1
|
de Miranda AS, Macedo DS, Sanders LLO, Monte AS, Soares MVR, Teixeira AL. Unraveling the role of the renin-angiotensin system in severe mental illnesses: An insight into psychopathology and cognitive deficits. Cell Signal 2024; 124:111429. [PMID: 39306262 DOI: 10.1016/j.cellsig.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Severe mental illnesses (SMI), especially schizophrenia and bipolar disorder (BD), are associated with significant distress to patients, reduced life expectancy and a higher cost of care. There is growing evidence that SMI may increase the risk of dementia in later life, posing an additional challenge in the management of these patients. SMI present a complex and highly heterogeneous pathophysiology, which has hampered the understanding of its underlying pathological mechanisms and limited the success of the available therapies. Despite the advances in therapeutic approaches in psychiatry over the past decades, treatment resistance is still a common problem in clinical practice, highlighting the urgent need for novel therapeutic targets for SMI. The discovery that renin-angiotensin system (RAS) components are expressed in the central nervous system opened new possibilities for investigating a potential role for this system in the neurobiology of SMI. The safety and efficacy of AT1 receptor blockers and angiotensin-converting enzyme inhibitors in cardiovascular and metabolic diseases, common medical comorbidities among SMI patients and well-known risk factors for dementia, suggest the potential scalability of these strategies for the management of SMI outcomes including the risk of subsequent dementia. This review aimed to discuss the available evidence from animal models and human studies of the potential involvement of RAS in the pathophysiology of SMI. We also provided a reflection on drawbacks and perspectives that can foster the development of new related therapeutic strategies.
Collapse
Affiliation(s)
- Aline Silva de Miranda
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Lia Lira O Sanders
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil; Centro Universitário Christus-Unichristus, Fortaleza, Brazil
| | - Aline S Monte
- Health Science Institute, University of International Integration of Afro-Brazilian Lusophony - UNILAB, Redenção, Brazil
| | - Michelle Verde Ramo Soares
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, CE, Fortaleza, Brazil
| | - Antonio Lucio Teixeira
- The Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Ruan Y, Yu Y, Wu M, Jiang Y, Qiu Y, Ruan S. The renin-angiotensin-aldosterone system: An old tree sprouts new shoots. Cell Signal 2024; 124:111426. [PMID: 39306263 DOI: 10.1016/j.cellsig.2024.111426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.
Collapse
Affiliation(s)
- Yaqing Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiqin Wu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuliang Qiu
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| | - Shiwei Ruan
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350004, China; Fujian University of Traditional Chinese Medicine, Fuzhou 350000, China.
| |
Collapse
|
3
|
Liu T, Li J, Sun L, Zhu C, Wei J. The role of ACE2 in RAS axis on microglia activation in Parkinson's disease. Neuroscience 2024; 553:128-144. [PMID: 38986737 DOI: 10.1016/j.neuroscience.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. METHOD We used male C57BL/6J (WT) mice, ACE2 knockout (KO) mice, and MPTP-induced mice. Behavioral tests confirmed successful modeling. We assessed the impact of ACE2 KO on the RAS axis and PD index, including ACE, ACE2, AT1, AT2, MasR, TH, α-syn, and Iba1. We investigated ACE2 and MasR's involvement in microglial activation via western blot and immunofluorescence. GSE10867 and GSE26532 datasets were used to analyze the effects of AT1 antagonists and in vitro PD models on microglia. RESULT Behavioral tests revealed that MPTP mice displayed motor deficits, depression, anxiety, and increased inflammatory markers in the SN and CPU, with reduced antioxidant capacity. ACE2 KO worsened these symptoms and exacerbated inflammation and oxidative stress. LPS-induced ACE2/MasR activation in BV2 cells demonstrated anti-inflammatory and neuroprotective effects by modulating microglial polarization. Antagonists inhibited microglial activation via inflammation and ROS processes. CONCLUSION The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingwen Li
- Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475000, China.
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
4
|
Wang L, Bao Y, Duan X, Li H, Ding H, Yu F, Yang J, Hu Y, Huang D. A diagnostic model for Parkinson's disease based on circadian rhythm-related genes. J Transl Med 2024; 22:635. [PMID: 38978048 PMCID: PMC11229228 DOI: 10.1186/s12967-024-05424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Circadian rhythm (CR) disturbance is intricately associated with Parkinson's disease (PD). However, the involvement of CR-related mechanisms in the pathogenesis and progression of PD remains elusive. METHODS A total of 141 PD patients and 113 healthy participants completed CR-related clinical examinations in this study. To further investigate the CR-related mechanisms in PD, we obtained datasets (GSE7621, GSE20141, GSE20292) from the Gene Expression Omnibus database to identify differentially expressed genes between PD patients and healthy controls and further selected CR-related genes (CRRGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) followed by logistic algorithms were employed to identify the hub genes and construct a diagnostic model. The predictive performance was evaluated by area under the curve (AUC), calibration curve, and decision curve analyses in the training set and external validation sets. Finally, RT‒qPCR and Western blotting were conducted to verify the expression of these hub genes in blood samples. In addition, Pearson correlation analysis was utilized to validate the association between expression of hub genes and circadian rhythm function. RESULTS Our clinical observational study revealed that even early-stage PD patients exhibited a higher likelihood of experiencing sleep disturbances, nocturnal hypertension, reverse-dipper blood pressure, and reduced heart rate variability compared to healthy controls. Furthermore, 4 CR-related hub genes (AGTR1, CALR, BRM14, and XPA) were identified and subsequently incorporated as candidate biomarkers to construct a diagnostic model. The model showed satisfactory diagnostic performance in the training set (AUC = 0.941), an external validation set GSE20295 (AUC = 0.842), and our clinical centre set (AUC = 0.805). Additionally, the up-regulation of CALR, BRM14 and the down-regulation of AGTR1, XPA were associated with circadian rhythm disruption. CONCLUSION CR disturbance seems to occur in the early stage of PD. The diagnostic model based on CR-related genes demonstrated robust diagnostic efficacy, offering novel insights for future clinical diagnosis of PD and providing a foundation for further exploration into the role of CR-related mechanisms in the progression of PD.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yiwen Bao
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hao Ding
- Department of Neurology, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongbo Hu
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- School Med, Tongji University, East Hospital, No. 150 Jimo Road, Shanghai, 200092, China.
| |
Collapse
|
5
|
Al‐Qahtani Z, Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. The potential role of brain renin-angiotensin system in the neuropathology of Parkinson disease: Friend, foe or turncoat? J Cell Mol Med 2024; 28:e18495. [PMID: 38899551 PMCID: PMC11187740 DOI: 10.1111/jcmm.18495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.
Collapse
Affiliation(s)
- Zainah Al‐Qahtani
- Neurology Section, Internal Medicine Department, College of MedicineKing khaled universityAbhaSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Clinical pharmacology and medicine, college of medicineMustansiriyah UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & Development, FunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
6
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Hamad RS, Alexiou A, Papadakis M, Saad HM, Batiha GE. Role of brain renin-angiotensin system in depression: A new perspective. CNS Neurosci Ther 2024; 30:e14525. [PMID: 37953501 PMCID: PMC11017442 DOI: 10.1111/cns.14525] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Depression is a mood disorder characterized by abnormal thoughts. The pathophysiology of depression is related to the deficiency of serotonin (5HT), which is derived from tryptophan (Trp). Mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of depression. Notably, the renin-angiotensin system (RAS) is involved in the pathogenesis of depression, and different findings revealed that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may be effective in depression. However, the underlying mechanism for the role of dysregulated brain RAS-induced depression remains speculative. Therefore, this review aimed to revise the conceivable role of ACEIs and ARBs and how these agents ameliorate the pathophysiology of depression. Dysregulation of brain RAS triggers the development and progression of depression through the reduction of brain 5HT and expression of brain-derived neurotrophic factor (BDNF) and the induction of mitochondrial dysfunction, oxidative stress, and neuroinflammation. Therefore, inhibition of central classical RAS by ARBS and ACEIs and activation of non-classical RAS prevent the development of depression by regulating 5HT, BDNF, mitochondrial dysfunction, oxidative stress, and neuroinflammation.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal MedicineMedical CollegeNajran UniversityNajranKSA
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Rabab S. Hamad
- Biological Sciences DepartmentCollege of Science, King Faisal UniversityAl AhsaSaudi Arabia
- Central LaboratoryTheodor Bilharz Research InstituteGizaEgypt
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
7
|
Al-Kuraishy HM, Al-Hamash SM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM. The classical and non-classical axes of renin-angiotensin system in Parkinson disease: The bright and dark side of the moon. Ageing Res Rev 2024; 94:102200. [PMID: 38237699 DOI: 10.1016/j.arr.2024.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Parkinson disease (PD) is a common brain neurodegenerative disease due to progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Of note, the cardio-metabolic disorders such as hypertension are adversely affect PD neuropathology through exaggeration of renin-angiotensin system (RAS). The RAS affects the stability of dopaminergic neurons in the SNpc, and exaggeration of angiotensin II (AngII) is implicated in the development and progression of PD. RAS has two axes classical including angiotensin converting enzyme (ACE)/AngII/AT1R, and the non-classical axis which include ACE2/Ang1-7/Mas receptor, AngIII, AngIV, AT2R, and AT4R. It has been shown that brain RAS is differs from that of systemic RAS that produce specific neuronal effects. As well, there is an association between brain RAS and PD. Therefore, this review aims to revise from published articles the role of brain RAS in the pathogenesis of PD focusing on the non-classical pathway, and how targeting of this axis can modulate PD neuropathology.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Sadiq M Al-Hamash
- Department of Pediatric Cardiology, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | |
Collapse
|
8
|
Turek M, Różycka-Sokołowska E, Owsianik K, Bałczewski P. New Perspectives for Antihypertensive Sartans as Components of Co-crystals and Co-amorphous Solids with Improved Properties and Multipurpose Activity. Mol Pharm 2024; 21:18-37. [PMID: 38108281 DOI: 10.1021/acs.molpharmaceut.3c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sartans (angiotensin II receptor blockers, ARBs), drugs used in the treatment of hypertension, play a principal role in addressing the global health challenge of hypertension. In the past three years, their potential use has expanded to include the possibility of their application in the treatment of COVID-19 and neurodegenerative diseases (80 clinical studies worldwide). However, their therapeutic efficacy is limited by their poor solubility and bioavailability, prompting the need for innovative approaches to improve their pharmaceutical properties. This review discusses methods of co-crystallization and co-amorphization of sartans with nonpolymeric, low molecular, and stabilizing co-formers, as a promising strategy to synthesize new multipurpose drugs with enhanced pharmaceutical properties. The solid-state forms have demonstrated the potential to address the poor solubility limitations of conventional sartan formulations and offer new opportunities to develop dual-active drugs with broader therapeutic applications. The review includes an in-depth analysis of the co-crystal and co-amorphous forms of sartans, including their properties, possible applications, and the impact of synthetic methods on their pharmacokinetic properties. By shedding light on the solid forms of sartans, this article provides valuable insights into their potential as improved drug formulations. Moreover, this review may serve as a valuable resource for designing similar solid forms of sartans and other drugs, fostering further advances in pharmaceutical research and drug development.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
9
|
Romanowska J, Bjornevik K, Cortese M, Tuominen JA, Solheim M, Abolpour Mofrad A, Igland J, Scherzer CR, Riise T. Association Between Use of Any of the Drugs Prescribed in Norway and the Subsequent Risk of Parkinson Disease: A Drug-wide Association Study. Neurology 2023; 101:e2068-e2077. [PMID: 37816645 PMCID: PMC10663041 DOI: 10.1212/wnl.0000000000207899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/17/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The incidence rate of Parkinson disease (PD) has been increasing rapidly during the past years. Yet, no treatments exist to prevent or slow the progression of the disease. Moreover, we are unable to detect early disease stages during which intervention with disease-modifying therapies is most likely to succeed. The objective of this study was to perform an agnostic drug-wide association study estimating the association between the use of any of the drugs prescribed in Norway and the subsequent risk of PD. METHODS This registry-based cohort study use data from the entire Norwegian population between 2004 and 2019 linked to the Norwegian Prescription Registry, with more than 600 million individual prescriptions. Drug classes were screened according to Anatomical Therapeutic Chemical codes at level 2, corresponding to therapeutic subgroups. We used Cox regression models to estimate hazard ratios (HRs) and 95% CIs for the associations between drug classes and PD risk. All p values were corrected for multiple testing using the false discovery rate. In addition, we conducted sensitivity analyses of exposure definition as well as time-lag and dose-response analyses. RESULTS The study population comprised 3,223,672 individuals, 15,849 of whom developed PD during the follow-up. We identified 31 drug classes that were statistically significantly associated with PD risk in Norway during the follow-up. Drugs acting on the renin-angiotensin system (HR 0.92, 95% CI 0.89-0.95), corticosteroids for systemic use (0.88, 95% CI 0.84-0.93), and vaccines (0.89, 95% CI 0.82-0.96) were associated with a decreased risk of PD even up to 10 years before PD onset. Drug classes used to treat symptoms related to prodromal signs of PD, such as constipation, urological issues, and depression, were associated with an increased risk of subsequent diagnosis of PD with HRs of 1.6 (95% CI 1.49-1.73), 1.48 (1.42-1.53), and 1.94 (1.87-2.01), respectively. DISCUSSION This drug-wide study identified 31 drug classes that were associated with the PD risk change. It reveals the links of renin-angiotensin system medications, vaccines, and corticosteroids with PD risk and suggests that monitoring drug usage using pharmacoepidemiology may allow identifying individuals with prodromal PD.
Collapse
Affiliation(s)
- Julia Romanowska
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA.
| | - Kjetil Bjornevik
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Marianna Cortese
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Julia A Tuominen
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Magne Solheim
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Asieh Abolpour Mofrad
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Jannicke Igland
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Clemens R Scherzer
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Trond Riise
- From the Department of Global Public Health and Primary Care (J.R., K.B., M.C., J.A.T., M.S., A.A.M., J.I., T.R.), University of Bergen, Norway; Department of Nutrition (K.B., M.C.), and Department of Epidemiology (K.B.), Harvard T.H. Chan School of Public Health; and Precision Neurology Program (C.R.S., T.R.), and APDA Center for Advanced Parkinson Research (C.R.S.), Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
10
|
Rivas-Santisteban R, Lillo J, Raïch I, Muñoz A, Lillo A, Rodríguez-Pérez AI, Labandeira-García JL, Navarro G, Franco R. The cannabinoid CB 1 receptor interacts with the angiotensin AT 2 receptor. Overexpression of AT 2-CB 1 receptor heteromers in the striatum of 6-hydroxydopamine hemilesioned rats. Exp Neurol 2023; 362:114319. [PMID: 36632949 DOI: 10.1016/j.expneurol.2023.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
It is of particular interest the potential of cannabinoid and angiotensin receptors as targets in the therapy of Parkinson's disease (PD). While endocannabinoids are neuromodulators that act through the CB1 and CB2 cannabinoid receptors, the renin angiotensin-system is relevant for regulation of the correct functioning of several brain circuits. Resonance energy transfer assays in a heterologous system showed that the CB1 receptor (CB1R) can directly interact with the angiotensin AT2 receptor (AT2R). Coactivation of the two receptors results in increased Gi-signaling. The AT2-CB1 receptor heteromer imprint consists of a blockade of AT2R-mediated signaling by rimonabant, a CB1R antagonist. Interestingly, the heteromer imprint, discovered in the heterologous system, was also found in primary striatal neurons thus demonstrating the expression of the heteromer in these cells. In situ proximity ligation assays confirmed the occurrence of AT2-CB1 receptor heteromers in striatal neurons. In addition, increased expression of the AT2-CB1 receptor heteromeric complexes was detected in the striatum of a rodent PD model consisting of rats hemilesioned using 6-hydroxydopamine. Expression of the heteromer was upregulated in the striatum of lesioned animals and, also, of lesioned animals that upon levodopa treatment became dyskinetic. In contrast, there was no upregulation in the striatum of lesioned rats that did not become dyskinetic upon chronic levodopa treatment. The results suggest that therapeutic developments focused on the CB1R should consider that this receptor can interact with the AT2R, which in the CNS is involved in mechanisms related to addictive behaviors and to neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Rafael Rivas-Santisteban
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Iu Raïch
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Ana Muñoz
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
| | - Ana I Rodríguez-Pérez
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José L Labandeira-García
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Department of Morphological Sciences, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Neurosciences Institute, University of Barcelona (NeuroUB), Facultad de Psicología Campus de Mundet Paseo de la Vall d'Hebron, 171 08035 Barcelona, Spain.
| | - Rafael Franco
- CiberNed. Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain; Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain; School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Exploring the Role of ACE2 as a Connecting Link between COVID-19 and Parkinson's Disease. Life (Basel) 2023; 13:life13020536. [PMID: 36836893 PMCID: PMC9961012 DOI: 10.3390/life13020536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is frequently accompanied by neurological manifestations such as headache, delirium, and epileptic seizures, whereas ageusia and anosmia may appear before respiratory symptoms. Among the various neurological COVID-19-related comorbidities, Parkinson's disease (PD) has gained increasing attention. Some cases of PD disease have been linked to COVID-19, and both motor and non-motor symptoms in Parkinson's disease patients frequently worsen following SARS-CoV-2 infection. Although it is still unclear whether PD increases the susceptibility to SARS-CoV-2 infection or whether COVID-19 increases the risk of or unmasks future cases of PD, emerging evidence sheds more light on the molecular mechanisms underlying the relationship between these two diseases. Among them, angiotensin-converting enzyme 2 (ACE2), a significant component of the renin-angiotensin system (RAS), seems to play a pivotal role. ACE2 is required for the entry of SARS-CoV-2 to the human host cells, and ACE2 dysregulation is implicated in the severity of COVID-19-related acute respiratory distress syndrome (ARDS). ACE2 imbalance is implicated in core shared pathophysiological mechanisms between PD and COVID-19, including aberrant inflammatory responses, oxidative stress, mitochondrial dysfunction, and immune dysregulation. ACE2 may also be implicated in alpha-synuclein-induced dopaminergic degeneration, gut-brain axis dysregulation, blood-brain axis disruption, autonomic dysfunction, depression, anxiety, and hyposmia, which are key features of PD.
Collapse
|