1
|
Slater NM, Melzer TR, Myall DJ, Anderson TJ, Dalrymple-Alford JC. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson's Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov Disord 2024. [PMID: 39360864 DOI: 10.1002/mds.30023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicola M Slater
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Sundman MH, Green JM, Fuglevand AJ, Chou YH. TMS-derived short afferent inhibition discriminates cognitive status in older adults without dementia. AGING BRAIN 2024; 6:100123. [PMID: 39132326 PMCID: PMC11315225 DOI: 10.1016/j.nbas.2024.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/29/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
Aging is a complex and diverse biological process characterized by progressive molecular, cellular, and tissue damage, resulting in a loss of physiological integrity and heightened vulnerability to pathology. This biological diversity corresponds with highly variable cognitive trajectories, which are further confounded by genetic and environmental factors that influence the resilience of the aging brain. Given this complexity, there is a need for neurophysiological indicators that not only discern physiologic and pathologic aging but also closely align with cognitive trajectories. Transcranial Magnetic Stimulation (TMS) may have utility in this regard as a non-invasive brain stimulation tool that can characterize features of cortical excitability. Particularly, as a proxy for central cholinergic function, short-afferent inhibition (SAI) dysfunction is robustly associated with cognitive deficits in the latter stages of Alzheimer's Disease and Related Dementia (ADRD). In this study, we evaluated SAI in healthy young adults and older adults who, though absent clinical diagnoses, were algorithmically classified as cognitively normal (CN) or cognitively impaired (CI) according to the Jak/Bondi actuarial criteria. We report that SAI is preserved in the Old-CN cohort relative to the young adults, and SAI is significantly diminished in the Old-CI cohort relative to both young and CN older adults. Additionally, diminished SAI was significantly associated with impaired sustained attention and working memory. As a proxy measure for central cholinergic deficits, we discuss the potential value of SAI for discerning physiological and pathological aging.
Collapse
Affiliation(s)
- Mark H. Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Jacob M. Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
| | - Andrew J. Fuglevand
- Department of Physiology, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Neuroscience, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Ying-hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ 85721, USA
- Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Tröster AI. Developments in the prediction of cognitive changes following deep brain stimulation in persons with Parkinson's disease. Expert Rev Neurother 2024; 24:643-659. [PMID: 38814926 DOI: 10.1080/14737175.2024.2360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD) motor symptoms that improves function and quality of life in appropriately selected patients. Because mild to moderate cognitive declines can follow DBS and impact quality of life in a minority of patients, an important consideration involves the cognitive deficit and its prediction. AREAS COVERED The author briefly summarizes cognitive outcomes from DBS and reviews in more detail the risks/predictors of post-DBS cognitive dysfunction by mainly focusing on work published between 2018 and 2024 and using comprehensive neuropsychological (NP) evaluations. Most publications concern bilateral subthalamic nucleus (STN) DBS. Comment is offered on challenges and potential avenues forward. EXPERT OPINION STN DBS is relatively safe cognitively but declines occur especially in verbal fluency and executive function/working memory. Numerous predictors and risk factors for cognitive outcomes have been identified (age and pre-operative neuropsychological status appear the most robust) but precise risk estimates cannot yet be confidently offered. Future studies should employ study center consortia, follow uniform reporting criteria (to be developed), capitalize on advances in stimulation, biomarkers, and artificial intelligence, and address DBS in diverse groups. Advances offer an avenue to investigate the amelioration of cognitive deficits in PD using neuromodulation.
Collapse
Affiliation(s)
- Alexander I Tröster
- Department of Clinical Neuropsychology and Center for Neuromodulation, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
4
|
Altham C, Zhang H, Pereira E. Machine learning for the detection and diagnosis of cognitive impairment in Parkinson's Disease: A systematic review. PLoS One 2024; 19:e0303644. [PMID: 38753740 PMCID: PMC11098383 DOI: 10.1371/journal.pone.0303644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Parkinson's Disease is the second most common neurological disease in over 60s. Cognitive impairment is a major clinical symptom, with risk of severe dysfunction up to 20 years post-diagnosis. Processes for detection and diagnosis of cognitive impairments are not sufficient to predict decline at an early stage for significant impact. Ageing populations, neurologist shortages and subjective interpretations reduce the effectiveness of decisions and diagnoses. Researchers are now utilising machine learning for detection and diagnosis of cognitive impairment based on symptom presentation and clinical investigation. This work aims to provide an overview of published studies applying machine learning to detecting and diagnosing cognitive impairment, evaluate the feasibility of implemented methods, their impacts, and provide suitable recommendations for methods, modalities and outcomes. METHODS To provide an overview of the machine learning techniques, data sources and modalities used for detection and diagnosis of cognitive impairment in Parkinson's Disease, we conducted a review of studies published on the PubMed, IEEE Xplore, Scopus and ScienceDirect databases. 70 studies were included in this review, with the most relevant information extracted from each. From each study, strategy, modalities, sources, methods and outcomes were extracted. RESULTS Literatures demonstrate that machine learning techniques have potential to provide considerable insight into investigation of cognitive impairment in Parkinson's Disease. Our review demonstrates the versatility of machine learning in analysing a wide range of different modalities for the detection and diagnosis of cognitive impairment in Parkinson's Disease, including imaging, EEG, speech and more, yielding notable diagnostic accuracy. CONCLUSIONS Machine learning based interventions have the potential to glean meaningful insight from data, and may offer non-invasive means of enhancing cognitive impairment assessment, providing clear and formidable potential for implementation of machine learning into clinical practice.
Collapse
Affiliation(s)
- Callum Altham
- Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Huaizhong Zhang
- Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Ella Pereira
- Department of Computer Science, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| |
Collapse
|
5
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Yuan W, Zheng Q, Zhang B, Huang P, Xu X, Zhang M. Cholinergic basal forebrain system degeneration underlies postural instability/gait difficulty and attention impairment in Parkinson's disease. Eur J Neurol 2024; 31:e16108. [PMID: 37877681 PMCID: PMC11235900 DOI: 10.1111/ene.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND AND PURPOSE The specific pathophysiological mechanisms underlying postural instability/gait difficulty (PIGD) and cognitive function in Parkinson's disease (PD) remain unclear. Both postural and gait control, as well as cognitive function, are associated with the cholinergic basal forebrain (cBF) system. METHODS A total of 84 PD patients and 82 normal controls were enrolled. Each participant underwent motor and cognitive assessments. Diffusion tensor imaging was used to detect structural abnormalities in the cBF system. The cBF was segmented using FreeSurfer, and its fiber tract was traced using probabilistic tractography. To provide information on extracellular water accumulation, free-water fraction (FWf) was quantified. FWf in the cBF and its fiber tract, as well as cortical projection density, were extracted for statistical analyses. RESULTS Patients had significantly higher FWf in the cBF (p < 0.001) and fiber tract (p = 0.021) than normal controls, as well as significantly lower cBF projection in the occipital (p < 0.001), parietal (p < 0.001) and prefrontal cortex (p = 0.005). In patients, a higher FWf in the cBF correlated with worse PIGD score (r = 0.306, p = 0.006) and longer Trail Making Test A time (r = 0.303, p = 0.007). Attentional function (Trail Making Test A) partially mediated the association between FWf in the cBF and PIGD score (indirect effect, a*b = 0.071; total effect, c = 0.256; p = 0.006). CONCLUSIONS Our findings suggest that degeneration of the cBF system in PD, from the cBF to its fiber tract and cortical projection, plays an important role in cognitive-motor interaction.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojie Duanmu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weijin Yuan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qianshi Zheng
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Astalosch M, Mousavi M, Ribeiro LM, Schneider GH, Stuke H, Haufe S, Borchers F, Spies C, von Hofen-Hohloch J, Al-Fatly B, Ebersbach G, Franke C, Kühn AA, Kübler-Weller D. Risk Factors for Postoperative Delirium Severity After Deep Brain Stimulation Surgery in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1175-1192. [PMID: 39058451 PMCID: PMC11380232 DOI: 10.3233/jpd-230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background Postoperative delirium (POD) is a serious complication following deep brain stimulation (DBS) but only received little attention. Its main risk factors are higher age and preoperative cognitive deficits. These are also main risk factors for long-term cognitive decline after DBS in Parkinson's disease (PD). Objective To identify risk factors for POD severity after DBS surgery in PD. Methods 57 patients underwent DBS (21 female; age 60.2±8.2; disease duration 10.5±5.9 years). Preoperatively, general, PD- and surgery-specific predictors were recorded. Montreal Cognitive Assessment and the neuropsychological test battery CANTAB ConnectTM were used to test domain-specific cognition. Volumes of the cholinergic basal forebrain were calculated with voxel-based morphometry. POD severity was recorded with the delirium scales Confusion Assessment Method for Intensive Care Unit (CAM-ICU) and Nursing Delirium Scale (NU-DESC). Spearman correlations were calculated for univariate analysis of predictors and POD severity and linear regression with elastic net regularization and leave-one-out cross-validation was performed to fit a multivariable model. Results 21 patients (36.8%) showed mainly mild courses of POD following DBS. Correlation between predicted and true POD severity was significant (spearman rho = 0.365, p = 0.001). Influential predictors were age (p < 0.001), deficits in attention and motor speed (p = 0.002), visual learning (p = 0.036) as well as working memory (p < 0.001), Nucleus basalis of Meynert volumes (p = 0.003) and burst suppression (p = 0.005). Conclusions General but also PD- and surgery-specific factors were predictive of POD severity. These findings underline the multifaceted etiology of POD after DBS in PD. Valid predictive models must therefore consider general, PD- and surgery-specific factors.
Collapse
Affiliation(s)
- Melanie Astalosch
- Department of Neurology and Experimental Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Luísa Martins Ribeiro
- Department of Neurology and Experimental Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiner Stuke
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch-Institute, Berlin, Germany
- Centre for Artificial Intelligence in Public Health Research, Germany; Berlin Center for Advanced Neuroimaging (BCAN), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Haufe
- Technische Universität, Berlin, Germany
- Robert Koch-Institute, Berlin, Germany
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Bassam Al-Fatly
- Department of Neurology and Experimental Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Ebersbach
- Movement Disorders Clinic, Kliniken Beelitz GmbH, Beelitz-Heilstätten, Germany
| | - Christiana Franke
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology and Experimental Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt - Universität zu Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| | - Dorothee Kübler-Weller
- Department of Neurology and Experimental Neurology, Movement Disorder and Neuromodulation Unit, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Li G, Zhong D, Li B, Chen Y, Yang L, Li CSR. Sleep Deficits Inter-Link Lower Basal Forebrain-Posterior Cingulate Connectivity and Perceived Stress and Anxiety Bidirectionally in Young Men. Int J Neuropsychopharmacol 2023; 26:879-889. [PMID: 37924270 PMCID: PMC10726414 DOI: 10.1093/ijnp/pyad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The basal nucleus of Meynert (BNM), a primary source of cholinergic projections to the cortex, plays key roles in regulating the sleep-wake cycle and attention. Sleep deficit is associated with impairment in cognitive and emotional functions. However, whether or how cholinergic circuit, sleep, and cognitive/emotional dysfunction are inter-related remains unclear. METHODS We curated the Human Connectome Project data and explored BNM resting state functional connectivities (rsFC) in relation to sleep deficit, based on the Pittsburgh Sleep Quality Index (PSQI), cognitive performance, and subjective reports of emotional states in 687 young adults (342 women). Imaging data were processed with published routines and evaluated at a corrected threshold. We assessed the correlation between BNM rsFC, PSQI, and clinical measurements with Pearson regressions and their inter-relationships with mediation analyses. RESULTS In whole-brain regressions with age and alcohol use severity as covariates, men showed lower BNM rsFC with the posterior cingulate cortex (PCC) in correlation with PSQI score. No clusters were identified in women at the same threshold. Both BNM-PCC rsFC and PSQI score were significantly correlated with anxiety, perceived stress, and neuroticism scores in men. Moreover, mediation analyses showed that PSQI score mediated the relationship between BNM-PCC rsFC and these measures of negative emotions bidirectionally in men. CONCLUSIONS Sleep deficit is associated with negative emotions and lower BNM rsFC with the PCC. Negative emotional states and BNM-PCC rsFC are bidirectionally related through poor sleep quality. These findings are specific to men, suggesting potential sex differences in the neural circuits regulating sleep and emotional states.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Dandan Zhong
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Bao Li
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Yang
- Department of Biomedical engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Klietz M, Mahmoudi N, Maudsley AA, Sheriff S, Bronzlik P, Almohammad M, Nösel P, Wegner F, Höglinger GU, Lanfermann H, Ding XQ. Whole-Brain Magnetic Resonance Spectroscopy Reveals Distinct Alterations in Neurometabolic Profile in Progressive Supranuclear Palsy. Mov Disord 2023; 38:1503-1514. [PMID: 37289057 DOI: 10.1002/mds.29456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is an atypical Parkinsonian syndrome characterized by supranuclear gaze palsy, early postural instability, and a frontal dysexecutive syndrome. Contrary to normal brain magnetic resonance imaging in Parkinson's disease (PD), PSP shows specific cerebral atrophy patterns and alterations, but these findings are not present in every patient, and it is still unclear if these signs are also detectable in early disease stages. OBJECTIVE The aim of the present study was to analyze the metabolic profile of patients with clinically diagnosed PSP in comparison with matched healthy volunteers and PD patients using whole-brain magnetic resonance spectroscopic imaging (wbMRSI). METHODS Thirty-nine healthy controls (HCs), 29 PD, and 22 PSP patients underwent wbMRSI. PSP and PD patients were matched for age and handedness with HCs. Clinical characterization was performed using the Movement Disorder Society Unified Parkinson's Disease Rating Scale, PSP rating scale, and DemTect (test for cognitive assessment). RESULTS In PSP patients a significant reduction in N-acetyl-aspartate (NAA) was detected in all brain lobes. Fractional volume of the cerebrospinal fluid significantly increased in PSP patients compared to PD and healthy volunteers. CONCLUSIONS In PSP much more neuronal degeneration and cerebral atrophy have been detected compared with PD. The most relevant alteration is the decrease in NAA in all lobes of the brain, which also showed a partial correlation with clinical symptoms. However, more studies are needed to confirm the additional value of wbMRSI in clinical practice. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Nima Mahmoudi
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, USA
| | - Paul Bronzlik
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Patrick Nösel
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | | | - Xiao-Qi Ding
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Wang F, Lai Y, Pan Y, Li H, Liu Q, Sun B. A systematic review of brain morphometry related to deep brain stimulation outcome in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:130. [PMID: 36224189 PMCID: PMC9556527 DOI: 10.1038/s41531-022-00403-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
While the efficacy of deep brain stimulation (DBS) is well-established in Parkinson’s Disease (PD), the benefit of DBS varies across patients. Using imaging features for outcome prediction offers potential in improving effectiveness, whereas the value of presurgical brain morphometry, derived from the routinely used imaging modality in surgical planning, remains under-explored. This review provides a comprehensive investigation of links between DBS outcomes and brain morphometry features in PD. We systematically searched PubMed and Embase databases and retrieved 793 articles, of which 25 met inclusion criteria and were reviewed in detail. A majority of studies (24/25), including 1253 of 1316 patients, focused on the outcome of DBS targeting the subthalamic nucleus (STN), while five studies included 57 patients receiving globus pallidus internus (GPi) DBS. Accumulated evidence showed that the atrophy of motor cortex and thalamus were associated with poor motor improvement, other structures such as the lateral-occipital cortex and anterior cingulate were also reported to correlated with motor outcome. Regarding non-motor outcomes, decreased volume of the hippocampus was reported to correlate with poor cognitive outcomes. Structures such as the thalamus, nucleus accumbens, and nucleus of basalis of Meynert were also reported to correlate with cognitive functions. Caudal middle frontal cortex was reported to have an impact on postsurgical psychiatric changes. Collectively, the findings of this review emphasize the utility of brain morphometry in outcome prediction of DBS for PD. Future efforts are needed to validate the findings and demonstrate the feasibility of brain morphometry in larger cohorts.
Collapse
Affiliation(s)
- Fengting Wang
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijie Lai
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Pan
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Li
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Liu
- grid.152326.10000 0001 2264 7217Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| | - Bomin Sun
- grid.16821.3c0000 0004 0368 8293Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
11
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
12
|
Rogozinski S, Klietz M, Respondek G, Oertel WH, Grothe MJ, Pereira JB, Höglinger GU. Reduction in Volume of Nucleus Basalis of Meynert Is Specific to Parkinson’s Disease and Progressive Supranuclear Palsy but Not to Multiple System Atrophy. Front Aging Neurosci 2022; 14:851788. [PMID: 35431891 PMCID: PMC9012106 DOI: 10.3389/fnagi.2022.851788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022] Open
Abstract
Objectives To study in vivo gray matter (GM) volumes of the nucleus basalis of Meynert (nbM) in different parkinsonian syndromes and assess their relationship with clinical variables. Methods T1-weighted magnetic resonance images from patients with progressive supranuclear palsy (PSP, N = 43), multiple system atrophy (MSA, N = 23), Parkinson’s disease (PD, N = 26), and healthy controls (HC, N = 29) were included. T1-weighted images were analyzed using a voxel-based morphometry approach implemented in the VBM8 toolbox, and nbM volumes were extracted from the spatially normalized GM images using a cyto-architectonically-defined nbM mask in stereotactic standard space. NbM volumes were compared between groups, while controlling for intracranial volume. Further, within each group correlation analyses between nbM volumes and the Mini Mental Status Examination (MMSE), Hoehn and Yahr stage, PSP Rating Scale, Unified Parkinson’s Disease Rating Scale part III and Frontal Assessment Battery scores were performed. Results Significantly lower nbM volumes in patients with PSP and PD compared to HC or patients with MSA were found. No significant correlations between MMSE and nbM volumes were detected in any of the subgroups. No significant correlations were found between clinical scores and nbM volumes in PSP or other groups. Conclusion nbM volumes were reduced both in PD and PSP but not in MSA. The lack of significant correlations between nbM and cognitive measures suggests that other factors, such as frontal atrophy, may play a more important role than subcortical cholinergic atrophy in PSP patients. These results may indicate that other drug-targets are needed to improve cognitive function in PSP patients.
Collapse
Affiliation(s)
- Sophia Rogozinski
- Department of Neurology, Hanover Medical School, Hanover, Germany
- *Correspondence: Sophia Rogozinski,
| | - Martin Klietz
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Wolfgang H. Oertel
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Michel J. Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Joana B. Pereira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Günter U. Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|