1
|
Park M, Kim HJ, Baik K, Na HK, Lee YG, Yoon SH, Jeong SH, Chung SJ, Shin HW, Lyoo CH, Sohn YH, Lee PH. Association between striatal amyloid deposition and motor prognosis in Parkinson's disease. Eur J Neurol 2024; 31:e16364. [PMID: 39034046 DOI: 10.1111/ene.16364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/18/2024] [Accepted: 05/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND PURPOSE The co-occurrence of amyloid-β pathology in Parkinson's disease (PD) is common; however, the role of amyloid-β deposition in motor prognosis remains elusive. This study aimed to investigate the association between striatal amyloid deposition, motor complications and motor prognosis in patients with PD. METHODS Ninety-six patients with PD who underwent 18F florbetaben (FBB) positron emission tomography were retrospectively assessed. The ratio of the striatum to global (STG) FBB uptake was obtained for each individual, and patients were allotted into low and high STG groups according to the median value. The effect of STG group on regional amyloid deposition, the occurrence of motor complications and longitudinal change in levodopa equivalent dose (LED) requirement were investigated after controlling for age, sex, LED and disease duration at FBB scan. RESULTS The high STG group was associated with lower cortical FBB uptake in the parietal, occipital and posterior cingulate cortices and higher striatal FBB uptake compared to the low STG group. Patients in the high STG group had a higher risk of developing wearing off and levodopa-induced dyskinesia than those in the low STG group, whereas the risk for freezing of gait was comparable between the two groups. The high STG group showed a more rapid increase in LED requirements over time than the low STG group. CONCLUSIONS These findings suggest that relatively high striatal amyloid deposition is associated with poor motor outcomes in patients with PD.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Hyun Joo Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyoungwon Baik
- Department of Neurology, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Han Kyu Na
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - So Hoon Yoon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Republic of Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Won Shin
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Carvalho de Abreu DC, Pieruccini-Faria F, Son S, Montero-Odasso M, Camicioli R. Is white matter hyperintensity burden associated with cognitive and motor impairment in patients with parkinson's disease? A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 161:105677. [PMID: 38636832 DOI: 10.1016/j.neubiorev.2024.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
White matter damage quantified as white matter hyperintensities (WMH) may aggravate cognitive and motor impairments, but whether and how WMH burden impacts these problems in Parkinson's disease (PD) is not fully understood. This study aimed to examine the association between WMH and cognitive and motor performance in PD through a systematic review and meta-analysis. We compared the WMH burden across the cognitive spectrum (cognitively normal, mild cognitive impairment, dementia) in PD including controls. Motor signs were compared in PD with low/negative and high/positive WMH burden. We compared baseline WMH burden of PD who did and did not convert to MCI or dementia. MEDLINE and EMBASE databases were used to conduct the literature search resulting in 50 studies included for data extraction. Increased WMH burden was found in individuals with PD compared with individuals without PD (i.e. control) and across the cognitive spectrum in PD (i.e. PD, PD-MCI, PDD). Individuals with PD with high/positive WMH burden had worse global cognition, executive function, and attention. Similarly, PD with high/positive WMH presented worse motor signs compared with individuals presenting low/negative WMH burden. Only three longitudinal studies were retrieved from our search and they showed that PD who converted to MCI or dementia, did not have significantly higher WMH burden at baseline, although no data was provided on WMH burden changes during the follow up. We conclude, based on cross-sectional studies, that WMH burden appears to increase with PD worse cognitive and motor status in PD.
Collapse
Affiliation(s)
- Daniela Cristina Carvalho de Abreu
- Post-doctoral fellow at Gait and Brain Lab, University of Western Ontario, Canada, and Associated Professor of Physiotherapy Course, Department of Health Sciences, Rehabilitation and Functional Performance Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Frederico Pieruccini-Faria
- Deparment of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, Lawson Health Research Institute, St. Josephs Health Care, Parkwood Institute, Deputy Director of the Gait & Brain Lab, Canada
| | - Surim Son
- Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, Statistician, Departments of Medicine, University of Western Ontario, Canada, Parkwood Institute, Lawson Health Research Institute, Canada
| | - Manuel Montero-Odasso
- Departments of Medicine, and Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, The University of Western Ontario, Canada Director of Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, Canada
| | - Richard Camicioli
- Department of Medicine, Division of Neurology, University of Alberta, Canada
| |
Collapse
|
3
|
Chung SJ, Kim SH, Park CW, Lee HS, Yun M, Kim YJ, Sohn YH, Jeong Y, Lee PH. Patterns of regional cerebral hypoperfusion in early Parkinson's disease: Clinical implications. Parkinsonism Relat Disord 2024; 121:106024. [PMID: 38377658 DOI: 10.1016/j.parkreldis.2024.106024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION This study aimed to investigate whether regional cerebral perfusion patterns on early-phase 18F-FP-CIT PET scans, which is typically coupled to cerebral metabolism, predict the long-term prognosis of Parkinson's disease (PD). METHODS We enrolled 397 drug-naïve patients with early-stage PD who underwent dual-phase 18F-FP-CIT PET scans. After quantifying the early-phase 18F-FP-CIT PET images, cluster analysis was performed to delineate the PD subtypes according to the patterns of regional cerebral perfusion. We compared the risk of developing levodopa-induced dyskinesia (LID), wearing-off, freezing of gait (FOG), and dementia between the PD subtypes. RESULTS Cluster analysis classified patients into three subtypes: cluster 1 (relatively preserved cortical uptake; n = 175), cluster 2 (decreased uptake in the frontal, parietal, and temporal regions; n = 151), and cluster 3 (decreased uptake in more extensive regions, additionally involving the lateral occipital regions; n = 71). Cluster 1 was characterized by a younger age-of-onset, less severe motor deficits, less severely decreased 18F-FP-CIT binding in the caudate, and better cognitive performance. Cluster 3 was characterized by an older age-of-onset, more severe motor deficits, and poorer cognitive performance. Cluster 2 was intermediate between clusters 1 and 3. Cox regression analyses demonstrated that clusters 2 and 3 had a higher risk for dementia conversion than cluster 1, whereas the risk for developing LID, wearing-off, and FOG did not differ among the clusters. CONCLUSION The patterns of regional cerebral perfusion can provide information on long-term prognosis with regards to cognitive, but not motor aspects of patients with early-stage PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea
| | - Su Hong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Chan Wook Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea; YONSEI BEYOND LAB, Yongin, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- KAIST Institute for Health Science Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Radiology, Yeungnam University College of Medicine, Daegu, South Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Herman T, Barer Y, Bitan M, Sobol S, Giladi N, Hausdorff JM. A meta-analysis identifies factors predicting the future development of freezing of gait in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:158. [PMID: 38049430 PMCID: PMC10696025 DOI: 10.1038/s41531-023-00600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Freezing of gait (FOG) is a debilitating problem that is common among many, but not all, people with Parkinson's disease (PD). Numerous attempts have been made at treating FOG to reduce its negative impact on fall risk, functional independence, and health-related quality of life. However, optimal treatment remains elusive. Observational studies have recently investigated factors that differ among patients with PD who later develop FOG, compared to those who do not. With prediction and prevention in mind, we conducted a systematic review and meta-analysis of publications through 31.12.2022 to identify risk factors. Studies were included if they used a cohort design, included patients with PD without FOG at baseline, data on possible FOG predictors were measured at baseline, and incident FOG was assessed at follow-up. 1068 original papers were identified, 38 met a-priori criteria, and 35 studies were included in the meta-analysis (n = 8973; mean follow-up: 4.1 ± 2.7 years). Factors significantly associated with a risk of incident FOG included: higher age at onset of PD, greater severity of motor symptoms, depression, anxiety, poorer cognitive status, and use of levodopa and COMT inhibitors. Most results were robust in four subgroup analyses. These findings indicate that changes associated with FOG incidence can be detected in a subset of patients with PD, sometimes as long as 12 years before FOG manifests, supporting the possibility of predicting FOG incidence. Intriguingly, some of these factors may be modifiable, suggesting that steps can be taken to lower the risk and possibly even prevent the future development of FOG.
Collapse
Affiliation(s)
- Talia Herman
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yael Barer
- Maccabitech, Maccabi Institute for Research and Innovation, Maccabi Healthcare Services, Tel Aviv, Israel
| | - Michal Bitan
- School of Computer Science, The College of Management, Rishon LeZion, Israel
| | - Shani Sobol
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Orthopedic Surgery and Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Physical Therapy, Faculty of Medicine, Tel Aviv, Israel.
| |
Collapse
|
5
|
Gan J, Shi Z, Liu S, Li X, Liu Y, Zhu H, Shen L, Zhang G, Lu H, Gang B, Chen Z, Ji Y. White matter hyperintensities in cognitive impairment with Lewy body disease: a multicentre study. Eur J Neurol 2023; 30:3711-3721. [PMID: 37500565 DOI: 10.1111/ene.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND PURPOSE White matter hyperintensities (WMHs) are associated with cognitive deficits and worse clinical outcomes in dementia, but rare studies have been carried out of cognitive impairment in Lewy body disease (CI-LB) patients. The objective was to investigate the associations between WMHs and clinical manifestations in patients with CI-LB. METHODS In this retrospective multicentre cohort study, 929 patients (486 with dementia with Lewy bodies [DLB], 262 with Parkinson's disease dementia [PDD], 74 with mild cognitive impairment [MCI] with Lewy bodies [MCI-LB] and 107 with Parkinson's disease with MCI [PD-MCI]) were analysed from 22 memory clinics between January 2018 and June 2022. Demographic and clinical data were collected by reviewing medical records. WMHs were semi-quantified according to the Fazekas method. Associations between WMHs and clinical manifestations were investigated by multivariate linear or logistic regression models. RESULTS Dementia with Lewy bodies patients had the highest Fazekas scores compared with PDD, MCI-LB and PD-MCI. Multivariable regressions showed the Fazekas score was positively associated with the scores of Unified Parkinson's Disease Rating Scale Part III (p = 0.001), Hoehn-Yahn stage (p = 0.004) and total Neuropsychiatric Inventory (p = 0.001) in MCI-LB and PD-MCI patients. In patients with DLB and PDD, Fazekas scores were associated with the absence of rapid eye movement sleep behaviour disorder (p = 0.041) and scores of Unified Parkinson's Disease Rating Scale Part III (p < 0.001), Hoehn-Yahn stage (p < 0.001) and the Montreal Cognitive Assessment (p = 0.014). CONCLUSION White matter hyperintensity burden of DLB was higher than for PDD, MCI-LB and PD-MCI. The greater WMH burden was significantly associated with poorer cognitive performance, worse motor function and more severe neuropsychiatric symptoms in CI-LB.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhihong Shi
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Xudong Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital, Shandong University, Shandong, China
| | - Hongcan Zhu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
| | - Guili Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Hao Lu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Baozhi Gang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhichao Chen
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, Tianjin Key Laboratory of Cerebrovascular and of Neurodegenerative Diseases, Tianjin Dementia Institute, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
6
|
Carvalho de Abreu DC, Pieruccini-Faria F, Sarquis-Adamson Y, Black A, Fraser J, Van Ooteghem K, Cornish B, Grimes D, Jog M, Masellis M, Steeves T, Nanayakkara N, Ramirez J, Scott C, Holmes M, Ozzoude M, Berezuk C, Symons S, Mohammad Hassan Haddad S, Arnott SR, Binns M, Strother S, Beaton D, Sunderland K, Theyers A, Tan B, Zamyadi M, Levine B, Orange JB, Roberts AC, Lou W, Sujanthan S, Breen DP, Marras C, Kwan D, Adamo S, Peltsch A, Troyer AK, Black SE, McLaughlin PM, Lang AE, McIlroy W, Bartha R, Montero-Odasso M. White matter hyperintensity burden predicts cognitive but not motor decline in Parkinson's disease: results from the Ontario Neurodegenerative Diseases Research Initiative. Eur J Neurol 2023; 30:920-933. [PMID: 36692250 DOI: 10.1111/ene.15692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE The pathophysiology of Parkinson's disease (PD) negatively affects brain network connectivity, and in the presence of brain white matter hyperintensities (WMHs) cognitive and motor impairments seem to be aggravated. However, the role of WMHs in predicting accelerating symptom worsening remains controversial. The objective was to investigate whether location and segmental brain WMH burden at baseline predict cognitive and motor declines in PD after 2 years. METHODS Ninety-eight older adults followed longitudinally from Ontario Neurodegenerative Diseases Research Initiative with PD of 3-8 years in duration were included. Percentages of WMH volumes at baseline were calculated by location (deep and periventricular) and by brain region (frontal, temporal, parietal, occipital lobes and basal ganglia + thalamus). Cognitive and motor changes were assessed from baseline to 2-year follow-up. Specifically, global cognition, attention, executive function, memory, visuospatial abilities and language were assessed as were motor symptoms evaluated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III, spatial-temporal gait variables, Freezing of Gait Questionnaire and Activities Specific Balance Confidence Scale. RESULTS Regression analysis adjusted for potential confounders showed that total and periventricular WMHs at baseline predicted decline in global cognition (p < 0.05). Also, total WMH burden predicted the decline of executive function (p < 0.05). Occipital WMH volumes also predicted decline in global cognition, visuomotor attention and visuospatial memory declines (p < 0.05). WMH volumes at baseline did not predict motor decline. CONCLUSION White matter hyperintensity burden at baseline predicted cognitive but not motor decline in early to mid-stage PD. The motor decline observed after 2 years in these older adults with PD is probably related to the primary neurodegenerative process than comorbid white matter pathology.
Collapse
Affiliation(s)
- Daniela Cristina Carvalho de Abreu
- Gait and Brain Lab, Division of Geriatric Medicine, and Lawson Health Research Institute, Parkwood Institute, University of Western Ontario, Ontario, London, Canada
- Department of Physical Therapy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Frederico Pieruccini-Faria
- Gait and Brain Lab, Division of Geriatric Medicine, and Lawson Health Research Institute, Parkwood Institute, University of Western Ontario, Ontario, London, Canada
- Gait and Brain Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | | | - Alanna Black
- Gait and Brain Laboratory, Lawson Health Research Institute, London, Ontario, Canada
| | - Julia Fraser
- Neuroscience, Mobility and Balance Laboratory, Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Karen Van Ooteghem
- Neuroscience, Mobility and Balance Laboratory, Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin Cornish
- Neuroscience, Mobility and Balance Laboratory, Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - David Grimes
- Department of Medicine (Neurology), Ottawa Hospital Research Institute, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Mandar Jog
- Division of Neurology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Mario Masellis
- Cognitive and Movement Disorders Clinic, Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Steeves
- Division of Neurology, Department of Medicine, St Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Nuwan Nanayakkara
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Joel Ramirez
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Scott
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - Melissa Holmes
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - Miracle Ozzoude
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - Courtney Berezuk
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | - Sean Symons
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephen R Arnott
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Malcolm Binns
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Stephen Strother
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Derek Beaton
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Kelly Sunderland
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Athena Theyers
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Brian Tan
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Mojdeh Zamyadi
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Brian Levine
- Rotman Research Institute at Baycrest Hospital University of Toronto, Toronto, Ontario, Canada
| | - Joseph B Orange
- School of Communication Sciences and Disorders, Faculty of Health Sciences, Canadian Centre for Activity and Aging, Western University, London, Ontario, Canada
| | - Angela C Roberts
- School of Communication Sciences and Disorders, Faculty of Health Sciences, Canadian Centre for Activity and Aging, Western University, London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Sujeevini Sujanthan
- Department of Ophthalmology and Visual Sciences, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - David P Breen
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Donna Kwan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Sabrina Adamo
- Graduate Department of Psychological Clinical Science, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Alicia Peltsch
- Faculty of Engineering and Applied Science, Queen's University, Kingston, Ontario, Canada
| | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest Health Sciences, Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- L.C. Campbell Cognitive Neurology Research Unit, Hurvitz Brain Sciences Program, Department of Medicine (Neurology), Sunnybrook Research Institute, Sunnybrook HSC, University of Toronto, Toronto, Ontario, Canada
| | | | - Anthony E Lang
- Division of Neurology, Department of Medicine, Edmond J Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - William McIlroy
- Neuroscience, Mobility and Balance Laboratory, Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, Canada
| | | | - Manuel Montero-Odasso
- Gait and Brain Lab, Division of Geriatric Medicine, and Lawson Health Research Institute, Parkwood Institute, University of Western Ontario, Ontario, London, Canada
- Gait and Brain Laboratory, Lawson Health Research Institute, London, Ontario, Canada
- Division of Geriatric Medicine, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Chen K, Jin Z, Fang J, Qi L, Liu C, Wang R, Su Y, Yan H, Liu A, Xi J, Wen Q, Fang B. The impact of cerebral small vessel disease burden and its imaging markers on gait, postural control, and cognition in Parkinson's disease. Neurol Sci 2023; 44:1223-1233. [PMID: 36547777 DOI: 10.1007/s10072-022-06563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to investigate how cerebral small vessel disease (CSVD) burden and its imaging markers are related to alterations in different gait parameters in Parkinson's disease (PD) and whether they affect attention, information processing speed, and executive function when global mental status is relatively intact. METHODS Sixty-five PD patients were divided into the low CSVD burden group (n = 43) and the high CSVD burden group (n = 22). All patients underwent brain magnetic resonance imaging scans, clinical scale evaluations, and neuropsychological tests, as well as quantitative evaluation of gait and postural control. Multivariable linear regression models were conducted to investigate associations between CSVD burden and PD symptoms. RESULTS Between-group analysis showed that the high CSVD group had worse attention, executive dysfunction, information processing speed, gait, balance, and postural control than the low CSVD group. Regression analysis revealed that greater CSVD burden was associated with poor attention, impaired executive function, and slow gait speed; white matter hyperintensity was associated with slow gait speed, decreased cadence, increased stride time, and increased stance phase time; the presence of lacune was associated only with poor attention and impaired executive function; enlarged perivascular space in the basal ganglia was associated with gait speed. CONCLUSIONS CSVD burden may worsen gait, postural control, attention, and executive function in patients with PD, and different imaging markers play different roles. Early management of vascular risks and treatment of vascular diseases provide an alternate way to mitigate some motor and cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Keke Chen
- Capital Medical University, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jinping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Qi
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Cui Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ruidan Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuan Su
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hongjiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Aixian Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qiping Wen
- Radiology Department, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Chen K, Jin Z, Fang J, Qi L, Liu C, Wang R, Su Y, Yan H, Liu A, Xi J, Fang B. Lacunes may worsen cognition but not motor function in Parkinson's disease. Brain Behav 2023; 13:e2880. [PMID: 36586096 PMCID: PMC9927847 DOI: 10.1002/brb3.2880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND As one of the imaging markers of cerebral small vessel disease, lacunes has received little attention. The objective of this study was to investigate the associations of lacunes, cognition and motor function in patients with Parkinson's disease (PD) and whether these associations are independent of other imaging markers. METHODS Patients were consecutively included from April 2019 to July 2022 in Beijing Rehabilitation Hospital. All patients underwent brain magnetic resonance imaging scans, clinical scale evaluations, and neuropsychological tests, as well as quantitative evaluation of postural control. To eliminate the possible factors contributing to cognition and motor dysfunction in patients with PD, in particular white matter hyperintensities and enlarged perivascular space in the basal ganglia, multivariate linear regression models were constructed to sort out the effect of lacunes. RESULTS Ninety-four patients were included in this study, 56 without lacunes and 38 with lacunes. Patients with lacunes showed shorter disease duration, slower gait speed and spent more time on Trail-Making Test part A (TMT-A) than those without lacunes. The number of lacunes were positively correlated with the time to complete the TMT-A and negatively related to gait speed. Multivariate linear regression models showed that the presence of lacunes was associated with longer TMT-A time after adjusting for potential confounders. CONCLUSIONS Lacunes were independently associated with worse visual scanning, attention, and processing speed in patients with PD. In addition, lacunes may accelerate the course of PD. Early treatment of vascular disease provides an alternate way to mitigate some motor and cognitive dysfunction in patients with PD.
Collapse
Affiliation(s)
- Keke Chen
- School of Beijing Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jinping Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Lin Qi
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Cui Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Ruidan Wang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuan Su
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hongjiao Yan
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Aixian Liu
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Jianing Xi
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Boyan Fang
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Zou X, Dong Z, Chen X, Yu Q, Yin H, Yi L, Zuo H, Xu J, Du X, Han Y, Zou D, Peng J, Cheng O. White matter hyperintensities burden in the frontal regions is positively correlated to the freezing of gait in Parkinson's disease. Front Aging Neurosci 2023; 15:1156648. [PMID: 37181626 PMCID: PMC10172504 DOI: 10.3389/fnagi.2023.1156648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Previous studies have reported that white matter hyperintensities (WMHs) are associated with freezing of gait (FOG), but it is not clear whether their distribution areas have correlations with FOG in Parkinson's disease (PD) and the potential influencing factors about WMHs. Methods Two hundred and forty-six patients with PD who underwent brain MRI were included. Participants were divided into PD with FOG (n = 111) and PD without FOG (n = 135) groups. Scheltens score was used to assess the WMHs burden in the areas of deep white matter hyperintensities (DWMHs), periventricular hyperintensities (PVHs), basal ganglia hyperintensities (BGHs), and infratentorial foci of hyperintensities (ITF). Whole brain WMHs volume was evaluated by automatic segmentation. Binary logistic regression was used to evaluate relationships between WMHs and FOG. The common cerebrovascular risk factors that may affect WMHs were evaluated by mediation analysis. Results There were no statistical differences between PD with and without FOG groups in whole brain WMHs volume, total Scheltens score, BGHs, and ITF. Binary logistic regression showed that the total scores of DWMHs (OR = 1.094; 95% CI, 1.001, 1.195; p = 0.047), sum scores of PVHs and DWMHs (OR = 1.080; 95% CI, 1.003, 1.164; p = 0.042), especially the DWMHs in frontal (OR = 1.263; 95% CI, 1.060, 1.505 p = 0.009), and PVHs in frontal caps (OR = 2.699; 95% CI, 1.337, 5.450; p = 0.006) were associated with FOG. Age, hypertension, and serum alkaline phosphatase (ALP) are positively correlated with scores of DWMHs in frontal and PVHs in frontal caps. Conclusion These results indicate that WMHs distribution areas especially in the frontal of DWMHs and PVHs play a role in PD patients with FOG.
Collapse
Affiliation(s)
- Xiaoya Zou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoying Dong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinwei Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimei Yin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Yi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhou Zuo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaman Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyi Du
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Han
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dezhi Zou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Peng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Juan Peng,
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Oumei Cheng,
| |
Collapse
|
10
|
de Oliveira P, Martins BJ, Cardoso FEC. White matter hyperintensity presence, quantity, and location exhibits no association with motor and non-motor manifestations of PD. Parkinsonism Relat Disord 2023; 106:105245. [PMID: 36542985 DOI: 10.1016/j.parkreldis.2022.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Nonspecific areas of brain white matter hyperintensity (WMH) are commonly found in the elderly. Some studies have shown that the presence, quantity, and location of WMHs may be associated with the development of cognitive and motor decline in patients with Parkinson's disease (PD), but the results remain controversial. This study aimed to evaluate the relationship of WMH to motor and non-motor symptoms, including dysautonomia and rapid eye movement sleep behavior disorder (RBD), in patients with PD. METHODS Brain magnetic resonance images were acquired from 120 patients diagnosed with PD and analyzed for WMH classification and quantification. Motor symptoms were quantified using sub-scores of the Movement Disorder Society-Unified Parkinson Disease Rating Scale (MDS-UPDRS)-III. Dysautonomia was evaluated by autonomic reactivity tests, and polysomnography was used for the diagnosis of RBD. RESULTS Age, total value of the MDS-UPDRS-III tremor sub-score, and the presence of dysautonomia were found to be linearly positively associated. Specifically, the duration of PD was positively associated with rigidity, bradykinesia, axial symptoms, prevalence of dysautonomia, and RBD sub-scores. However, in the multivariate analysis adjusted for variables of interest, no statistical significance was found for any of the models. CONCLUSION The presence, quantity, and location of WMH were not associated with the analyzed motor and non-motor manifestations of PD.
Collapse
Affiliation(s)
- Pérola de Oliveira
- SARAH Network of Rehabilitation Hospitals, Department of Neurology, Brasília, DF, Brazil
| | - Bernardo José Martins
- SARAH Network of Rehabilitation Hospitals, Department of Neurology, Brasília, DF, Brazil
| | - Francisco Eduardo Costa Cardoso
- Federal University of Minas Gerais, Movement Disorders Unit, Neurology Service, Department of Internal Medicine, Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
MRI biomarkers of freezing of gait development in Parkinson’s disease. NPJ Parkinsons Dis 2022; 8:158. [DOI: 10.1038/s41531-022-00426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractThis study investigated longitudinal clinical, structural and functional brain alterations in Parkinson’s disease patients with freezing of gait (PD-FoG) and in those developing (PD-FoG-converters) and not developing FoG (PD-non-converters) over two years. Moreover, this study explored if any clinical and/or MRI metric predicts FoG development. Thirty PD-FoG, 11 PD-FoG-converters and 11 PD-non-converters were followed for two years. Thirty healthy controls were included at baseline. Participants underwent clinical and MRI visits. Cortical thickness, basal ganglia volumes and functional network graph metrics were evaluated at baseline and over time. In PD groups, correlations between baseline MRI and clinical worsening were tested. A ROC curve analysis investigated if baseline clinical and MRI measures, selected using a stepwise model procedure, could differentiate PD-FoG-converters from PD-non-converters. At baseline, PD-FoG patients had widespread cortical/subcortical atrophy, while PD-FoG-converters and non-converters showed atrophy in sensorimotor areas and basal ganglia relative to controls. Over time, PD-non-converters accumulated cortical thinning of left temporal pole and pallidum without significant clinical changes. PD-FoG-converters showed worsening of disease severity, executive functions, and mood together with an accumulation of occipital atrophy, similarly to PD-FoG. At baseline, PD-FoG-converters relative to controls and PD-FoG showed higher global and parietal clustering coefficient and global local efficiency. Over time, PD-FoG-converters showed reduced parietal clustering coefficient and sensorimotor local efficiency, PD-non-converters showed increased sensorimotor path length, while PD-FoG patients showed stable graph metrics. Stepwise prediction model including dyskinesia, postural instability and gait disorders scores and parietal clustering coefficient was the best predictor of FoG conversion. Combining clinical and MRI data, ROC curves provided the highest classification power to predict the conversion (AUC = 0.95, 95%CI: 0.86–1). Structural MRI is a useful tool to monitor PD progression, while functional MRI together with clinical features may be helpful to identify FoG conversion early.
Collapse
|
12
|
Lin F, Yang B, Chen Y, Zhao W, Li B, Jia W. Enlarged perivascular spaces are linked to freezing of gait in Parkinson's disease. Front Neurol 2022; 13:985294. [PMID: 36062021 PMCID: PMC9437541 DOI: 10.3389/fneur.2022.985294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Freezing of gait (FOG) is one of common and disabling gait impairments of Parkinson's disease (PD). White matter hyperintensity (WMH) and lacunes, as common manifestations of cerebral small vessel diseases (CSVD), have been reported to be associated with gait function in PD patients. However, in the cases with FOG which present with extensive WMH or lacunes, it actually is difficult to distinguish pure PD pathology from vascular origin or combined effects. So far little is known about the correlation between enlarged perivascular space (PVS) and FOG in PD patients. This study aims to explore the role of enlarged PVS in FOG in PD patients. Methods A total of 95 patients with PD in the absence of obvious WMH and lacunes were included in our study, which were divided into PD-FOG (+) group and PD-FOG (-) group. Demographic and clinical data were investigated. Enlarged PVS in the centrum semiovale (CSO) and basal ganglia (BG) were assessed. The association between enlarged PVS and FOG in patients with PD was analyzed using the multivariate models and the Spearman's correlation. Results There were 36 PD patients grouped into PD-FOG (+) (37.9%), with an older age, a longer PD disease duration, and larger numbers of enlarged PVS in CSO and BG compared with PD-FOG (-) group. The highest-severity degree of enlarged PVS burden in CSO was independently associated with FOG in patients with PD [adjusted odds ratio (OR), 3.869; p = 0.022 in multivariable model]. The percentages of FOG case increased accompanied by the aggravation of enlarged PVS located in CSO. The grade and count of enlarged PVS in CSO and BG both correlated with FOGQ score in PD patients. Conclusion Enlarged PVS, particularly in CSO, are associated with FOG in patients with PD, which provides a novel perspective for the mechanisms of FOG in PD.
Collapse
|
13
|
Wang F, Pan Y, Zhang M, Hu K. Predicting the onset of freezing of gait in Parkinson's disease. BMC Neurol 2022; 22:213. [PMID: 35672669 PMCID: PMC9172010 DOI: 10.1186/s12883-022-02713-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Freezing of gait is a debilitating symptom of Parkinson's disease associated with high risks of falls and poor quality of life. While productive therapy for FoG is still underway, early prediction of FoG could help high-risk PD patients to take preventive measures. In this study, we predicted the onset of FoG in de novo PD patients using a battery of risk factors from patients enrolled in PPMI cohort. METHODS Baseline characteristics were compared between subjects who developed FoG (68 patients, 37.2%, pre-FoG group) during the five-year follow up and subjects who did not (115 patients, 62.8%, non-FoG group). A multivariate logistic regression model was built based on backward stepwise selection of factors that were associated with FoG onset in the univariate analysis. ROC curves were used to assess sensitivity and specificity of the predictive model. RESULTS At baseline, age, PIGD score, cognitive functions, autonomic functions, sleep behavior, fatigue and striatal DAT uptake were significantly different in the pre-FoG group relative to the non-FoG group. However, there was no difference in genetic characteristics between the two patient sets. Univariate analysis showed several motor and non-motor factors that correlated with FoG, including PIGD score, MDS-UPDRS part II score, SDMT score, HVLT Immediate/Total Recall, MOCA, Epworth Sleepiness Scale, fatigue, SCOPA-AUT gastrointestinal score, SCOPA-AUT urinary score and CSF biomarker Abeta42. Multivariate logistic analysis stressed that high PIGD score, fatigue, worse SDMT performance and low levels of Abeta42 were independent risk factors for FoG onset in PD patients. CONCLUSIONS Combining motor and non-motor features including PIGD score, poor cognitive functions and CSF Abeta can identify PD patients with high risk of FoG onset.
Collapse
Affiliation(s)
- Fengting Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Yixin Pan
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Miao Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Kejia Hu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
- Laboratory of Digital Medicine, Wuxi People’s Hospital, Nanjing Medical University, Wuxi, 214023 China
| |
Collapse
|
14
|
Helmy A, Hamid E, Salama M, Gaber A, El-Belkimy M, Shalash A. Baseline predictors of progression of Parkinson's disease in a sample of Egyptian patients: clinical and biochemical. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022; 58:9. [PMID: 35068922 PMCID: PMC8760567 DOI: 10.1186/s41983-022-00445-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/01/2022] [Indexed: 01/21/2023] Open
Abstract
Background Clinical progression of Parkinson’s disease (PD) is highly heterogeneous, and its predictors are generally lacking. Identifying predictors of early disease progression is important for patients’ management and follow-up. The current study aims to identify clinical, neuroimaging and biochemical baseline predictors of motor progression in patients with PD. Forty-five PD patients were assessed at baseline, 6 months and 1 year using MDS-UPDRS total and subscores, Hoehn and Yahr (H&Y), Schwab and England (S&E), International Physical Activity Questionnaire (IPAQ). Baseline New Freezing of Gait Questionnaire (NFOG-Q), Berg Balance Scale (BBS), Ten-Meter Walking Test (10-MWT), and Time Up and Go Test (TUG), Non-Motor Symptoms Scale (NMSS), Beck Depression Inventory (BDI), PD questionnaire 39 (PDQ-39), MRI brain, uric acid, lipid profile and glycated hemoglobin were performed. Results Significant worsening of MDS-UPDRS total, part III scores, H&Y, S&E and IPAQ (p < 0.001) was detected. One-year progression of H&Y and S&E were significantly correlated to disease duration (p = 0.014, p = 0.025, respectively). Progression of H&Y was correlated to baseline TUG (p = 0.035). S&E progression was correlated to baseline MDS-UPDRS total score (rho = 0.478, p = 0.001) and part III (rho = 0.350, p = 0.020), H&Y (rho = 0.401, p = 0.007), PIGD (rho = 0.591, p < 0.001), NFOG-Q (rho = 0.498, p = 0.001), and TUG (rho = 0.565, p = 0.001). Using linear regression, there was no predictors of clinical progression among the used baseline variables. Conclusion Despite the significant motor and physical activity progression over 1 year that was correlated to baseline motor and gait severity, but without predictive value, further similar and longitudinal studies are warranted to detect predictors of early progression and confirm findings. Supplementary Information The online version contains supplementary material available at 10.1186/s41983-022-00445-1.
Collapse
Affiliation(s)
- Asmaa Helmy
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Eman Hamid
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo, Cairo, Egypt.,Faculty of Medicine, Al-Mansoura University, Mansoura, Egypt
| | - Ahmed Gaber
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Mahmoud El-Belkimy
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| | - Ali Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, 168 Elnozha St, Saint Fatima Square, Heliopolis, Cairo, Egypt
| |
Collapse
|
15
|
Zhao J, Wan Y, Song L, Wu N, Zhang Z, Liu Z, Gan J. Longitudinal Prediction of Freezing of Gait in Parkinson's Disease: A Prospective Cohort Study. Front Neurol 2022; 12:758580. [PMID: 35046882 PMCID: PMC8761770 DOI: 10.3389/fneur.2021.758580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Freezing of gait (FOG) is a disabling complication in Parkinson's disease (PD). Yet, studies on a validated model for the onset of FOG based on longitudinal observation are absent. This study aims to develop a risk prediction model to predict the probability of future onset of FOG from a multicenter cohort of Chinese patients with PD. Methods: A total of 350 patients with PD without FOG were prospectively monitored for ~2 years. Demographic and clinical data were investigated. The multivariable logistic regression analysis was conducted to develop a risk prediction model for FOG. Results: Overall, FOG was observed in 132 patients (37.70%) during the study period. At baseline, longer disease duration [odds ratio (OR) = 1.214, p = 0.008], higher total levodopa equivalent daily dose (LEDD) (OR = 1.440, p < 0.001), and higher severity of depressive symptoms (OR = 1.907, p = 0.028) were the strongest predictors of future onset of FOG in the final multivariable model. The model performed well in the development dataset (with a C-statistic = 0.820, 95% CI: 0.771–0.865), showed acceptable discrimination and calibration in internal validation, and remained stable in 5-fold cross-validation. Conclusion: A new prediction model that quantifies the risk of future onset of FOG has been developed. It is based on clinical variables that are readily available in clinical practice and could serve as a small tool for risk counseling.
Collapse
Affiliation(s)
- Jiahao Zhao
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Wu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zien Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Chung SJ, Kim YJ, Yoo HS, Jung JH, Baik K, Lee HS, Lee YH, Hong JM, Sohn YH, Lee PH. Temporalis Muscle Thickness as an Indicator of Sarcopenia Is Associated With Long-term Motor Outcomes in Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 76:2242-2248. [PMID: 33754634 DOI: 10.1093/gerona/glab082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To investigate the relationship between temporalis muscle thickness (TMT) at baseline as a surrogate marker for sarcopenia and long-term motor outcomes in patients with Parkinson's disease (PD). METHODS We enrolled 249 patients with drug-naïve early-stage PD (119 males and 130 females, follow-up > 3 years). Baseline TMT of each patient was measured on the axial plane of T1-weighted images. The association between baseline TMT and long-term motor outcomes in PD was assessed using Cox regression models for levodopa-induced dyskinesia, wearing-off, and freezing of gait and a linear mixed model for the longitudinal increases in levodopa-equivalent dose per body weight over time. Statistical analyses were performed separately for sex if an interaction effect between TMT and sex was assumed. RESULTS TMT differed substantially between the sexes, and male PD patients had higher TMT (6.69 ± 1.39 mm) than female PD patients (5.64 ± 1.34 mm, p < .001). Cox regression models demonstrated that baseline TMT was not associated with the risk of developing levodopa-induced dyskinesia, wearing-off, or freezing of gait during the follow-up period. The linear mixed model was applied separately for sex and demonstrated that higher TMT at baseline was associated with slower increases in levodopa-equivalent dose per body weight in male PD patients, but not in female PD patients. CONCLUSIONS This study demonstrated that baseline TMT could be an indicator of the longitudinal requirement for dopaminergic medications in male patients with PD, suggesting that sarcopenia may have a detrimental effect on disease progression in PD in a sex-specific manner.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
| | - Ji-Man Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul,South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Narasimhan M, Schwartz R, Halliday G. Parkinsonism and cerebrovascular disease. J Neurol Sci 2021; 433:120011. [PMID: 34686356 DOI: 10.1016/j.jns.2021.120011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
The relationship between cerebrovascular disease and parkinsonism is commonly seen in everyday clinical practice but remains ill-defined and under-recognised with little guidance for the practising neurologist. We attempt to define this association and to illustrate key clinical, radiological and pathological features of the syndrome of Vascular Parkinsonism (VaP). VaP is a major cause of morbidity in the elderly associated with falls, hip fractures and cognitive impairment. Although acute parkinsonism is reported in the context of an acute cerebrovascular event, the vast majority of VaP presents as an insidious syndrome usually in the context of vascular risk factors and radiological evidence of small vessel disease. There may be an anatomic impact on basal ganglia neuronal networks, however the effect of small vessel disease (SVD) on these pathways is not clear. There are now established reporting standards for radiological features of SVD on MRI. White matter hyperintensities and lacunes have been thought to be the representative radiological features of SVD but other features such as the perivascular space are gaining more importance, especially in context of the glymphatic system. It is important to consider VaP in the differential diagnosis of Parkinson disease (PD) and in these situations, neuroimaging may offer diagnostic benefit especially in those patients with atypical presentations or refractoriness to levodopa. Proactive management of vascular risk factors, monitoring of bone density and an exercise program may offer easily attainable therapeutic targets in PD and VaP. Levodopa therapy should be considered in patients with VaP, however the dose and effect may be different from use in PD. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Manisha Narasimhan
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Raymond Schwartz
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Glenda Halliday
- Brain and Mind Centre and Faculty of Health and Medical Sciences, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Jin C, Qi S, Teng Y, Li C, Yao Y, Ruan X, Wei X. Integrating Structural and Functional Interhemispheric Brain Connectivity of Gait Freezing in Parkinson's Disease. Front Neurol 2021; 12:609866. [PMID: 33935931 PMCID: PMC8081966 DOI: 10.3389/fneur.2021.609866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/04/2021] [Indexed: 11/23/2022] Open
Abstract
Freezing of gait (FOG) has devastating consequences for patients with Parkinson's disease (PD), but the underlying pathophysiological mechanism is unclear. This was investigated in the present study by integrated structural and functional connectivity analyses of PD patients with or without FOG (PD FOG+ and PD FOG-, respectively) and healthy control (HC) subjects. We performed resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging of 24 PD FOG+ patients, 37 PD FOG- patients, and 24 HCs. Tract-based spatial statistics was applied to identify white matter (WM) abnormalities across the whole brain. Fractional anisotropy (FA) and mean diffusivity (MD) of abnormal WM areas were compared among groups, and correlations between these parameters and clinical severity as determined by FOG Questionnaire (FOGQ) score were analyzed. Voxel-mirrored homotopic connectivity (VMHC) was calculated to identify brain regions with abnormal interhemispheric connectivity. Structural and functional measures were integrated by calculating correlations between VMHC and FOGQ score and between FA, MD, and VMHC. The results showed that PD FOG+ and PD FOG- patients had decreased FA in the corpus callosum (CC), cingulum (hippocampus), and superior longitudinal fasciculus and increased MD in the CC, internal capsule, corona radiata, superior longitudinal fasciculus, and thalamus. PD FOG+ patients had more WM abnormalities than PD FOG- patients. FA and MD differed significantly among the splenium, body, and genu of the CC in all three groups (P < 0.05). The decreased FA in the CC was positively correlated with FOGQ score. PD FOG+ patients showed decreased VMHC in the post-central gyrus (PCG), pre-central gyrus, and parietal inferior margin. In PD FOG+ patients, VMHC in the PCG was negatively correlated with FOGQ score but positively correlated with FA in CC. Thus, FOG is associated with impaired interhemispheric brain connectivity measured by FA, MD, and VMHC, which are related to clinical FOG severity. These results demonstrate that integrating structural and functional MRI data can provide new insight into the pathophysiological mechanism of FOG in PD.
Collapse
Affiliation(s)
- Chaoyang Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Shouliang Qi
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Xiuhang Ruan
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinhua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Dadar M, Miyasaki J, Duchesne S, Camicioli R. White matter hyperintensities mediate the impact of amyloid ß on future freezing of gait in Parkinson's disease. Parkinsonism Relat Disord 2021; 85:95-101. [PMID: 33770671 DOI: 10.1016/j.parkreldis.2021.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Freezing of gait (FOG) is a common symptom in Parkinson's Disease (PD) patients. Previous studies have reported relationships between FOG, substantia nigra (SN) degeneration, dopamine transporter (DAT) concentration, as well as amyloid β deposition. However, there is a paucity of research on the concurrent impact of white matter damage. OBJECTIVES To assess the inter-relationships between these different co-morbidities, their impact on future FOG and whether they act independently of each other. METHODS We used baseline MRI and longitudinal gait data from 423 de novo PD patients from the Parkinson's Progression Markers Initiative (PPMI). We used deformation based morphometry (DBM) from T1-weighted MRI to measure SN atrophy, and segmentation of white matter hyperintensities (WMH) as a measure of WM pathological load. Putamen and caudate DAT levels from SPECT as well as cerebrospinal fluid (CSF) amyloid β were obtained directly from the PPMI. Following correlation analyses, we investigated whether WMH burden mediates the impact of amyloid β on future FOG. RESULTS SN DBM, WMH load, putamen and caudate DAT activity and CSF amyloid β levels were significantly different between PD patients with and without future FOG (p < 0.008). Mediation analysis demonstrated an effect of CSF amyloid β levels on future FOG via WMH load, independent of SN atrophy and striatal DAT activity levels. CONCLUSIONS Amyloid β might impact future FOG in PD patients through an increase in WMH burden, in a pathway independent of Lewy body pathology.
Collapse
Affiliation(s)
- Mahsa Dadar
- CERVO Brain Research Center, Centre Intégré Universitaire Santé et Services Sociaux de La Capitale Nationale, Québec, QC, Canada.
| | - Janis Miyasaki
- Neuroscience and Mental Health Institute and Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Simon Duchesne
- CERVO Brain Research Center, Centre Intégré Universitaire Santé et Services Sociaux de La Capitale Nationale, Québec, QC, Canada; Department of Radiology and Nuclear Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Richard Camicioli
- Neuroscience and Mental Health Institute and Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Chung SJ, Yoo HS, Shin NY, Park YW, Lee HS, Hong JM, Kim YJ, Lee SK, Lee PH, Sohn YH. Perivascular Spaces in the Basal Ganglia and Long-term Motor Prognosis in Newly Diagnosed Parkinson Disease. Neurology 2021; 96:e2121-e2131. [PMID: 33653906 DOI: 10.1212/wnl.0000000000011797] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/25/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the association between enlarged perivascular spaces (PVS) in the basal ganglia (BG-PVS) and long-term motor outcomes in Parkinson disease (PD). METHODS We reviewed the medical records of 248 patients with drug-naive early-stage PD (follow-up >3 years, mean age 67.44 ± 8.46 years, 130 female) who underwent brain MRI and dopamine transporter (DAT) scans at initial assessment. The number of baseline enlarged BG-PVS was counted on axial T2-weighted images. Then, patients were divided into 2 groups: a PD group with a low number (0-10) of enlarged PVS (PD-EPVS-; n = 156) and a PD group with a high number (>10) of enlarged PVS (PD-EPVS+; n = 92). We used Cox regression models to compare the levodopa-induced dyskinesia (LID)-, wearing-off-, and freezing of gait (FOG)-free times between groups. We also compared longitudinal increases in levodopa-equivalent dose per body weight between groups using a linear mixed model. RESULTS Patients in the PD-EPVS+ group were older (72.28 ± 6.07 years) and had greater small vessel disease burden than those in the PD-EPVS- group (64.58 ± 8.38 years). The PD-EPVS+ group exhibited more severely decreased DAT availability in all striatal subregions except the ventral striatum. The risk of FOG was higher in the PD-EPVS+ group, but the risk of LID or wearing-off was comparable between groups. The PD-EPVS+ group required higher doses of dopaminergic medications for effective symptom control compared to the PD-EPVS- group. CONCLUSION This study suggests that baseline enlarged BG-PVS can be an indicator of the progression of motor disability in PD.
Collapse
Affiliation(s)
- Seok Jong Chung
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han Soo Yoo
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na-Young Shin
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yae Won Park
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hye Sun Lee
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Man Hong
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yun Joong Kim
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Koo Lee
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Phil Hyu Lee
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young H Sohn
- From the Departments of Neurology (S.J.C., H.S.Y., J.-M.H., Y.J.K., P.H.L., Y.H.S.) and Radiology (Y.W.P., S.-K.L.) and Biostatistics Collaboration Unit (H.S.L.), Yonsei University College of Medicine, Seoul; Department of Neurology (S.J.C., J.-M.H., Y.J.K.), Yongin Severance Hospital, Yonsei University Health System, Yongin; and Department of Radiology (N.-Y.S.), Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
21
|
Jeong SH, Lee HS, Jung JH, Baik K, Lee YH, Yoo HS, Sohn YH, Chung SJ, Lee PH. White Matter Hyperintensities, Dopamine Loss, and Motor Deficits in De Novo Parkinson's Disease. Mov Disord 2021; 36:1411-1419. [PMID: 33513293 DOI: 10.1002/mds.28510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND White matter hyperintensities, prevalent in patients with Parkinson's disease (PD), significantly affect parkinsonian motor symptoms. The objective of this study was to investigate the relationship between white matter hyperintensities and nigrostriatal dopamine depletion and their interaction or mediating effects on motor symptoms in patients with drug-naive early-stage PD. METHODS This cross-sectional study enrolled 501 patients with de novo PD who initially underwent [18 F] N-(3-fluoropropyl)-2β-carbonethoxy-3β-(4-iodophenyl) nortropane positron emission tomography and brain magnetic resonance imaging scans between April 2009 and September 2015 in a tertiary-care university hospital. We quantified dopamine transporter availability in each striatal subregion and assessed the severity of periventricular and lobar white matter hyperintensities using the Scheltens scale. The relationship between white matter hyperintensities, dopamine transporter availability in the posterior putamen, and Unified Parkinson's Disease Rating Scale (UPDRS) motor scores was assessed using multivariate linear regression and mediation analyses. RESULTS Periventricular and frontal white matter hyperintensities were generally associated with dopamine transporter availability in striatal subregions after adjusting for age at symptom onset, sex, disease duration, and vascular risk factors. There was an interaction effect between periventricular white matter hyperintensities and dopamine transporter availability in the posterior putamen for the axial motor score. The effect of white matter hyperintensities on UPDRS total score and bradykinesia subscore was indirectly mediated by dopamine transporter availability in the posterior putamen, whereas the axial sub-score was directly affected by white matter hyperintensities. CONCLUSIONS This study suggests that the detrimental effect of white matter hyperintensities on parkinsonian motor symptoms is more relevant and independent for axial motor impairments in the status of mildly decreased striatal dopamine transporter availability. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson's disease. Nutrition 2020; 83:111090. [PMID: 33418492 DOI: 10.1016/j.nut.2020.111090] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed to investigate the potential of using changes in the plasma levels of trimethylamine N-oxide (TMAO), a gut microbiota-derived metabolite, as a biomarker in early Parkinson's disease (PD). METHODS Plasma TMAO levels were measured in 85 patients with drug-naïve early stage PD and 20 healthy controls. A linear mixed model was used to assess longitudinal changes in levodopa-equivalent dose (LED) during follow-up (>2 y) in three tertile PD groups according to plasma TMAO levels. Additionally, a Cox regression analysis was performed to assess the effect of plasma TMAO levels on dementia conversion. RESULTS Plasma TMAO levels of patients with PD were lower than those of healthy controls. A linear mixed model demonstrated that patients with PD and lower levels of TMAO (<4.75 μmol/L; i.e., lowest tertile group) exhibited faster increases in LED over time. The Cox regression model did not reveal that plasma TMAO level was associated with the risk for dementia conversion (P = 0.488). However, when we divided patients with PD into two subgroups according to bet cutoff TMAO level to maximize the log-rank statistics, the PD group with a low plasma TMAO level (<6.92 μmol/L) had a higher risk (with borderline statistical significance) for PD-dementia conversion than the group with a high TMAO level (hazard ratio: 7.565; 95% confidence interval, 1.004-57.019; P = 0.050). CONCLUSIONS The results demonstrate that lower baseline plasma TMAO levels are associated with faster increases in LED and tend to increase the risk for PD-dementia conversion, suggesting the prognostic implications of TMAO in early stage PD.
Collapse
|
23
|
Chung SJ, Lee JJ, Lee PH, Sohn YH. Emerging Concepts of Motor Reserve in Parkinson's Disease. J Mov Disord 2020; 13:171-184. [PMID: 32854486 PMCID: PMC7502292 DOI: 10.14802/jmd.20029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/05/2020] [Indexed: 01/18/2023] Open
Abstract
The concept of cognitive reserve (CR) in Alzheimer's disease (AD) explains the differences between individuals in their susceptibility to AD-related pathologies. An enhanced CR may lead to less cognitive deficits despite severe pathological lesions. Parkinson's disease (PD) is also a common neurodegenerative disease and is mainly characterized by motor dysfunction related to striatal dopaminergic depletion. The degree of motor deficits in PD is closely correlated to the degree of dopamine depletion; however, significant individual variations still exist. Therefore, we hypothesized that the presence of motor reserve (MR) in PD explains the individual differences in motor deficits despite similar levels of striatal dopamine depletion. Since 2015, we have performed a series of studies investigating MR in de novo patients with PD using the data of initial clinical presentation and dopamine transporter PET scan. In this review, we summarized the results of these published studies. In particular, some premorbid experiences (i.e., physical activity and education) and modifiable factors (i.e., body mass index and white matter hyperintensity on brain image studies) could modulate an individual's capacity to tolerate PD pathology, which can be maintained throughout disease progression.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Jae Jung Lee
- Department of Neurology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Wearable haptic anklets for gait and freezing improvement in Parkinson’s disease: a proof-of-concept study. Neurol Sci 2020; 41:3643-3651. [DOI: 10.1007/s10072-020-04485-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/21/2020] [Indexed: 01/02/2023]
|
25
|
Effect of small vessel disease burden and lacunes on gait/posture impairment in Parkinson's disease. Neurol Sci 2020; 41:3617-3624. [PMID: 32458249 DOI: 10.1007/s10072-020-04452-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The comorbidity of cerebral small vessel disease (CSVD) may worsen gait impairment of Parkinson's disease (PD). However, the evidence remains scarce and controversial, and the mechanism of their potential interaction remains largely unknown. The present study aimed to investigate the overall impact of quantity and location of CSVD on gait/posture function in PD. METHODS This cross-sectional study included 315 consecutive eligible patients with PD from Beijing Tiantan Hospital from May 2016 to August 2018. Associations of gait/posture subscores with the burden score of CSVD and four CSVD imaging markers were assessed using multivariate linear regression models. RESULTS Burden of CSVD was significantly associated with more severe gait/posture impairment in PD in the unadjusted model (β = 0.521, P = 0.011, 95% CI 0.118-0.923) and in the model adjusted for age, hypertension, ischemic stroke, low-density lipoprotein level, cholesterol level, and cognitive statues (β = 0.448, P = 0.047, 95% CI 0.006-0.891). The presence of lacunes, but not other CSVD markers, was significantly associated with higher gait/posture subscores after the adjustment (β = 0.492, P = 0.041, 95% CI 0.021-0.964), and the number of lacunes in the basal ganglia significantly correlated with the gait/posture subscores in patients with PD (P = 0.012, Spearman r = 0.161). CONCLUSIONS CSVD and lacunes in the basal ganglia may independently contribute to gait/posture dysfunction in PD. Promoting neurovascular health may preserve some gait/posture function of PD.
Collapse
|
26
|
Gao C, Liu J, Tan Y, Chen S. Freezing of gait in Parkinson's disease: pathophysiology, risk factors and treatments. Transl Neurodegener 2020; 9:12. [PMID: 32322387 PMCID: PMC7161193 DOI: 10.1186/s40035-020-00191-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Freezing of gait (FOG) is a common, disabling symptom of Parkinson's disease (PD), but the mechanisms and treatments of FOG remain great challenges for clinicians and researchers. The main focus of this review is to summarize the possible mechanisms underlying FOG, the risk factors for screening and predicting the onset of FOG, and the clinical trials involving various therapeutic strategies. In addition, the limitations and recommendations for future research design are also discussed. Main body In the mechanism section, we briefly introduced the physiological process of gait control and hypotheses about the mechanism of FOG. In the risk factor section, gait disorders, PIGD phenotype, lower striatal DAT uptake were found to be independent risk factors of FOG with consistent evidence. In the treatment section, we summarized the clinical trials of pharmacological and non-pharmacological treatments. Despite the limited effectiveness of current medications for FOG, especially levodopa resistant FOG, there were some drugs that showed promise such as istradefylline and rasagiline. Non-pharmacological treatments encompass invasive brain and spinal cord stimulation, noninvasive repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) and vagus nerve stimulation (VNS), and physiotherapeutic approaches including cues and other training strategies. Several novel therapeutic strategies seem to be effective, such as rTMS over supplementary motor area (SMA), dual-site DBS, spinal cord stimulation (SCS) and VNS. Of physiotherapy, wearable cueing devices seem to be generally effective and promising. Conclusion FOG model hypotheses are helpful for better understanding and characterizing FOG and they provide clues for further research exploration. Several risk factors of FOG have been identified, but need combinatorial optimization for predicting FOG more precisely. Although firm conclusions cannot be drawn on therapeutic efficacy, the literature suggested that some therapeutic strategies showed promise.
Collapse
Affiliation(s)
- Chao Gao
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- 1Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province China
| |
Collapse
|