we summarize the up-to-now reported knowledge on the genetic architecture of DLB and discuss the use of prodromal biomarkers as well as recent promising candidates from alternative body fluids and new imaging techniques.
Collapse
Affiliation(s)
- Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Maria Salsone
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20054 Segrate (MI), Italy;
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, “Vita-Salute” San Raffaele University, 20127 Milan, Italy
| |
Collapse
|
12
|
Bogolepova A, Vasenina E, Gomzyakova N, Gusev E, Dudchenko N, Emelin A, Zalutskaya N, Isaev R, Kotovskaya Y, Levin O, Litvinenko I, Lobzin V, Martynov M, Mkhitaryan E, Nikolay G, Palchikova E, Tkacheva O, Cherdak M, Chimagomedova A, Yakhno N. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:6. [DOI: 10.17116/jnevro20211211036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Levy G, Levin B, Engelhardt E. The Nosology of Lewy Body Disorders From Analytic-Epidemiologic and Statistical Vantage Points. Mov Disord 2020; 35:2156-2161. [PMID: 32936973 DOI: 10.1002/mds.28288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Eliasz Engelhardt
- Behavioral and Cognitive Neurology Unit, Neurological Institute, Center for Alzheimer's Disease, Psychiatric Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. Int J Mol Sci 2020; 21:ijms21134718. [PMID: 32630630 PMCID: PMC7369933 DOI: 10.3390/ijms21134718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lewy body disorders (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). They are synucleinopathies with a heterogeneous clinical manifestation. As a cause of neuropathological overlap with other neurodegenerative diseases, the establishment of a correct clinical diagnosis is still challenging, and clinical management may be difficult. The combination of genetic variation and epigenetic changes comprising gene expression-modulating DNA methylation and histone alterations modifies the phenotype, disease course, and susceptibility to disease. In this review, we summarize the results achieved in the deciphering of the LBD epigenome. To provide an appropriate context, first LBD genetics is briefly outlined. Afterwards, a detailed review of epigenetic modifications identified for LBD in human cells, postmortem, and peripheral tissues is provided. We also focus on the difficulty of identifying epigenome-related biomarker candidates and discuss the results obtained so far. Additionally, epigenetic changes as therapeutic targets, as well as different epigenome-based treatments, are revised. The number of studies focusing on PD is relatively limited and practically inexistent for DLB. There is a lack of replication studies, and some results are even contradictory, probably due to differences in sample collection and analytical techniques. In summary, we show the current achievements and directions for future research.
Collapse
|
15
|
Chaudhry A, Houlden H, Rizig M. Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer's disease: A systematic review. J Neurol Sci 2020; 415:116886. [PMID: 32428759 DOI: 10.1016/j.jns.2020.116886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE Frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) are two common forms of neurodegenerative dementia, subsequent to Alzheimer's disease (AD). AD is the only dementia that includes clinically validated cerebrospinal fluid (CSF) biomarkers in the diagnostic criteria. FTD and DLB often overlap with AD in their clinical and pathological features, making it challenging to differentiate between these conditions. AIM This systematic review aimed to identify if novel fluid biomarkers are useful in differentiating FTD and DLB from AD. Increasing the certainty of the differentiation between dementia subtypes would be advantageous clinically and in research. METHODS PubMed and Scopus were searched for studies that quantified and assessed diagnostic accuracy of novel fluid biomarkers in clinically diagnosed patients with FTD or DLB, in comparison to patients with AD. Meta-analyses were performed on biomarkers that were quantified in 3 studies or more. RESULTS The search strategy yielded 614 results, from which, 27 studies were included. When comparing bio-fluid levels in AD and FTD patients, neurofilament light chain (NfL) level was often higher in FTD, whilst brain soluble amyloid precursor protein β (sAPPβ) was higher in patients with AD. When comparing bio-fluid levels in AD and DLB patients, α-synuclein ensued heterogeneous findings, while the noradrenaline metabolite (MHPG) was found to be lower in DLB. Ratios of Aβ42/Aβ38 and Aβ42/Aβ40 were lower in AD than FTD and DLB and offered better diagnostic accuracy than raw amyloid-β (Aβ) concentrations. CONCLUSIONS Several promising novel biomarkers were highlighted in this review. Combinations of fluid biomarkers were more often useful than individual biomarkers in distinguishing subtypes of dementia. Considering the heterogeneity in methods and results between the studies, further validation, ideally with longitudinal prospective designs with large sample sizes and unified protocols, are fundamental before conclusions can be finalised.
Collapse
Affiliation(s)
- Aiysha Chaudhry
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Henry Houlden
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Mie Rizig
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|
16
|
Genetic architecture of neurodegenerative dementias. Neuropharmacology 2020; 168:108014. [PMID: 32097768 DOI: 10.1016/j.neuropharm.2020.108014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Molecular genetics has been an invaluable tool to help understand the molecular basis of neurodegenerative dementias. In this review, we provide an overview of the genetic architecture underlying some of the most prevalent causes of dementia, including Alzheimer's dementia, frontotemporal lobar degeneration, Lewy body dementia, and prion diseases. We also discuss the complexity of the human genome and how the novel technologies have revolutionized and accelerated the way we screen the variety of our DNA. Finally, we also provide some examples about how this genetic knowledge is being transferred into the clinic through personalized medicine. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
17
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
18
|
Wang G, Zhang DF, Jiang HY, Fan Y, Ma L, Shen Z, Bi R, Xu M, Tan L, Shan B, Yao YG, Feng T. Mutation and association analyses of dementia-causal genes in Han Chinese patients with early-onset and familial Alzheimer's disease. J Psychiatr Res 2019; 113:141-147. [PMID: 30954774 DOI: 10.1016/j.jpsychires.2019.03.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly. It shares clinical and pathological features with other types of dementia, such as vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD). We have hypothesized that there might be an overlapping molecular mechanism and genetic basis to the different types of dementia. In this study, we analyzed the mutation pattern of dementia-causal genes in 169 Han Chinese patients with familial and early-onset AD by using whole exome sequencing or targeted resequencing. We identified 9 potentially pathogenic mutations in the AD-causal genes APP, PSEN1, PSEN2, and 6 mutations in a group of non-AD dementia-causal genes including the FTD-causal gene GRN and the VaD-causal gene NOTCH3. A common splice-site variant rs514492 in the FTD-causal gene VCP showed a positive association with AD risk (P = 0.0003, OR = 1.618), whereas the rare missense variant rs33949390 (p. R 1628P) in the LBD-causal gene LRRK2 showed a protective effect on AD risk (P = 0.0004, OR = 0.170). The presence of putative pathogenic mutations and risk variants in these causal genes for different types of dementia in clinically diagnosed familial and early-onset AD patients suggests a need to screen for mutations of the dementia-causal genes in cases of AD to avoid misdiagnosis. These mutations also support the idea that there are overlapping pathomechanisms between AD and other forms of dementia.
Collapse
Affiliation(s)
- Guihong Wang
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hong-Yan Jiang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Ma
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Liwen Tan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Baoci Shan
- Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; KIZ - CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Tao Feng
- Center for Neurodegenerative Diseases, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
19
|
Vergouw LJM, Ruitenberg A, Wong TH, Melhem S, Breedveld GJ, Criscuolo C, De Michele G, de Jong FJ, Bonifati V, van Swieten JC, Quadri M. LRP10 variants in Parkinson's disease and dementia with Lewy bodies in the South-West of the Netherlands. Parkinsonism Relat Disord 2019; 65:243-247. [PMID: 31147221 DOI: 10.1016/j.parkreldis.2019.05.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To analyse LRP10 variants, recently associated with the development of Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), in a series of patients and controls from the South-West of the Netherlands (Walcheren). METHODS A series of 130 patients with PD, PDD or DLB were clinically examined, and a structured questionnaire used to collect information about family history of PD and dementia. The entire LRP10 coding region was sequenced by Sanger methods in all patients, and haplotype analysis was performed for one recurrent LRP10 variant. The fragments containing possibly pathogenic LRP10 variants were sequenced in 62 unaffected control subjects from the same region. Other known PD-associated genes were analyzed by exome sequencing and gene dosage in the carriers of LRP10 variants. RESULTS Four patients were carriers of a rare heterozygous, possibly pathogenic LRP10 variant: p.Arg151Cys, p.Arg263His, and p.Tyr307Asn. None of these variants was detected among the controls, nor were additional mutations identified in known PD-associated genes in the four LRP10 variant carriers. The previously reported p.Tyr307Asn variant was identified in two patients (with PD and PDD), who are connected genealogically within six generations, and in one of their relatives with cognitive decline. Haplotype analysis suggests a common founder for the p.Tyr307Asn variant carriers analyzed. DISCUSSION We report three possibly pathogenic LRP10 variants in patients with PD and PDD from a local Dutch population. The identification of additional patients carrying the p.Tyr307Asn variant provides some further evidence that this variant is pathogenic for PD and PDD.
Collapse
Affiliation(s)
- Leonie J M Vergouw
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Annemieke Ruitenberg
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands; Department of Neurology, Admiraal De Ruyter Hospital, P.O. Box 15, 4460 AA, Goes, the Netherlands
| | - Tsz Hang Wong
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Shamiram Melhem
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Guido J Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University Naples, Naples, Italy
| | - Frank Jan de Jong
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - John C van Swieten
- Erasmus MC, University Medical Center Rotterdam, Department of Neurology and Alzheimer Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marialuisa Quadri
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Hansen D, Ling H, Lashley T, Holton JL, Warner TT. Review: Clinical, neuropathological and genetic features of Lewy body dementias. Neuropathol Appl Neurobiol 2019; 45:635-654. [PMID: 30977926 DOI: 10.1111/nan.12554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/09/2019] [Indexed: 01/08/2023]
Abstract
Lewy body dementias are the second most common neurodegenerative dementias after Alzheimer's disease and include dementia with Lewy bodies and Parkinson's disease dementia. They share similar clinical and neuropathological features but differ in the time of dementia and parkinsonism onset. Although Lewy bodies are their main pathological hallmark, several studies have shown the emerging importance of Alzheimer's disease pathology. Clinical amyloid-β imaging using Pittsburgh Compound B (PiB) supports neuropathological studies which found that amyloid-β pathology is more common in dementia with Lewy bodies than in Parkinson's disease dementia. Nevertheless, other co-occurring pathologies, such as cerebral amyloid angiopathy, TDP-43 pathology and synaptic pathology may also influence the development of neurodegeneration and dementia. Recent genetic studies demonstrated an important role of APOE genotype and other genes such as GBA and SNCA which seem to be involved in the pathophysiology of Lewy body dementias. The aim of this article is to review the main clinical, neuropathological and genetic aspects of dementia with Lewy bodies and Parkinson's disease dementia. This is particularly relevant as future management for these two conditions may differ.
Collapse
Affiliation(s)
- D Hansen
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - H Ling
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - J L Holton
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - T T Warner
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK.,Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
21
|
Mayo AM, Peavy GM. Associations among Braak stage, Parkinsonian gait, cognition, and functional status in autopsy-confirmed dementia with Lewy bodies. Int J Geriatr Psychiatry 2019; 34:738-744. [PMID: 30729576 PMCID: PMC6461356 DOI: 10.1002/gps.5080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/03/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Compromised functional abilities in older adults with dementia with Lewy bodies (DLB) represent a significant burden to families and frequently lead to institutionalization. Contributing factors to this compromise are poorly understood. METHODS Using data collected at a first study visit, multiple regression modeling was used to examine the associations between Braak staged Alzheimer disease (AD) pathology, Apolipoprotein E (ApoE) status, Parkinsonian gait, cognition, and functional status from a cohort of 102 cases with an autopsy-confirmed diagnosis of dementia stemming from combined Lewy body and AD pathology. RESULTS On average, 60% of functional activities were compromised per case. Worse functional status was associated with older age at first study visit, compromised cognitive status, and Parkinsonian gait after controlling for gender, mental status, and other covariates. Worse cognitive status predicted worse functional status in both the low and high Braak groups. CONCLUSIONS Older persons with DLB presenting with moderately compromised cognition and Parkinsonian gait should be expected to have impaired functional abilities. Providing these patients with supportive environments may help them to remain independent for longer periods of time.
Collapse
Affiliation(s)
- Ann M. Mayo
- University of San Diego, Hahn School of Nursing & Health
Science and Beyster Institute of Nursing Research
| | - Guerry M. Peavy
- University of California, San Diego, Shiley-Marcos
Alzheimer’s Disease Research Center
| |
Collapse
|
22
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 2019; 14:5. [PMID: 30665447 PMCID: PMC6341685 DOI: 10.1186/s13024-019-0306-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson’s disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic concepts and definitions, based on our current understanding, that should guide the community to address open questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and other synucleinopathies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK. .,Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Daniel Erskine
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lauren Walker
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - David Burn
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul Donaghy
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Morris
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - John-Paul Taylor
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Alan Thomas
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Johannes Attems
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ian McKeith
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
24
|
Orme T, Guerreiro R, Bras J. The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Curr Neurol Neurosci Rep 2018; 18:67. [PMID: 30097731 PMCID: PMC6097049 DOI: 10.1007/s11910-018-0874-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Dementia with Lewy bodies (DLB) is a neurodegenerative disease that can be clinically and pathologically similar to Parkinson's disease (PD) and Alzheimer's disease (AD). Current understanding of DLB genetics is insufficient and has been limited by sample size and difficulty in diagnosis. The first genome-wide association study (GWAS) in DLB was performed in 2017; a time at which the post-GWAS era has been reached in many diseases. RECENT FINDINGS DLB shares risk loci with AD, in the APOE E4 allele, and with PD, in variation at GBA and SNCA. Interestingly, the GWAS suggested that DLB may also have genetic risk factors that are distinct from those in AD and PD. Although off to a slow start, recent studies have reinvigorated the field of DLB genetics and these results enable us to start to have a more complete understanding of the genetic architecture of this disease.
Collapse
Affiliation(s)
- Tatiana Orme
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, Institute of Neurology, Wing 1.2, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Rita Guerreiro
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, Institute of Neurology, Wing 1.2, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jose Bras
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
- UK Dementia Research Institute at UCL, Institute of Neurology, Wing 1.2, The Cruciform Building, Gower Street, London, WC1E 6BT, UK.
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Di Fonzo A, Monfrini E, Erro R. Genetics of Movement Disorders and the Practicing Clinician; Who and What to Test for? Curr Neurol Neurosci Rep 2018; 18:37. [PMID: 29789954 DOI: 10.1007/s11910-018-0847-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review aims to provide the basic knowledge on the genetics of hypokinetic and hyperkinetic movement disorders to guide clinicians in the decision of "who and what to test for?" RECENT FINDINGS In recent years, the identification of various genetic causes of hypokinetic and hyperkinetic movement disorders has had a great impact on a better definition of different clinical syndromes. Indeed, the advent of next-generation sequencing (NGS) techniques has provided an impressive step forward in the easy identification of genetic forms. However, this increased availability of genetic testing has challenges, including the ethical issue of genetic testing in unaffected family members, "commercially" available home testing kits and the increasing number and relevance of "variants of unknown significance." The emergent role of genetic factors has important implications on clinical practice and counseling. As a consequence, it is fundamental that practicing neurologists have a proper knowledge of the genetic background of the diseases and perform an accurate selection of who has to be tested and for which gene mutations.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Roberto Erro
- Neurodegenerative disease center (CEMAND), Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.
| |
Collapse
|
26
|
Jellinger KA, Korczyn AD. Are dementia with Lewy bodies and Parkinson's disease dementia the same disease? BMC Med 2018; 16:34. [PMID: 29510692 PMCID: PMC5840831 DOI: 10.1186/s12916-018-1016-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), which share many clinical, neurochemical, and morphological features, have been incorporated into DSM-5 as two separate entities of major neurocognitive disorders with Lewy bodies. Despite clinical overlap, their diagnosis is based on an arbitrary distinction concerning the time of onset of motor and cognitive symptoms, namely as early cognitive impairment in DLB and later onset following that of motor symptoms in PDD. Their morphological hallmarks - cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies - are similar, but clinical differences at onset suggest some dissimilar profiles. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is provided herein. DISCUSSION The clinical constellations of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and postmortem studies have revealed a more pronounced cortical atrophy, elevated cortical and limbic Lewy body pathologies, higher Aβ and tau loads in cortex and striatum in DLB compared to PDD, and earlier cognitive defects in DLB. Conversely, multitracer PET studies have shown no differences in cortical and striatal cholinergic and dopaminergic deficits. Clinical management of both DLB and PDD includes cholinesterase inhibitors and other pharmacologic and non-drug strategies, yet with only mild symptomatic effects. Currently, no disease-modifying therapies are available. CONCLUSION DLB and PDD are important dementia syndromes that overlap in many clinical features, genetics, neuropathology, and management. They are currently considered as subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), from incidental Lewy body disease and non-demented Parkinson's disease to PDD, DLB, and DLB with Alzheimer's disease at the most severe end. Cognitive impairment in these disorders is induced not only by α-synuclein-related neurodegeneration but by multiple regional pathological scores. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with Alzheimer's disease and other proteinopathies. While we prefer to view DLB and PDD as extremes on a continuum, there remains a pressing need to more clearly differentiate these syndromes and to understand the synucleinopathy processes leading to either one.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150, Vienna, Austria.
| | - Amos D Korczyn
- Tel-Aviv University, Sackler Faculty of Medicine, Ramat Aviv, Israel
| |
Collapse
|
27
|
Longhena F, Spano P, Bellucci A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handb Exp Pharmacol 2018; 245:85-110. [PMID: 28965171 DOI: 10.1007/164_2017_60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of protein aggregates and inclusions in the brain and spinal cord is a common neuropathological feature of a number of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and many others. These are commonly referred as neurodegenerative proteinopathies or protein-misfolding diseases. The main characteristic of protein aggregates in these disorders is the fact that they are enriched in amyloid fibrils. Since protein aggregation is considered to play a central role for the onset of neurodegenerative proteinopathies, research is ongoing to develop strategies aimed at preventing or removing protein aggregation in the brain of affected patients. Numerous studies have shown that small molecule-based approaches may be potentially the most promising for halting protein aggregation in neurodegenerative diseases. Indeed, several of these compounds have been found to interact with intrinsically disordered proteins and promote their clearing in experimental models. This notwithstanding, at present small molecule inhibitors still awaits achievements for clinical translation. Hopefully, if we determine whether the formation of insoluble inclusions is effectively neurotoxic and find a valid biomarker to assess their protein aggregation-inhibitory activity in the human central nervous system, the use of small molecule inhibitors will be considered as a cure for neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
28
|
The genetic architecture of dementia with Lewy bodies is shaping up. Lancet Neurol 2018; 17:25-26. [DOI: 10.1016/s1474-4422(17)30411-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/24/2022]
|
29
|
Jellinger KA. Dementia with Lewy bodies and Parkinson's disease-dementia: current concepts and controversies. J Neural Transm (Vienna) 2017; 125:615-650. [PMID: 29222591 DOI: 10.1007/s00702-017-1821-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022]
Abstract
Dementia with Lewy bodies (DLB) and Parkinson's disease-dementia (PDD), although sharing many clinical, neurochemical and morphological features, according to DSM-5, are two entities of major neurocognitive disorders with Lewy bodies of unknown etiology. Despite considerable clinical overlap, their diagnosis is based on an arbitrary distinction between the time of onset of motor and cognitive symptoms: dementia often preceding parkinsonism in DLB and onset of cognitive impairment after onset of motor symptoms in PDD. Both are characterized morphologically by widespread cortical and subcortical α-synuclein/Lewy body plus β-amyloid and tau pathologies. Based on recent publications, including the fourth consensus report of the DLB Consortium, a critical overview is given. The clinical features of DLB and PDD include cognitive impairment, parkinsonism, visual hallucinations, and fluctuating attention. Intravitam PET and post-mortem studies revealed more pronounced cortical atrophy, elevated cortical and limbic Lewy pathologies (with APOE ε4), apart from higher prevalence of Alzheimer pathology in DLB than PDD. These changes may account for earlier onset and greater severity of cognitive defects in DLB, while multitracer PET studies showed no differences in cholinergic and dopaminergic deficits. DLB and PDD sharing genetic, neurochemical, and morphologic factors are likely to represent two subtypes of an α-synuclein-associated disease spectrum (Lewy body diseases), beginning with incidental Lewy body disease-PD-nondemented-PDD-DLB (no parkinsonism)-DLB with Alzheimer's disease (DLB-AD) at the most severe end, although DLB does not begin with PD/PDD and does not always progress to DLB-AD, while others consider them as the same disease. Both DLB and PDD show heterogeneous pathology and neurochemistry, suggesting that they share important common underlying molecular pathogenesis with AD and other proteinopathies. Cognitive impairment is not only induced by α-synuclein-caused neurodegeneration but by multiple regional pathological scores. Recent animal models and human post-mortem studies have provided important insights into the pathophysiology of DLB/PDD showing some differences, e.g., different spreading patterns of α-synuclein pathology, but the basic pathogenic mechanisms leading to the heterogeneity between both disorders deserve further elucidation. In view of the controversies about the nosology and pathogenesis of both syndromes, there remains a pressing need to differentiate them more clearly and to understand the processes leading these synucleinopathies to cause one disorder or the other. Clinical management of both disorders includes cholinesterase inhibitors, other pharmacologic and nonpharmacologic strategies, but these have only a mild symptomatic effect. Currently, no disease-modifying therapies are available.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|