1
|
Stampas A, Patel A, Luthra K, Dicks M, Korupolu R, Neshatian L, Triadafilopoulos G. How Can We Treat If We Do Not Measure: A Systematic Review of Neurogenic Bowel Objective Measures. Top Spinal Cord Inj Rehabil 2024; 30:10-40. [PMID: 39139772 PMCID: PMC11317643 DOI: 10.46292/sci23-00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Background Guidelines fail to recommend objective measures to assist with treatment of neurogenic bowel dysfunction (NBD) in spinal cord injury (SCI). Objectives The main objective was to review the literature to identify the objective measures used in all NBD populations and to present their results and any correlations performed to validated subjective measures. Methods A systematic review of the literature was performed in accordance with PRISMA (2020) guidelines, including all records from January 2012 to May 2023 with MeSH terms like "neurogenic bowel" indexed in the following databases: PubMed, EMBASE, CINAHL, Cochrane Central Trials Register, and ClinicalTrials.gov. Abstracts were excluded if they did not include objective measures or if they only mentioned the esophagus, stomach, and/or small bowel. Records were screened independently by at least two collaborators, and differences were resolved by unanimous agreement. Results There were 1290 records identified pertaining to NBD. After duplicates were removed, the remaining records were screened for a total of 49 records. Forty-one records (82%) included subjective measures. Two-thirds of the articles involved the population with SCI/disease (n = 552) and one-third were non-SCI NBD (n = 476). Objective measures were categorized as (1) transit time, (2) anorectal physiology testing, and (3) miscellaneous. Of the 38 articles presenting results, only 16 (42%) performed correlations of objective measures to subjective measures. Conclusion There is an abundance of literature supporting the use of objective outcome measures for NBD in SCI. Strong correlations of subjective measures to objective outcome measures were generally lacking, supporting the need to use both measures to help with NBD management.
Collapse
Affiliation(s)
- Argy Stampas
- Department of PM&R, UTHealth McGovern Medical School, Houston, Texas
- TIRR Memorial Hermann, Houston, Texas
| | - Amisha Patel
- Texas A&M University School of Medicine, College Station, Texas
| | - Komal Luthra
- Department of PM&R, Johns Hopkins Hospital, Baltimore, Maryland
| | | | - Radha Korupolu
- Department of PM&R, UTHealth McGovern Medical School, Houston, Texas
- TIRR Memorial Hermann, Houston, Texas
| | - Leila Neshatian
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - George Triadafilopoulos
- Department of Gastroenterology and Hepatology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Theis H, Pavese N, Rektorová I, van Eimeren T. Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S353-S365. [PMID: 38339941 PMCID: PMC11492013 DOI: 10.3233/jpd-230385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Assessing imaging biomarker in the prodromal and early phases of Parkinson's disease (PD) is of great importance to ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore, metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard, it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review, we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques can and will be used in the future to pave the way towards a biomarker-based staging of PD.
Collapse
Affiliation(s)
- Hendrik Theis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Nicola Pavese
- Aarhus University, Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus N, Denmark
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Irena Rektorová
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, International Clinical Research Center, ICRC, Brno, Czech Republic
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, First Department of Neurology, Brno, Czech Republic
- Masaryk University, Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Brno, Czech Republic
| | - Thilo van Eimeren
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
3
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
4
|
Li Q, Meng LB, Chen LJ, Shi X, Tu L, Zhou Q, Yu JL, Liao X, Zeng Y, Yuan QY. The role of the microbiota-gut-brain axis and intestinal microbiome dysregulation in Parkinson's disease. Front Neurol 2023; 14:1185375. [PMID: 37305758 PMCID: PMC10249504 DOI: 10.3389/fneur.2023.1185375] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is a complex progressive neurodegenerative disease associated with aging. Its main pathological feature is the degeneration and loss of dopaminergic neurons related to the misfolding and aggregation of α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its occurrence and development process are closely related to the microbiota-gut-brain axis. Dysregulation of intestinal microbiota may promote the damage of the intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to the brain in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis. The present review aimed to summarize recent advancements in studies focusing on the role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the mechanism of intestinal microbiome dysregulation, intestinal inflammation, and gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut microenvironment by targeting the gut microbiome may provide future direction for the development of new biomarkers for early diagnosis of PD and therapeutic strategies to slow disease progression.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-jun Chen
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xia Shi
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling Tu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qi Zhou
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Jin-long Yu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xin Liao
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Yuan Zeng
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qiao-ying Yuan
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Yu E, Krohn L, Ruskey JA, Asayesh F, Spiegelman D, Shah Z, Chia R, Arnulf I, Hu MT, Montplaisir JY, Gagnon JF, Desautels A, Dauvilliers Y, Gigli GL, Valente M, Janes F, Bernardini A, Högl B, Stefani A, Ibrahim A, Heidbreder A, Sonka K, Dusek P, Kemlink D, Oertel W, Janzen A, Plazzi G, Antelmi E, Figorilli M, Puligheddu M, Mollenhauer B, Trenkwalder C, Sixel-Döring F, De Cock VC, Ferini-Strambi L, Dijkstra F, Viaene M, Abril B, Boeve BF, Rouleau GA, Postuma RB, Scholz SW, Gan-Or Z. HLA in isolated REM sleep behavior disorder and Lewy body dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.31.23284682. [PMID: 36778313 PMCID: PMC9915822 DOI: 10.1101/2023.01.31.23284682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background and Objectives Isolated/idiopathic REM sleep behavior disorder (iRBD) and Lewy body dementia (LBD) are synucleinopathies that have partial genetic overlap with Parkinson's disease (PD). Previous studies have shown that neuroinflammation plays a substantial role in these disorders. In PD, specific residues of the human leukocyte antigen ( HLA ) were suggested to be associated with a protective effect. This study examined whether the HLA locus plays a similar role in iRBD, LBD and PD. Methods We performed HLA imputation on iRBD genotyping data (1,072 patients and 9,505 controls) and LBD whole-genome sequencing (2,604 patients and 4,032 controls) using the multi-ethnic HLA reference panel v2 from the Michigan Imputation Server. Using logistic regression, we tested the association of HLA alleles, amino acids and haplotypes with disease susceptibility. We included age, sex and the top 10 principal components as covariates. We also performed an omnibus test to examine which HLA residue positions explain the most variance. Results In iRBD, HLA-DRB1 *11:01 was the only allele passing FDR correction (OR=1.57, 95% CI=1.27-1.93, p =2.70e-05). We also discovered associations between iRBD and HLA-DRB1 70D (OR=1.26, 95%CI=1.12-1.41, p =8.76e-05), 70Q (OR=0.81, 95% CI=0.72-0.91, p =3.65e-04) and 71R (OR=1.21, 95% CI=1.08-1.35, p =1.35e-03). In HLA-DRB1 , position 71 ( p omnibus =0.00102) and 70 ( p omnibus =0.00125) were associated with iRBD. We found no association in LBD. Discussion This study identified an association between HLA-DRB1 11:01 and iRBD, distinct from the previously reported association in PD. Therefore, the HLA locus may play different roles across synucleinopathies. Additional studies are required better to understand HLA's role in iRBD and LBD.
Collapse
Affiliation(s)
- Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Jennifer A. Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Zalak Shah
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
| | - Isabelle Arnulf
- Sleep Disorders Unit, Pitié Salpêtrière Hospital, Paris Brain Institute and Sorbonne University, Paris, France
| | - Michele T.M. Hu
- Oxford Parkinson’s Disease Centre (OPDC), University of Oxford, Oxford, United Kingdom
- Division of Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jacques Y. Montplaisir
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal – Hopital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal – Hopital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- Department of Psychology, Université du Québec à Montreal, Montréal, QC, Canada
| | - Alex Desautels
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal – Hopital du Sacré-Coeur de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Universite de Montréal, Montréal, QC, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Gian Luigi Gigli
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Francesco Janes
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Andrea Bernardini
- Clinical Neurology Unit, Department of Neurosciences, University Hospital of Udine, Udine, Italy
| | - Birgit Högl
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Abubaker Ibrahim
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Heidbreder
- Sleep Disorders Clinic, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department for Sleep Medicine and Neuromuscular disease, University Hospital Muenster, Muenster, Germany
| | - Karel Sonka
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Petr Dusek
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neuroscience, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Wolfgang Oertel
- Department of Neurology, Philipps University, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps University, Marburg, Germany
| | - Giuseppe Plazzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Modena, Italy
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Figorilli
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Monica Puligheddu
- Department of Medical Sciences and Public Health, Sleep Disorder Research Center, University of Cagliari, Cagliari, Italy
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Centre Gættingen, Gottingen, Germany
| | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurosurgery, University Medical Centre Gættingen, Gottingen, Germany
| | - Friederike Sixel-Döring
- Department of Neurology, Philipps University, Marburg, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Valérie Cochen De Cock
- Sleep and Neurology Unit, Beau Soleil Clinic, Montpellier, France
- EuroMov Digital Health in Motion, University of Montpellier IMT Mines Ales, Montpellier, France
| | - Luigi Ferini-Strambi
- Department of Neurological Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Femke Dijkstra
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, University Hospital Antwerp, Edegem, Antwerp, Belgium
| | - Mineke Viaene
- Laboratory for Sleep Disorders, St. Dimpna Regional Hospital, Geel, Belgium
- Department of Neurology, St. Dimpna Regional Hospital, Geel, Belgium
| | - Beatriz Abril
- Sleep disorder Unit, Carémeau Hospital, University Hospital of Nîmes, France
| | | | - Guy A. Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Ronald B. Postuma
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l’île-de-Montréal – Hopital du Sacré-Coeur de Montréal, Montréal, QC, Canada
| | - Sonja W. Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | | | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Ryman S, Vakhtin AA, Richardson SP, Lin HC. Microbiome-gut-brain dysfunction in prodromal and symptomatic Lewy body diseases. J Neurol 2023; 270:746-758. [PMID: 36355185 PMCID: PMC9886597 DOI: 10.1007/s00415-022-11461-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Lewy body diseases, such as Parkinson's disease and dementia with Lewy bodies, vary in their clinical phenotype but exhibit the same defining pathological feature, α-synuclein aggregation. Microbiome-gut-brain dysfunction may play a role in the initiation or progression of disease processes, though there are multiple potential mechanisms. We discuss the need to evaluate gastrointestinal mechanisms of pathogenesis across Lewy body diseases, as disease mechanisms likely span across diagnostic categories and a 'body first' clinical syndrome may better account for the heterogeneity of clinical presentations across the disorders. We discuss two primary hypotheses that suggest that either α-synuclein aggregation occurs in the gut and spreads in a prion-like fashion to the brain or systemic inflammatory processes driven by gastrointestinal dysfunction contribute to the pathophysiology of Lewy body diseases. Both of these hypotheses posit that dysbiosis and intestinal permeability are key mechanisms and potential treatment targets. Ultimately, this work can identify early interventions targeting initial disease pathogenic processes before the development of overt motor and cognitive symptoms.
Collapse
Affiliation(s)
- Sephira Ryman
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Andrei A Vakhtin
- The Mind Research Network, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Henry C Lin
- Department of Medicine, The University of New Mexico, Albuquerque, NM, 87131, USA
- Section of Gastroenterology, New Mexico VA Health Care System, Albuquerque, NM, 87108, USA
| |
Collapse
|
7
|
Chen Y, Xu Q, Wu L, Zhou M, Lin Y, Jiang Y, He Q, Zhao L, Dong Y, Liu J, Chen W. REM sleep behavior disorder correlates with constipation in de novo Chinese Parkinson's disease patients. Neurol Sci 2023; 44:191-197. [PMID: 36098886 DOI: 10.1007/s10072-022-06381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Constipation, rapid eye movement sleep behavior disorder (RBD) and hyposmia are common prodromal symptoms of Parkinson's disease (PD), and they may represent two distinct types of disease origin, from the body or the brain. Our study aimed to compare the clinical characteristics of de novo PD patients with and without constipation and identify which prodromal symptoms were associated with constipation. METHODS A total of 111 de novo, drug-naïve Chinese PD patients were consecutively enrolled from Jan 2017 to Sept 2021. Patients were classified into PD with and without constipation based on item 5 of the Scales for Outcomes in Parkinson's disease-Autonomic Dysfunction (SCOPA-AUT). The demographic data, motor, and non-motor symptoms were compared between the two groups. The associated factors of constipation were analyzed by the multivariate logistic regression analysis. RESULTS In total, 44.1% (n = 49) of de novo PD patients had constipation. PD patients with constipation were older (p = 0.028), had higher proportions of Hoehn and Yahr (H-Y) stage [Formula: see text] 2 (p = 0.002), clinical possible RBD (cpRBD) (p = 0.002) and depression (p = 0.023), as well as marginal increase of hyposmia (p = 0.058) and freezing of gait (p = 0.069). After adjusting for H-Y stage and other confounding factors, cpRBD (OR = 3.508, p = 0.009), rather than hyposmia or depression, was closely related to constipation in de novo Chinese PD patients. CONCLUSIONS RBD is closely associated with constipation in de novo Chinese PD patients. Our results support the theory that prodromal symptoms that represent the same pathological origin are closely related to each other.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Xu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxi Zhou
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Lin
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Jiang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing He
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yourong Dong
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Fedorova TD, Knudsen K, Andersen KB, Horsager J, Skjærbæk C, Beier CP, Sommerauer M, Svendsen KB, Otto M, Borghammer P. Imaging progressive peripheral and central dysfunction in isolated REM sleep behaviour disorder after 3 years of follow-up. Parkinsonism Relat Disord 2022; 101:99-104. [PMID: 35853349 DOI: 10.1016/j.parkreldis.2022.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Most patients with isolated rapid eye movement sleep behaviour disorder (iRBD) convert to Parkinson's disease (PD), dementia with Lewy bodies, or multiple system atrophy within 15 years of diagnosis. Furthermore, iRBD patients develop non-motor symptoms similar to those of manifest PD patients and display dysfunction of the sympathetic and parasympathetic nervous system, comparable to that seen in PD. However, progression rates of autonomic dysfunction in iRBD have not been studied with objective measures in detail, which is the aim of this study. METHODS Twenty-two iRBD patients were included at baseline and 14 participated in follow-up after 3 years. Colonic transit time (CTT) was examined using radio opaque markers, colonic volume was defined on abdominal computed tomography (CT) scans, Iodine-123-metaiodobenzylguanidine ([123I]MIBG) scintigraphy was performed to assess cardiac sympathetic innervation, and 3,4-dihydroxy-6-(18F) fluoro-l-phenylalanine ([18F]FDOPA) positron emission tomography (PET) scan determined nigrostriatal dopamine storage capacity. All examinations were performed at baseline and after 3 years. RESULTS iRBD patients displayed increased CTT (p = 0.001) and colonic volume (p = 0.01) at follow-up compared to baseline. Furthermore, [123I]MIBG uptake and [18F]FDOPA uptake showed progressive reductions at follow-up (p = 0.02 and p = 0.002, respectively). No correlations were seen between changes in intestinal or cardiac measurements and dopaminergic function. CONCLUSION Using objective markers, the present study documented that intestinal dysfunction and cardiac sympathetic degeneration worsen in the majority of iRBD patients over a 3-year period. The absent correlation between these markers and nigrostriatal dopaminergic dysfunction suggests that progressive gastrointestinal and cardiac dysfunction in iRBD is caused mainly by non-dopaminergic mechanisms.
Collapse
Affiliation(s)
- Tatyana D Fedorova
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Katrine B Andersen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Jacob Horsager
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Casper Skjærbæk
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Christoph P Beier
- Department of Neurology, Odense University Hospital, J. B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Michael Sommerauer
- Department of Neurology, University Hospital Cologne, Kerpener Str. 62, 50937, Köln, Germany; Faculty of Medicine, University of Cologne, Albertus-Magnus-Platz, 50923, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Kristina B Svendsen
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Marit Otto
- Department of Neurology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark; Institute of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
9
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Zhou Z, Zhou X, Zhou X, Xiang Y, Zhu L, Qin L, Wang Y, Pan H, Zhao Y, Sun Q, Xu Q, Wu X, Yan X, Guo J, Tang B, Liu Z. Characteristics of Autonomic Dysfunction in Parkinson's Disease: A Large Chinese Multicenter Cohort Study. Front Aging Neurosci 2021; 13:761044. [PMID: 34916924 PMCID: PMC8670376 DOI: 10.3389/fnagi.2021.761044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
Autonomic dysfunction (AutD) is one of the non-motor symptoms (NMSs) in Parkinson's disease (PD). To investigate the prevalence and clinical features of AutD in Chinese patients with PD, a large multicenter cohort of 2,556 individuals with PD were consecutively involved in the Parkinson's Disease and Movement Disorders Multicenter Database and Collaborative Network in China (PD-MDCNC) between January 1, 2017, and December 31, 2019. The assessment of AutD was performed using the Scale for Outcomes in Parkinson's Disease for Autonomic Symptoms (SCOPA-AUT). The evaluation of motor symptoms and other NMSs were performed using well-established scales recommended by the Movement Disorder Society. We found that out of 2,556 patients with PD, 2,333 patients with PD (91.28%) had AutD. Compared with the group of patients with PD without AutD, the group of patients with PD with AutD had older age, older age of onset, longer disease duration, more severe motor symptoms, motor complications, and more frequent NMSs. As for partial correlation analysis, the total SCOPA-AUT score was significantly and positively associated with motor severity scales [Unified Parkinson's Disease Rating Scale (UPDRS) total score] and some of the NMSs [Rapid Eye Movement Sleep Behavior Disorder Questionnaire (RBD), Epworth Sleepiness Scale, Hamilton Depression Scale], Fatigue Severity Scale, and Parkinson's disease questionnaire. PD Sleep Scale was significantly and negatively correlated with AutD. With logistic regression analysis for potentially related factors, age, UPDRS total score, RBD, hyposmia, depression, and fatigue may be associated with PD with AutD. In conclusion, our multicenter cohort study reported the high prevalence of AutD in Chinese PD and revealed the associated factors of PD with AutD.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoting Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Xiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lixia Qin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyin Wu
- Department of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
11
|
Horsager J, Knudsen K, Borghammer P. Radionuclide Imaging of the Gut-Brain Axis in Parkinson Disease. J Nucl Med 2021; 62:1504-1505. [PMID: 34301776 PMCID: PMC8612321 DOI: 10.2967/jnumed.121.262300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Peng A, Ji S, Li W, Lai W, Qiu X, He S, Dong B, Huang C, Chen L. Gastric Electrical Dysarrhythmia in Probable Rapid Eye Movement Sleep Behavior Disorder. Front Neurol 2021; 12:687215. [PMID: 34512510 PMCID: PMC8427525 DOI: 10.3389/fneur.2021.687215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Subjective gastrointestinal complaints have been repeatedly reported in patients with REM sleep behavior disorder (RBD), but objective evidence is scarce. We aimed to objectively investigate the gastrointestinal dysfunction in individuals with probable RBD (pRBD) using an electrogastrogram. Methods: Thirty-two participants with pRBD and 60 age- and gender-matched healthy controls were enrolled. pRBD was diagnosed based on questionnaires and further assessed by experienced neurologists. After thorough assessment of participants' subjective gastrointestinal symptoms, preprandial and postprandial gastric activities were measured using an electrogastrogram. Dominant frequency, dominant power ratio, and the ratio of preprandial to postprandial power were analyzed. Results: Among the gastric symptoms, hiccup (34.8 vs. 9.6%, p = 0.017) and postprandial gastric discomfort (43.5 vs. 15.4%, p = 0.017) were more frequent in participants with pRBD than in controls. The dominant frequency on the electrode overlying the gastric pyloric antrum was lower in pRBD than in healthy controls (2.9 [2.6-2.9] vs. 2.9 [2.9-3.2] cpm, p = 0.006). A reduced dominant power ratio from the same electrode was also found in individuals with pRBD (60.7 [58.0-64.5] vs. 64.2 [58.7-69.6] %, p = 0.046). Conclusion: Patients with pRBD have a higher rate of gastric dysfunction, which presented as irregular slow wave rhythmicity on an electrogastrogram.
Collapse
Affiliation(s)
- Anjiao Peng
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuming Ji
- Department of Project Design and Statistics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanling Li
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wanlin Lai
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmiao Qiu
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shixu He
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bosi Dong
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- Department of Rehabilitation Medicine Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Trentin S, Fraiman de Oliveira BS, Ferreira Felloni Borges Y, de Mello Rieder CR. Systematic review and meta-analysis of Sniffin Sticks Test performance in Parkinson's disease patients in different countries. Eur Arch Otorhinolaryngol 2021; 279:1123-1145. [PMID: 34319482 DOI: 10.1007/s00405-021-06970-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/27/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Olfaction impairment occurs in about 90% of patients with Parkinson's disease. The Sniffin Sticks Test is a widely used instrument to measure olfactory performance and is divided into three subtests that assess olfactory threshold, discrimination and identification. However, cultural and socioeconomic differences can influence test performance. OBJECTIVES We performed a systematic review and meta-analysis of the existent data about Sniffin Sticks Test performance of Parkinson's disease patients and healthy controls in different countries and investigated if there are other cofactors which could influence the olfactory test results. A subgroup analysis by country was performed as well as a meta-regression using age, gender and air pollution as covariates. RESULTS Four hundred and thirty studies were found and 66 articles were included in the meta-analysis. Parkinson's disease patients showed significantly lower scores on the Sniffin Sticks Test and all its subtests than healthy controls. Overall, the heterogeneity among studies was moderate to high as well as the intra-country heterogeneity. The subgroup analysis, stratifying by country, maintained a high residual heterogeneity. CONCLUSION The meta-regression showed a significant correlation with age and air pollution in a few subtests. A high heterogeneity was found among studies which was not significantly decreased after subgroup analysis by country. This fact signalizes that maybe cultural influence has a small impact on the Sniffin Sticks Test results. Age and air pollution have influence in a few olfactory subtests.
Collapse
Affiliation(s)
- Sheila Trentin
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil.
| | - Bruno Samuel Fraiman de Oliveira
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Yuri Ferreira Felloni Borges
- Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, 6690, Ipiranga Avenue, Jardim Botânico, Porto Alegre, 90619-900, Brazil
| | | |
Collapse
|
14
|
Gastrointestinal Dysfunction in Parkinson's Disease. J Clin Med 2021; 10:jcm10030493. [PMID: 33572547 PMCID: PMC7866791 DOI: 10.3390/jcm10030493] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. Patients show deposits of pathological, aggregated α-synuclein not only in the brain but throughout almost the entire length of the digestive tract. This gives rise to non-motor symptoms particularly within the gastrointestinal tract and patients experience a wide range of frequent and burdensome symptoms such as dysphagia, bloating, and constipation. Recent evidence suggests that progressive accumulation of gastrointestinal pathology is underway several years before a clinical diagnosis of PD. Notably, constipation has been shown to increase the risk of developing PD and in contrast, truncal vagotomy seems to decrease the risk of PD. Animal models have demonstrated gut-to-brain spreading of pathological α-synuclein and it is currently being intensely studied whether PD begins in the gut of some patients. Gastrointestinal symptoms in PD have been investigated by the use of several different questionnaires. However, there is limited correspondence between subjective gastrointestinal symptoms and objective dysfunction along the gastrointestinal tract, and often the magnitude of dysfunction is underestimated by the use of questionnaires. Therefore, objective measures are important tools to clarify the degree of dysfunction in future studies of PD. Here, we summarize the types and prevalence of subjective gastrointestinal symptoms and objective dysfunction in PD. The potential importance of the gastrointestinal tract in the etiopathogenesis of PD is briefly discussed.
Collapse
|
15
|
Rouaud T, Corbillé AG, Leclair-Visonneau L, de Guilhem de Lataillade A, Lionnet A, Preterre C, Damier P, Derkinderen P. Pathophysiology of Parkinson's disease: Mitochondria, alpha-synuclein and much more…. Rev Neurol (Paris) 2020; 177:260-271. [PMID: 33032797 DOI: 10.1016/j.neurol.2020.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex, age-related, neurodegenerative disease whose pathogenesis remains incompletely understood. Here, we give an overview of the progress that has been made over the past four decades in our understanding of this disorder. We review the role of mitochondria, environmental toxicants, alpha-synuclein and neuroinflammation in the development of PD. We also discuss more recent data from genetics, which strongly support the endosomal-lysosomal pathways and mitophagy as being central to PD. Finally, we discuss the emerging role of the gut-brain axis as a modulator of PD progression. This article is intended to provide a comprehensive, general and practical review of PD pathogenesis for the general neurologist.
Collapse
Affiliation(s)
- T Rouaud
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - A-G Corbillé
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | | | | | - A Lionnet
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - C Preterre
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - P Damier
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| | - P Derkinderen
- CHU de Nantes, Centre expert Parkinson, Department of Neurology, 44093 Nantes, France.
| |
Collapse
|
16
|
Ruck L, Unger MM, Spiegel J, Bürmann J, Dillmann U, Faßbender K, Reith W, Backens M, Mühl-Benninghaus R, Yilmaz U. Gastric Motility in Parkinson's Disease is Altered Depending on the Digestive Phase and Does Not Correlate with Patient-Reported Motor Fluctuations. JOURNAL OF PARKINSONS DISEASE 2020; 10:1699-1707. [PMID: 32804102 PMCID: PMC7683086 DOI: 10.3233/jpd-202144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Altered gastric motility is a frequent non-motor symptom of Parkinson’s disease (PD). It has been hypothesized that disturbed gastric motility contributes to motor fluctuations in PD due to an erratic gastro-duodenal transport and an unpredictable absorption of drugs. Objective: We investigated whether patient-reported fluctuations are associated with parameters of gastric motility visualized by real-time magnetic resonance imaging (MRI) of the stomach. Methods: We analyzed real-time MRI-scans of the stomach after an overnight fasting period in 16 PD patients and 20 controls. MRI was performed 1) in the fasting state, 2) directly after a test meal, and 3) 4 hours postprandially. Gastric motility indices were calculated and compared between groups. Results: MRI showed an attenuated gastric motility in PD patients compared to controls. The difference was most obvious in the early postprandial phase. Gastric motility was not associated with patient-reported motor fluctuations. Using an iron-containing capsule we were able to retrace retention of drugs in the stomach. Conclusion: The results of this study stress the importance of considering the phase of digestion when investigating gastric motility in PD. Despite theoretical considerations, we did not find robust evidence for an association between MRI parameters of gastric motility and patient-reported motor fluctuations. For future studies that aim to investigate gastric motility in PD by MRI, we suggest multiple short-time MRIs to better track the whole gastro-duodenal phase in PD. Such an approach would also allow to retrace the retention of drugs in the stomach as shown by our approach using an iron-containing capsule.
Collapse
Affiliation(s)
- Laura Ruck
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Marcus M Unger
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Jörg Spiegel
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Jan Bürmann
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Ulrich Dillmann
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Klaus Faßbender
- Department of Neurology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Wolfgang Reith
- Department of Neuroradiology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | - Martin Backens
- Department of Neuroradiology, Saarland University, Kirrberger Strasse, Homburg, Germany
| | | | - Umut Yilmaz
- Department of Neuroradiology, Saarland University, Kirrberger Strasse, Homburg, Germany
| |
Collapse
|
17
|
|
18
|
Novel targets for parkinsonism-depression comorbidity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:1-24. [DOI: 10.1016/bs.pmbts.2019.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|