1
|
Leon-Chaviano S, Kiseleva M, Legros P, Collin S, Lescot T, Henoumont C, Gossuin Y, Laurent S, Mayrand D, Fradette J, Bégin-Drolet A, Ruel J, Fortin MA. A Nanoparticle Ink Allowing the High Precision Visualization of Tissue Engineered Scaffolds by MRI. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206644. [PMID: 36965146 DOI: 10.1002/smll.202206644] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.
Collapse
Affiliation(s)
- Samila Leon-Chaviano
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Mariia Kiseleva
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Philippe Legros
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Simon Collin
- Département de Génie Mécanique, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Théophraste Lescot
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Céline Henoumont
- Département de Chimie Générale, Organique et Biomédicale, Université de Mons, Mons, 7000, Belgium
| | - Yves Gossuin
- Service de Physique Biomédicale, Université de Mons, Mons, 7000, Belgium
| | - Sophie Laurent
- Département de Chimie Générale, Organique et Biomédicale, Université de Mons, Mons, 7000, Belgium
| | - Dominique Mayrand
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Julie Fradette
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec City, Québec, G1V 0A6, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, 1401, 18e rue, Quebec City, Québec, G1J 1Z4, Canada
| | - André Bégin-Drolet
- Département de Génie Mécanique, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Jean Ruel
- Département de Génie Mécanique, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| | - Marc-André Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval (CR CHUQ), Axe Médecine Régénératrice, Quebec City, Québec, G1L 3L5, Canada
- Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval, Quebec City, Québec, G1V 0A6, Canada
| |
Collapse
|
2
|
Tu H, Xiao E, Liu O. Taking Microbiota into Consideration in Mesenchymal Stem Cell Research. J Dent Res 2022; 101:880-886. [PMID: 35196924 DOI: 10.1177/00220345221077986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy in regenerative medicine, but the clinical efficacy has yet to be identified, because the functions of MSCs are modulated by many factors, including the age and health condition of donors, origin of the tissue, and several other unknown factors. Recently, it has been revealed that, besides host factors, the microbiota that inhabits the human body is a modulator of MSCs as well. Here, we highlight the role of microbiota in the alteration of MSCs functions, with a specific focus on the self-renewal ability, multiple differentiation potential, and the immunomodulation capacity of MSCs. We also review the clinical trials and model research on the synergic and antagonistic effects of microbiota in stem cell therapy. In addition, we discuss the underlying mechanisms of the interplay between microbiota and MSCs, which are elucidated using omics approaches followed by verification experiments. As oral and maxillofacial tissues are important sources of MSCs, as well as a major access to diverse microbes, further studies are needed to elucidate these interactions in the oral field to make greater advancements in regenerative medicine.
Collapse
Affiliation(s)
- H Tu
- Hunan Key Laboratory of Oral Health Research and Human 3D Printing Engineering Research Central of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha City, Hunan Province, P.R. China
| | - E Xiao
- Beijing Maybio Pharmaceutical Biotechnology Development Co., Ltd., Changsha City, Hunan Province, P.R. China
| | - O Liu
- Hunan Key Laboratory of Oral Health Research and Human 3D Printing Engineering Research Central of Oral Care and Hunan Clinical Research Center of Oral Major Diseases and Oral Health and Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University, Changsha City, Hunan Province, P.R. China
| |
Collapse
|
3
|
Al-Ghadban S, Artiles M, Bunnell BA. Adipose Stem Cells in Regenerative Medicine: Looking Forward. Front Bioeng Biotechnol 2022; 9:837464. [PMID: 35096804 PMCID: PMC8792599 DOI: 10.3389/fbioe.2021.837464] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, stem cell-based regenerative medicine has progressed to clinical testing and therapeutic applications. The applications range from infusions of autologous and allogeneic stem cells to stem cell-derived products. Adult stem cells from adipose tissue (ASCs) show significant promise in treating autoimmune and neurodegenerative diseases, vascular and metabolic diseases, bone and cartilage regeneration and wound defects. The regenerative capabilities of ASCs in vivo are primarily orchestrated by their secretome of paracrine factors and cell-matrix interactions. More recent developments are focused on creating more complex structures such as 3D organoids, tissue elements and eventually fully functional tissues and organs to replace or repair diseased or damaged tissues. The current and future applications for ASCs in regenerative medicine are discussed here.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Department of Microbiology Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
4
|
Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, Lv Q. In situ Adipogenesis in Biomaterials Without Cell Seeds: Current Status and Perspectives. Front Cell Dev Biol 2021; 9:647149. [PMID: 33763426 PMCID: PMC7982583 DOI: 10.3389/fcell.2021.647149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
For cosmetic and reconstructive purposes in the setting of small-volume adipose tissue damage due to aging, traumatic defects, oncological resections, and degenerative diseases, the current strategies for soft tissue replacement involve autologous fat grafts and tissue fillers with synthetic, bioactive, or tissue-engineered materials. However, they all have drawbacks such as volume shrinkage and foreign-body responses. Aiming to regenerate bioactive vascularized adipose tissue on biomaterial scaffolds, adipose tissue engineering (ATE) has emerged as a suitable substitute for soft tissue repair. The essential components of ATE include scaffolds as support, cells as raw materials for fat formation, and a tolerant local environment to allow regeneration to occur. The commonly loaded seeding cells are adipose-derived stem cells (ASCs), which are expected to induce stable and predictable adipose tissue formation. However, defects in stem cell enrichment, such as donor-site sacrifice, limit their wide application. As a promising alternative approach, cell-free bioactive scaffolds recruit endogenous cells for adipogenesis. In biomaterials without cell seeds, the key to sufficient adipogenesis relies on the recruitment of endogenous host cells and continuous induction of cell homing to scaffolds. Regeneration, rather than repair, is the fundamental dominance of an optimal mature product. To induce in situ adipogenesis, many researchers have focused on the mechanical and biochemical properties of scaffolds. In addition, efforts to regulate an angiogenic and adipogenic microenvironment in cell-free settings involve integrating growth factors or extracellular matrix (ECM) proteins onto bioactive scaffolds. Despite the theoretical feasibility and encouraging results in animal models, few of the reported cell-free biomaterials have been tested in humans, and failures of decellularized adipose tissues in adipogenesis have also been reported. In these cases, the most likely reason was the lack of supporting vasculature. This review summarizes the current status of biomaterials without cell seeds. Related mechanisms and influencing factors of in situ adipogenesis in cell-free biomaterials, dilemma in the development of biomaterials, and future perspectives are also addressed.
Collapse
Affiliation(s)
- Jiqiao Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Fu
- West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Qianru Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao He
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuwen Tan
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Santos J, Dolai S, O’Rourke MB, Liu F, Padula MP, Molloy MP, Milthorpe BK. Quantitative Proteomic Profiling of Small Molecule Treated Mesenchymal Stem Cells Using Chemical Probes. Int J Mol Sci 2020; 22:ijms22010160. [PMID: 33375241 PMCID: PMC7795898 DOI: 10.3390/ijms22010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/04/2022] Open
Abstract
The differentiation of human adipose derived stem cells toward a neural phenotype by small molecules has been a vogue topic in the last decade. The characterization of the produced cells has been explored on a broad scale, examining morphological and specific surface protein markers; however, the lack of insight into the expression of functional proteins and their interactive partners is required to further understand the extent of the process. The phenotypic characterization by proteomic profiling allows for a substantial in-depth analysis of the molecular machinery induced and directing the cellular changes through the process. Herein we describe the temporal analysis and quantitative profiling of neural differentiating human adipose-derived stem cells after sub-proteome enrichment using a bisindolylmaleimide chemical probe. The results show that proteins enriched by the Bis-probe were identified reproducibly with 133, 118, 126 and 89 proteins identified at timepoints 0, 1, 6 and 12, respectively. Each temporal timepoint presented several shared and unique proteins relative to neural differentiation and their interactivity. The major protein classes enriched and quantified were enzymes, structural and ribosomal proteins that are integral to differentiation pathways. There were 42 uniquely identified enzymes identified in the cells, many acting as hubs in the networks with several interactions across the network modulating key biological pathways. From the cohort, it was found by gene ontology analysis that 18 enzymes had direct involvement with neurogenic differentiation.
Collapse
Affiliation(s)
- Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- Correspondence:
| | - Sibasish Dolai
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (S.D.); (F.L.); (M.P.M.)
| | - Matthew B. O’Rourke
- Northern Clinical School, Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, The University of Sydney, Lvl 8, Kolling Instiute, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - Fei Liu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (S.D.); (F.L.); (M.P.M.)
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- Proteomics Core Facility, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Mark P. Molloy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; (S.D.); (F.L.); (M.P.M.)
- Northern Clinical School, Bowel Cancer & Biomarker Lab, Faculty of Medicine and Health, The University of Sydney, Lvl 8, Kolling Instiute, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - Bruce K. Milthorpe
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia;
| |
Collapse
|
6
|
Takata Y, Nakase J, Shimozaki K, Asai K, Tsuchiya H. Autologous Adipose-Derived Stem Cell Sheet Has Meniscus Regeneration-Promoting Effects in a Rabbit Model. Arthroscopy 2020; 36:2698-2707. [PMID: 32554078 DOI: 10.1016/j.arthro.2020.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 02/02/2023]
Abstract
PURPOSE This study investigated meniscal regeneration-promoting effects of adipose-derived stem cell (ADSC) sheets in a rabbit meniscal defect models. METHODS ADSCs were extracted from the interscapular fat pad adipose tissue of 42 mature female Japanese white rabbits. Once cells reached confluence at the third passage, the culture medium was supplemented with ascorbic acid. Within a week, the cells in culture formed removable sheets, which were used as ADSC sheets. Cell death (CD) sheets were created by killing ADSCs by freezing to investigate the need for viable ADSCs in ADSC sheets. The anterior half of the medial meniscus from the anterior root to the posterior edge of the medial collateral ligament was removed from both limbs. An autologous ADSC or CD sheet was transplanted to one knee (ADSC sheet or CD sheet group). The contralateral limb was closed without transplantation following meniscal removal (control group). Rabbits were euthanized 4 and 12 weeks after transplantation to harvest the entire medial menisci. The meniscal tissue area, transverse diameter on the inside of the medial collateral ligament, and histologic score were compared between the 3 groups. RESULTS The area and transverse diameter of regenerated tissues were larger in the ADSC sheet group than in the control group at 4 and 12 weeks. Further, the histologic score in the ADSC sheet group (8) was significantly greater than that in the control group (4.5) at 4 weeks (P = .02) and greater than that in the CD sheet group (9) (ADSC = 12.5, P = .009) and control group (6) (ADSC = 12.5, P = .0003) at 12 weeks. CONCLUSIONS Transplantation of the ADSC sheet into the meniscal defect increased the volume and improved the histologic score of the regenerated meniscal tissue. ADSC sheets may have meniscal regeneration-promoting effects in a rabbit model with meniscal defects. CLINICAL RELEVANCE ADSC sheets do not require a scaffold for implantation in the rabbit model, and this evidence suggests that some tissue regeneration occurs at the site of a surgically created meniscal defect.
Collapse
Affiliation(s)
- Yasushi Takata
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Junsuke Nakase
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan.
| | - Kengo Shimozaki
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Kazuki Asai
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, Bolduc S. Innovative Human Three-Dimensional Tissue-Engineered Models as an Alternative to Animal Testing. Bioengineering (Basel) 2020; 7:E115. [PMID: 32957528 PMCID: PMC7552665 DOI: 10.3390/bioengineering7030115] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Animal testing has long been used in science to study complex biological phenomena that cannot be investigated using two-dimensional cell cultures in plastic dishes. With time, it appeared that more differences could exist between animal models and even more when translated to human patients. Innovative models became essential to develop more accurate knowledge. Tissue engineering provides some of those models, but it mostly relies on the use of prefabricated scaffolds on which cells are seeded. The self-assembly protocol has recently produced organ-specific human-derived three-dimensional models without the need for exogenous material. This strategy will help to achieve the 3R principles.
Collapse
Affiliation(s)
- Patrick Bédard
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Sara Gauvin
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Karel Ferland
- Faculté de Médecine, Sciences Biomédicales, Université Laval, Québec, QC G1V 0A6, Canada; (P.B.); (S.G.); (K.F.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada; (C.C.); (È.P.); (S.C.)
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
9
|
Kunze KN, Burnett RA, Wright-Chisem J, Frank RM, Chahla J. Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations. Curr Rev Musculoskelet Med 2020; 13:264-280. [PMID: 32328959 DOI: 10.1007/s12178-020-09624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The use of human adipose-derived mesenchymal stem cells (ADSCs) has gained attention due to its potential to expedite healing and the ease of harvesting; however, clinical evidence is limited, and questions concerning optimal method of delivery and long-term outcomes remain unanswered. RECENT FINDINGS Administration of ADSCs in animal models has been reported to aid in improved healing benefits with enhanced repair biomechanics, superior gross histological appearance of injury sites, and higher concentrations of growth factors associated with healing compared to controls. Recently, an increasing body of research has sought to examine the effects of ADSCs in humans. Several available processing techniques and formulations for ADSCs exist with evidence to suggest benefits with the use of ADSCs, but the superiority of any one method is not clear. Evidence from the most recent clinical studies available demonstrates promising outcomes following treatment of select musculoskeletal pathologies with ADSCs despite reporting variability among ADSCs harvesting and processing; these include (1) healing benefits and pain improvement for rotator cuff and Achilles tendinopathies, (2) improvements in pain and function in those with knee and hip osteoarthritis, and (3) improved cartilage regeneration for osteochondral focal defects of the knee and talus. The limitation to most of this literature is the use of other therapeutic biologics in combination with ADSCs. Additionally, many studies lack control groups, making establishment of causation inappropriate. It is imperative to perform higher-quality studies using consistent, predictable control populations and to standardize formulations of ADSCs in these trials.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Burnett
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Joshua Wright-Chisem
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rachel M Frank
- Department of Orthopaedic Surgery, Division of Sports Medicine, University of Colorado School of Medicine, Boulder, CO, USA
| | - Jorge Chahla
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
10
|
Ouellette MÈ, Bérubé JC, Bourget JM, Vallée M, Bossé Y, Fradette J. Linoleic acid supplementation of cell culture media influences the phospholipid and lipid profiles of human reconstructed adipose tissue. PLoS One 2019; 14:e0224228. [PMID: 31639818 PMCID: PMC6805161 DOI: 10.1371/journal.pone.0224228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
Reconstructed human adipose tissues represent novel tools available to perform in vitro pharmaco-toxicological studies. We used adipose-derived human stromal/stem cells to reconstruct, using tissue engineering techniques, such an adipose tridimensional model. To determine to what extent the in vitro model is representative of its native counterpart, adipogenic differentiation, triglycerides accumulation and phospholipids profiles were analysed. Ingenuity Pathway Analysis software revealed pathways enriched with differentially-expressed genes between native and reconstructed human adipose tissues. Interestingly, genes related to fatty acid metabolism were downregulated in vitro, which could be explained in part by the insufficient amount of essential fatty acids provided by the fetal calf serum used for the culture. Indeed, the lipid profile of the reconstructed human adipose tissues indicated a particular lack of linoleic acid, which could interfere with physiological cell processes such as membrane trafficking, signaling and inflammatory responses. Supplementation in the culture medium was able to influence the lipid profile of the reconstructed human adipose tissues. This study demonstrates the possibility to directly modulate the phospholipid profile of reconstructed human adipose tissues. This reinforces its use as a relevant physiological or pathological model for further pharmacological and metabolic studies of human adipose tissue functions.
Collapse
Affiliation(s)
- Marie-Ève Ouellette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Jean-Christophe Bérubé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Jean-Michel Bourget
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Maud Vallée
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Yohan Bossé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Julie Fradette
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX, Division of Regenerative Medicine, CHU de Québec -Université Laval Research Center, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
11
|
Pullulan/Poly(Vinyl Alcohol) Composite Hydrogels for Adipose Tissue Engineering. MATERIALS 2019; 12:ma12193220. [PMID: 31581444 PMCID: PMC6804089 DOI: 10.3390/ma12193220] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 01/10/2023]
Abstract
Composite hydrogels based on pullulan (HP) and poly(vinyl alcohol) (PVA) were both prepared by simple chemical crosslinking with sodium trimethaphosphate (STMP) or by dual crosslinking (simultaneously chemical crosslinking with STMP and physical crosslinking by freeze-thaw technique). The resulting hydrogels and cryogels were designed for tissue engineering applications. PVA, with two different molecular weights (47,000 and 125,000 g/mol; PVA47 and PVA125, respectively), as well as different P/PVA weight ratios were tested. The physico-chemical characterization of the hydrogels was performed by FTIR spectroscopy and scanning electron microscopy (SEM). The swelling kinetics, dissolution behavior, and degradation profiles in simulated physiological conditions (phosphate buffer at pH 7.4) were investigated. Pullulan concentration and the crosslinking method had significant effects on the pore size, swelling ratio, and degradation profiles. Cryogels exhibit lower swelling capacities than the conventional hydrogels but have better stability against hydrolitic degradation. Biocompatibility of the hydrogels was also investigated by both MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactaten dehydrogenase) assay. The MTT and LDH assays proved that dual crosslinked HP/PVA125 (75:25, w/w) scaffolds are more biocompatible and promote to a greater extent the adhesion and proliferation of L929 murine fibroblast cells than chemically crosslinked HP/PVA47 (50/50, w/w) scaffolds. Moreover, the HP/PVA125 cryogel had the best ability for the adipogenic differentiation of cells. The overall results demonstrated that the HP/PVA composite hydrogels or cryogels are suitable biomaterials for tissue engineering applications.
Collapse
|
12
|
Janani G, Kumar M, Chouhan D, Moses JC, Gangrade A, Bhattacharjee S, Mandal BB. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 2:5460-5491. [DOI: 10.1021/acsabm.9b00576] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Seo Y, Shin TH, Kim HS. Current Strategies to Enhance Adipose Stem Cell Function: An Update. Int J Mol Sci 2019; 20:E3827. [PMID: 31387282 PMCID: PMC6696067 DOI: 10.3390/ijms20153827] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) emerged as a promising therapeutic tool targeting a variety of inflammatory disorders due to their multiple remarkable properties, such as superior immunomodulatory function and tissue-regenerative capacity. Although bone marrow (BM) is a dominant source for adult MSCs, increasing evidence suggests that adipose tissue-derived stem cells (ASCs), which can be easily obtained at a relatively high yield, have potent therapeutic advantages comparable with BM-MSCs. Despite its outstanding benefits in pre-clinical settings, the practical efficacy of ASCs remains controversial since clinical trials with ASC application often resulted in unsatisfactory outcomes. To overcome this challenge, scientists established several strategies to generate highly functional ASCs beyond the naïve cells, including (1) pre-conditioning of ASCs with various stimulants such as inflammatory agents, (2) genetic manipulation of ASCs and (3) modification of culture conditions with three-dimensional (3D) aggregate formation and hypoxic culture. Also, exosomes and other extracellular vesicles secreted from ASCs can be applied directly to recapitulate the beneficial performance of ASCs. This review summarizes the current strategies to improve the therapeutic features of ASCs for successful clinical implementation.
Collapse
Affiliation(s)
- Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyung-Sik Kim
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea.
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
14
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
15
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019. [PMID: 31121953 DOI: 10.3390/ijms20102523.pmid:31121953;pmcid:pmc6566837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
16
|
Yang Z, Li R, Ao J, Wa QD, Zhang Y, Chen L, Wen J, Chen B, Pan W, Li B, Tian XB. miR-1307-3p suppresses the chondrogenic differentiation of human adipose-derived stem cells by targeting BMPR2. Int J Mol Med 2018; 42:3115-3124. [PMID: 30272255 PMCID: PMC6202098 DOI: 10.3892/ijmm.2018.3891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRs) are involved in several physiological processes, including chondrogenic differentiation, however, their expression and roles in the chondrogenic differentiation of human adipose-derived stem cells (hADSCs) remain to be fully elucidated to date. Our previous study showed that miR-1307-3p was significantly downregulated during chondrogenic differentiation by microarray and northern blot analysis. The present study aimed to investigate the effects of miR-1307-3p on chondrogenic differentiation and the underlying mechanisms. First, the decreased expression of miR-1307-3p was confirmed by reverse transcription-quantitative polymerase chain reaction analysis. Subsequently, gain- and loss-of-function of miR-1307-3p experiments showed that the overexpression of miR-1307-3p suppressed the deposition of cartilage matrix proteoglycans and decreased the expression of cartilage-related markers, including sex determining region Y-box 9, collagen type II α1 chain and aggrecan, whereas the knockdown of miR-1307-3p had the opposite effect. In addition, bone morphogenetic protein receptor type 2 (BMPR2) was identified as a target of miR-1307-3p. Further mechanistic investigations showed that miR-1307-3p attenuated the chondrogenic differentiation of hADSCs at least partly by inhibiting BMPR2-mothers against decapentaplegic signaling pathways. In conclusion, the findings revealed that miR-1307-3p inhibited the chondrogenic differentiation of hADSCs by targeting BMPR2 and its down-stream signaling pathway, which may provide novel therapeutic clues for the treatment of cartilage injury.
Collapse
Affiliation(s)
- Zhen Yang
- Medical College of Guizhou University, Guiyang, Guizhou 550025, P.R. China
| | - Rui Li
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Jun Ao
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Qing-De Wa
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, P.R. China
| | - Yi Zhang
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Long Chen
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Jing Wen
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Biao Chen
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Wei Pan
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Bo Li
- Guizhou Provincial People's Hospital (People's Hospital of Guizhou University), Guiyang, Guizhou 550002, P.R. China
| | - Xiao-Bin Tian
- Medical College of Guizhou University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
17
|
Groell F, Jordan O, Borchard G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm 2018; 130:128-142. [DOI: 10.1016/j.ejpb.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
|
18
|
Jurado M, De La Mata C, Ruiz-García A, López-Fernández E, Espinosa O, Remigia MJ, Moratalla L, Goterris R, García-Martín P, Ruiz-Cabello F, Garzón S, Pascual MJ, Espigado I, Solano C. Adipose tissue-derived mesenchymal stromal cells as part of therapy for chronic graft-versus-host disease: A phase I/II study. Cytotherapy 2017; 19:927-936. [PMID: 28662983 DOI: 10.1016/j.jcyt.2017.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Despite the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), the procedure is still associated with high toxicity in patients with refractory graft-versus-host disease (GvHD). Mesenchymal stromal cells (MSCs) are a new mode of therapy in the context of allo-HSCT. The objective of this study was to evaluate the safety and feasibility of the use of adipose tissue-derived MSCs (AT-MSCs) in patients with chronic GvHD. METHODS Fourteen patients with moderate (n = 7) or severe (n = 7) chronic GvHD received 1 × 106/kg (group A, n = 9) or 3 × 106/kg (group B, n = 5) AT-MSCs with cyclosporine and prednisone as first-line therapy. RESULTS Ten of the 14 patients were able to continue under the protocol: 80% were in complete remission, and 100% were off of steroids at week 56. The remaining 4 patients either worsened from chronic GvHD (n = 3) or abandoned the study (n = 1). At the end of the study, 11 of 14 patients are alive (overall survival 71.4%, median survival of 45.3 weeks). No suspected unexpected serious adverse reactions occurred during the trial. Neither relapse of underlying disease nor mortality due to infection was observed in this cohort. Biological studies showed increased CD19, CD4 and tumor necrosis factor-α with a temporary decrease in natural killer cells. DISCUSSION AT-MSCs, in combination with immunosuppressive therapy, may be considered feasible and safe and likely would have an impact on the course of chronic GvHD. More studies are warranted to understand the potential benefits of AT-MSCs in these patients.
Collapse
Affiliation(s)
- Manuel Jurado
- Department of Hematology, Complejo Hospitalario Universitario, Granada, Spain; Genyo Pfizer, Universidad de Granada, Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain.
| | - Claudia De La Mata
- Department of Hematology, Complejo Hospitalario Universitario, Granada, Spain
| | - Antonio Ruiz-García
- Cellular manufacturing Unit, Instituto de Investigación Biosanitaria (IBS), Complejo Hospitalario Universitario, Granada, Spain
| | | | - Olga Espinosa
- Cellular manufacturing Unit, Instituto de Investigación Biosanitaria (IBS), Complejo Hospitalario Universitario, Granada, Spain
| | | | - Lucía Moratalla
- Department of Hematology, Complejo Hospitalario Universitario, Granada, Spain
| | - Rosa Goterris
- Department of Hematology, Hospital Clínico, Valencia, Spain
| | | | | | | | | | | | - Carlos Solano
- Department of Hematology, Hospital Clínico, Valencia, Spain; School of Medicine, University of Valencia, Spain
| |
Collapse
|
19
|
Brett E, Chung N, Leavitt WT, Momeni A, Longaker MT, Wan DC. A Review of Cell-Based Strategies for Soft Tissue Reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:336-346. [PMID: 28372485 DOI: 10.1089/ten.teb.2016.0455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue reconstruction to restore volume to damaged or deficient tissue beneath the skin remains a challenging endeavor. Current techniques are centered around autologous fat transfer, or the use of synthetic substitutes, however, a great deal of scientific inquiry has been made into both the molecular mechanisms involved in, and limitations of, de novo adipogenesis, that is, the formation of new adipose tissue from precursor cells. To best comprehend these mechanisms, an understanding of defined markers for adipogenic differentiation, and knowledge of both commercially available and primary cell lines that enable in vitro and in vivo studies is necessary. We review the growth factors, proteins, cytokines, drugs, and molecular pathways that have shown promise in enhancing adipogenesis and vasculogenesis, in addition to the multitude of scaffolds that act as delivery vehicles to support these processes. While progress continues on these fronts, equally important is how researchers are optimizing clinically employed strategies such as autologous fat transfer through cell-based intervention, and the potential to augment this approach through isolation of preferentially adipogenic or angiogenic precursor subpopulations, which exists on the horizon. This review will highlight the novel molecular and synthetic modifications currently being studied for inducing adipose tissue regeneration on a cellular level, which will expand our arsenal of techniques for approaching soft tissue reconstruction.
Collapse
Affiliation(s)
- Elizabeth Brett
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Natalie Chung
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - William Tripp Leavitt
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Arash Momeni
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
20
|
Cadmium Telluride Quantum Dots as a Fluorescence Marker for Adipose Tissue Grafts. Ann Plast Surg 2017; 78:217-222. [DOI: 10.1097/sap.0000000000000930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Galbraith T, Clafshenkel WP, Kawecki F, Blanckaert C, Labbé B, Fortin M, Auger FA, Fradette J. A Cell-Based Self-Assembly Approach for the Production of Human Osseous Tissues from Adipose-Derived Stromal/Stem Cells. Adv Healthc Mater 2017; 6. [PMID: 28004524 DOI: 10.1002/adhm.201600889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/14/2016] [Indexed: 01/22/2023]
Abstract
Achieving optimal bone defect repair is a clinical challenge driving intensive research in the field of bone tissue engineering. Many strategies focus on seeding graft materials with progenitor cells prior to in vivo implantation. Given the benefits of closely mimicking tissue structure and function with natural materials, the authors hypothesize that under specific culture conditions, human adipose-derived stem/stromal cells (hASCs) can solely be used to engineer human reconstructed osseous tissues (hROTs) by undergoing osteoblastic differentiation with concomitant extracellular matrix production and mineralization. Therefore, the authors are developing a self-assembly methodology allowing the production of such osseous tissues. Three-dimensional (3D) tissues reconstructed from osteogenically-induced cell sheets contain abundant collagen type I and are 2.7-fold less contractile compared to non-osteogenically induced tissues. In particular, hROT differentiation and mineralization is reflected by a greater amount of homogenously distributed alkaline phosphatase, as well as higher calcium-containing hydroxyapatite (P < 0.0001) and osteocalcin (P < 0.0001) levels compared to non-induced tissues. Taken together, these findings show that hASC-driven tissue engineering leads to hROTs that demonstrate structural and functional characteristics similar to native osseous tissue. These highly biomimetic human osseous tissues will advantageously serve as a platform for molecular studies as well as for future therapeutic in vivo translation.
Collapse
Affiliation(s)
- Todd Galbraith
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - William P Clafshenkel
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Fabien Kawecki
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Camille Blanckaert
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Benoit Labbé
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
| | - Michel Fortin
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University Laval, Québec, QC G1V 0A6, Canada
| | - François A Auger
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, University Laval, Québec, QC G1V 0A6, Canada
| | - Julie Fradette
- Centre de recherche en organogenèse expérimentale de l'Université Laval/LOEX Division of Regenerative Medicine, CHU de Québec Research Center-Université Laval, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, University Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
22
|
Aubin K, Safoine M, Proulx M, Audet-Casgrain MA, Côté JF, Têtu FA, Roy A, Fradette J. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α. PLoS One 2015; 10:e0137612. [PMID: 26367137 PMCID: PMC4569087 DOI: 10.1371/journal.pone.0137612] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/20/2015] [Indexed: 01/04/2023] Open
Abstract
Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells, extracellular matrix and differentiated adipocytes, in addition to compounds modulating adipogenesis from precursor cells.
Collapse
Affiliation(s)
- Kim Aubin
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
| | - Meryem Safoine
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
| | - Maryse Proulx
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
| | | | - Jean-François Côté
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
| | - Félix-André Têtu
- Clinique de chirurgie esthétique Félix-André Têtu and CHU de Québec, Québec, Canada
| | - Alphonse Roy
- Clinique de chirurgie plastique Alphonse Roy and CHU de Québec, Québec, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l’Université Laval / LOEX, Québec, Canada
- Division of Regenerative Medicine, CHU de Québec Research Centre, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
23
|
Analysis of the Pro- and Anti-Inflammatory Cytokines Secreted by Adult Stem Cells during Differentiation. Stem Cells Int 2015; 2015:412467. [PMID: 26300921 PMCID: PMC4537750 DOI: 10.1155/2015/412467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/06/2023] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) are adult stem cells that have the potential to differentiate into mesenchymal lineage cells. The abundance of ASCs in adipose tissue and easy accessibility with relatively little donor site morbidity make them attractive candidate cells for tissue engineering and regenerative medicine. However, the underlying inflammatory process that occurs during ASC differentiation into adipocytes and osteoblast has not been extensively investigated. ASCs cultured in osteogenic and adipogenic differentiation medium were characterized by oil red o staining and alizarin red staining, respectively. ASCs undergoing osteogenic and adipogenic differentiation were isolated on days 7, 14, and 21 and assessed by qRT-PCR for the expression of pro- and anti-inflammatory cytokines. ASCs undergoing osteogenic differentiation expressed a distinct panel of cytokines that differed from the cytokine profile of ASCs undergoing adipogenic differentiation at each of the time points analyzed. Mapping the cytokine expression profile during ASC differentiation will provide insight into the role of inflammation in this process and identify potential targets that may aid in enhancing osteogenic or adipogenic differentiation for the purposes of tissue engineering and regenerative medicine.
Collapse
|
24
|
Custódio C, Cerqueira M, Marques A, Reis R, Mano J. Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials 2015; 43:23-31. [DOI: 10.1016/j.biomaterials.2014.11.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022]
|
25
|
Proulx M, Aubin K, Lagueux J, Audet P, Auger M, Fortin MA, Fradette J. Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes. Tissue Eng Part C Methods 2015; 21:693-704. [PMID: 25549069 DOI: 10.1089/ten.tec.2014.0409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance ((1)H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200 ± 53 ms) in reconstructed AT substitutes (total T1=813 ± 76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ~300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study describes the in vivo grafting of human adipose substitutes devoid of exogenous matrix components, and for the first time, the optimal parameters necessary to achieve efficient MRI visualization of grafted tissue-engineered adipose substitutes.
Collapse
Affiliation(s)
- Maryse Proulx
- 1 Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada .,2 Département de Chirurgie, Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX , Québec, Canada
| | - Kim Aubin
- 1 Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada .,2 Département de Chirurgie, Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX , Québec, Canada
| | - Jean Lagueux
- 1 Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada
| | - Pierre Audet
- 3 Département de Chimie, Université Laval , Québec, Canada
| | - Michèle Auger
- 3 Département de Chimie, Université Laval , Québec, Canada .,4 Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval , Québec, Canada .,5 Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Université Laval , Québec, Canada
| | - Marc-André Fortin
- 1 Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada .,4 Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval , Québec, Canada .,6 Département de Génie des Mines, de la Métallurgie et des Matériaux, Université Laval , Québec, Canada
| | - Julie Fradette
- 1 Division of Regenerative Medicine, CHU de Québec Research Centre , Québec, Canada .,2 Département de Chirurgie, Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX , Québec, Canada
| |
Collapse
|
26
|
Aubin K, Vincent C, Proulx M, Mayrand D, Fradette J. Creating capillary networks within human engineered tissues: impact of adipocytes and their secretory products. Acta Biomater 2015; 11:333-45. [PMID: 25278444 DOI: 10.1016/j.actbio.2014.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/03/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
The development of tissue-engineered substitutes of substantial volume is closely associated with the need to ensure rapid vascularization upon grafting. Strategies promoting angiogenesis include the in vitro formation of capillary-like networks within engineered substitutes. We generated both connective and adipose tissues based on a cell sheet technology using human adipose-derived stromal cells. This study evaluates the morphology and extent of the capillary networks that developed upon seeding of human microvascular endothelial cells during tissue production. We posited that adipocyte presence/secretory products could modulate the resulting capillary network when compared to connective substitutes. Analyses including confocal imaging of CD31-labeled capillary-like networks indicated slight differences in their morphological appearance. However, the total volume occupied by the networks as well as the frequency distribution of the structure's volumes were similar between connective and adipose tissues. The average diameter of the capillary structures tended to be 20% higher in reconstructed adipose tissues. Quantification of pro-angiogenic molecules in conditioned media showed greater amounts of leptin (15×), angiopoietin-1 (3.4×) and HGF (1.7×) secreted from adipose than connective tissues at the time of endothelial cell seeding. However, this difference was attenuated during the following coculture period in endothelial cell-containing media, correlating with the minor differences noted between the networks. Taken together, we developed a protocol allowing reconstruction of both connective and adipose tissues featuring well-developed capillary networks in vitro. We performed a detailed characterization of the network architecture within engineered tissues that is relevant for graft assessment before implantation as well as for in vitro screening of angiogenic modulators using three-dimensional models.
Collapse
|
27
|
Isolation, characterization, differentiation, and application of adipose-derived stem cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 123:55-105. [PMID: 20091288 DOI: 10.1007/10_2009_24] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.Isolation of stromal cell fractions involves centrifugation, digestion, and filtration, resulting in an adherent cell population containing mesenchymal stem cells; these can be subdivided by cell sorting and cultured under common conditions.They seem to have comparable properties to bone marrow-derived mesenchymal stem cells in their differentiation abilities as well as a favorable angiogenic and anti-inflammatory cytokine secretion profile and therefore have become widely used in tissue engineering and clinical regenerative medicine.
Collapse
|
28
|
Tanzi MC, Farè S. Adipose tissue engineering: state of the art, recent advances and innovative approaches. Expert Rev Med Devices 2014; 6:533-51. [DOI: 10.1586/erd.09.37] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Kim B, Choi KM, Yim HS, Lee MG. Ascorbic acid enhances adipogenesis of 3T3-L1 murine preadipocyte through differential expression of collagens. Lipids Health Dis 2013; 12:182. [PMID: 24325571 PMCID: PMC3874642 DOI: 10.1186/1476-511x-12-182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/28/2013] [Indexed: 01/06/2023] Open
Abstract
Background Adipogenesis from preadipocytes into mature adipocyte is precisely coordinated by transcription factors such as CCAAT-enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor γ (PPARγ), cytokines, and hormones, which is accompanied by extracellular matrix remodeling. Besides anti-oxidant activity, ascorbic acid (ASC) is participating in collagen biosynthesis and increase production and processing of collagens. Moreover, several studies demonstrated that ASC enhanced differentiation from preadipocytes into mature adipocytes. Methods The adipogenic effect of ascorbic acid was evaluated in chemical induced 3T3-L1 by Oil Red O staining. This effect was elucidated by immunoblotting which detected the expression level of collagens and transcription factors in adipogenesis. The immunocytochemical determination of type I collagen was performed in 3T3-L1 adipocyte to show the change of extracellular matrix during adipogenesis. Results In this study, Oil Red O staining in 3T3-L1 preadipocytes was increased dose-dependently by addition of ASC. These ASC-treated adipocytes increased collagen processing of α1(I) and α1(V) and expressed α1(VI) and α2(VI) collagens differentially. ASC also stimulated expression of C/EBPα and PPARγ, which is preceded by collagen enhancement. In addition, inhibition of ASC activity by ethyl-3,4-dihydroxybenzoate showed reduction of lipid accumulation by removal of large lipid droplets, not by inhibition of lipid production. This observation went with loss of α1(I) deposition on adipocyte surface, increase of α1(V) and α2(VI) collagens and decrease of C/EBPs. Conclusion Our findings imply that various actions of ASC on adipogenesis through differential collagen expression may provide diverse applications of ASC to adipose tissue technology.
Collapse
Affiliation(s)
| | | | | | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul 136-705, Republic of Korea.
| |
Collapse
|
30
|
Cheung HK, Han TTY, Marecak DM, Watkins JF, Amsden BG, Flynn LE. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 2013; 35:1914-23. [PMID: 24331712 DOI: 10.1016/j.biomaterials.2013.11.067] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022]
Abstract
An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human ASCs encapsulated within three-dimensional bioscaffolds incorporating decellularized adipose tissue (DAT) as a bioactive matrix within photo-cross-linkable methacrylated glycol chitosan (MGC) or methacrylated chondroitin sulphate (MCS) delivery vehicles. Stable MGC- and MCS-based composite scaffolds were fabricated containing up to 5 wt% cryomilled DAT through initiation with long-wavelength ultraviolet light. The encapsulation strategy allows for tuning of the 3-D microenvironment and provides an effective method of cell delivery with high seeding efficiency and uniformity, which could be adapted as a minimally-invasive in situ approach. Through in vitro cell culture studies, human ASCs were assessed over 14 days in terms of viability, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, adipogenic gene expression and intracellular lipid accumulation. In all of the composites, the DAT functioned as a cell-supportive matrix that enhanced ASC viability, retention and adipogenesis within the gels. The choice of hydrogel also influenced the cell response, with significantly higher viability and adipogenic differentiation observed in the MCS composites containing 5 wt% DAT. In vivo analysis in a subcutaneous Wistar rat model at 1, 4 and 12 weeks showed superior implant integration and adipogenesis in the MCS-based composites, with allogenic ASCs promoting cell infiltration, angiogenesis and ultimately, fat formation.
Collapse
Affiliation(s)
- Hoi Ki Cheung
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | - Tim Tian Y Han
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | - Dale M Marecak
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | - John F Watkins
- Department of Surgery, Queen's University, 166 Brock Street, Kingston, Ontario, Canada K7L 5G2
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7
| | - Lauren E Flynn
- Department of Chemical Engineering, Queen's University, 19 Division Street, Kingston, Ontario, Canada K7L 3N6; Human Mobility Research Centre, Kingston General Hospital, 76 Stuart Street, Kingston, Ontario, Canada K7L 2V7; Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, Ontario, Canada K7L 3N6.
| |
Collapse
|
31
|
The adipogenic effect of palmitate in mouse bone marrow-derived mesenchymal stem cells. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-0005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
32
|
Abstract
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA; Department of Molecular Biology; Princeton University; Princeton, NJ USA
| |
Collapse
|
33
|
Thirumala S, Goebel WS, Woods EJ. Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther 2013; 13:673-91. [PMID: 23339745 DOI: 10.1517/14712598.2013.763925] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSC) and MSC-like cells hold great promise and offer many advantages for developing effective cellular therapeutics. Current trends indicate that the clinical application of MSC will continue to increase markedly. For clinical applications, large numbers of MSC are usually required, ideally in an off-the-shelf format, thus requiring extensive MSC expansion ex vivo and subsequent cryopreservation and banking. AREAS COVERED To exploit the full potential of MSC for cell-based therapies requires overcoming significant cell-manufacturing, banking and regulatory challenges. The current review will focus on the identification of optimal cell source for MSC, the techniques for production scale-up, cryopreservation and banking and the regulatory challenges involved. EXPERT OPINION There has been considerable success manufacturing and cryopreserving MSC at laboratory scale. Surprisingly little attention, however, has been given to translate these technologies to an industrial scale. The development of cost-effective advanced technologies for producing and cryopreserving commercial-scale MSC is important for successful clinical cell therapy.
Collapse
|
34
|
Popa EG, Caridade SG, Mano JF, Reis RL, Gomes ME. Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications. J Tissue Eng Regen Med 2013; 9:550-63. [PMID: 23303734 DOI: 10.1002/term.1683] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/14/2012] [Indexed: 11/11/2022]
Abstract
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of κ-carrageenan hydrogels for the delivery of stem cells obtained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation method and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v κ-carrageenan solution at a cell density of 5 × 10(6) cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that κ-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mechanical analysis demonstrated an increase in stiffness and viscoelastic properties of κ-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that κ-carrageenan exhibits properties that enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Elena G Popa
- 3Bs Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | |
Collapse
|
35
|
Jean J, Leroy M, Duque-Fernandez A, Bernard G, Soucy J, Pouliot R. Characterization of a psoriatic skin model produced with involved or uninvolved cells. J Tissue Eng Regen Med 2012; 9:789-98. [PMID: 23281213 DOI: 10.1002/term.1666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/13/2012] [Accepted: 11/05/2012] [Indexed: 11/07/2022]
Abstract
Current knowledge suggests that uninvolved psoriatic skin could demonstrate characteristics associated with both normal and involved psoriatic skins. However, the triggering factor allowing the conversion of uninvolved skin into a psoriatic plaque is not fully understood. To counter this lack of information, we decided to develop pathological skin substitutes produced with uninvolved psoriatic cells, in order to better characterize the uninvolved psoriatic skin. Substitutes were produced using the self-assembly approach. Macroscopic, immunohistochemical, permeability and physicochemical results showed that involved substitutes had a thicker epidermis, higher cell proliferation, abnormal cell differentiation and a more permeable and disorganized stratum corneum compared with normal substitutes. Various results were observed using uninvolved cells, leading to two proposed profiles: profile 1 was suggested for uninvolved skin substitutes mimicking the results obtained with normal skin substitutes; and profile 2 was dedicated to those mimicking involved skin substitutes in all aspects that were analysed. In summary, uninvolved substitutes of profile 1 had a thin, well-organized epidermis with normal cell proliferation and differentiation, such as observed with normal substitutes, while uninvolved substitutes of profile 2 showed an inverse trend, i.e. a thicker epidermis, higher cell proliferation, abnormal cell differentiation and a more disorganized and more permeable stratum corneum, such as seen with involved substitutes. The results suggest that uninvolved substitutes could demonstrate characteristics associated with both normal or involved psoriatic skins.
Collapse
Affiliation(s)
- Jessica Jean
- Laboratoire d'Organogénèse Expérimentale, Centre de Recherche FRSQ du CHU de Québec, Canada.,Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Marie Leroy
- Laboratoire d'Organogénèse Expérimentale, Centre de Recherche FRSQ du CHU de Québec, Canada.,Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés, Université Laval, Québec, Canada
| | - Alexandra Duque-Fernandez
- Laboratoire d'Organogénèse Expérimentale, Centre de Recherche FRSQ du CHU de Québec, Canada.,Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Geneviève Bernard
- Laboratoire d'Organogénèse Expérimentale, Centre de Recherche FRSQ du CHU de Québec, Canada
| | - Jacques Soucy
- Département de Dermatologie, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Roxane Pouliot
- Laboratoire d'Organogénèse Expérimentale, Centre de Recherche FRSQ du CHU de Québec, Canada.,Faculté de Pharmacie, Université Laval, Québec, Canada
| |
Collapse
|
36
|
Mihaila SM, Frias AM, Pirraco RP, Rada T, Reis RL, Gomes ME, Marques AP. Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages. Tissue Eng Part A 2012; 19:235-46. [PMID: 22924692 DOI: 10.1089/ten.tea.2012.0092] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adipose tissue has been recently recognized as a potential source of stem cells for regenerative medicine applications, including bone tissue engineering (TE). Despite the gathered knowledge regarding the differentiation potential of human adipose tissue-derived stem cells (hASCs), in what concerns the endothelial lineage many uncertainties are still present. The existence of a cell subpopulation within the human adipose tissue that expresses a SSEA-4 marker, usually associated to pluripotency, raises expectations on the differentiation capacity of these cells (SSEA-4(+)hASCs). In the present study, the endothelial and osteogenic differentiation potential of the SSEA-4(+)hASCs was analyzed, aiming at proposing a single-cell source/subpopulation for the development of vascularized bone TE constructs. SSEA-4(+)hASCs were isolated using immunomagnetic sorting and cultured either in α-MEM, in EGM-2 MV (endothelial growth medium), or in osteogenic medium. SSEA-4(+)hASCs cultured in EGM-2 MV formed endothelial cell-like colonies characterized by a cobblestone morphology and expression of CD31, CD34, CD105, and von Willebrand factor as determined by quantitative reverse transcriptase (RT)-polymerase chain reaction, immunofluorescence, and flow cytometry. The endothelial phenotype was also confirmed by their ability to incorporate acetylated low-density lipoprotein and to form capillary-like structures when seeded on Matrigel. SSEA-4(+)hASCs cultured in α-MEM displayed fibroblastic-like morphology and exhibited a mesenchymal surface marker profile (>90% CD90(+)/CD73(+)/CD105(+)). After culture in osteogenic conditions, an overexpression of osteogenic-related markers (osteopontin and osteocalcin) was observed both at molecular and protein levels. Matrix mineralization detected by Alizarin Red staining confirmed SSEA-4(+)hASCs osteogenic differentiation. Herein, we demonstrate that from a single-cell source, human adipose tissue, and by selecting the appropriate subpopulation it is possible to obtain microvascular-like endothelial cells and osteoblasts, the most relevant cell types for the creation of vascularized bone tissue-engineered constructs.
Collapse
Affiliation(s)
- Silvia M Mihaila
- Department of Polymer Engineering, 3B's Research Group, University of Minho, Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.
Collapse
|
38
|
Thirumala S, Goebel WS, Woods EJ. Clinical grade adult stem cell banking. Organogenesis 2012; 5:143-54. [PMID: 20046678 DOI: 10.4161/org.5.3.9811] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/14/2009] [Indexed: 12/17/2022] Open
Abstract
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.
Collapse
Affiliation(s)
- Sreedhar Thirumala
- General Biotechnology LLC; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
39
|
Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, Hofer SOP, Hovius SER, van Osch GJVM. Comparing scaffold-free and fibrin-based adipose-derived stromal cell constructs for adipose tissue engineering: an in vitro and in vivo study. Cell Transplant 2012; 21:2283-97. [PMID: 22840523 DOI: 10.3727/096368912x653129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Success of adipose tissue engineering for soft tissue repair has been limited by insufficient adipogenic differentiation, an unfavorable host response, and insufficient vascularization. In this study, we examined how scaffold-free spheroid and fibrin-based environments impact these parameters in human adipose-derived stromal cell (ASC)-based adipose constructs. ASCs were differentiated in spheroids or fibrin-based constructs. After 7 days, conditioned medium was collected and spheroids/fibrin-based constructs were either harvested or implanted subcutaneously in athymic mice. Following 7 days of implantation, the number of blood vessels in fibrin-based constructs was significantly higher than in spheroids (93±45 vs. 23±11 vessels/mm(2)), and the inflammatory response to fibrin-based constructs was less severe. The reasons for these results were investigated further in vitro. We found that ASCs in fibrin-based constructs secreted significantly higher levels of the angiogenic factors VEGF and HGF and lower levels of the inflammatory cytokine IL-8. Furthermore, ASCs in fibrin-based constructs secreted significantly higher levels of leptin and showed a 2.5-fold upregulation of the adipogenic transcription factor PPARG and a fourfold to fivefold upregulation of the adipocyte-specific markers FABP4, perilipin, and leptin. These results indicate that fibrin-based ASC constructs are potentially more suitable for ASC-based adipose tissue reconstruction than scaffold-free spheroids.
Collapse
Affiliation(s)
- Femke Verseijden
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Fortier GM, Gauvin R, Proulx M, Vallée M, Fradette J. Dynamic culture induces a cell type-dependent response impacting on the thickness of engineered connective tissues. J Tissue Eng Regen Med 2011; 7:292-301. [PMID: 22162315 DOI: 10.1002/term.522] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/25/2011] [Accepted: 09/22/2011] [Indexed: 11/11/2022]
Abstract
Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering.
Collapse
Affiliation(s)
- Guillaume Marceau Fortier
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération; LOEX - Centre de Recherche FRSQ du Centre Hospitalier Affilié Universitaire de Québec, Québec, QC, Canada G1J 1Z4
| | | | | | | | | |
Collapse
|
42
|
Lequeux C, Auxenfans C, Thépot A, Géloën A, André V, Damour O, Mojallal A. A simple way to reconstruct a human 3-d hypodermis: a useful tool for pharmacological functionality. Skin Pharmacol Physiol 2011; 25:47-55. [PMID: 21986296 DOI: 10.1159/000330904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/06/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Adipose tissue engineering has been hampered by the inability to culture mature adipocytes. Adipose-derived stem cell (ASC) culture opens the way for the preparation of human 3-D hypodermis in large quantities. These models play a role in obesity-related active molecules and slimming agent screening. Moreover, they contribute to a better understanding of the mechanisms underpinning obesity. MATERIALS AND METHODS Freshly extracted ASC from fat tissue were characterized by flow cytometry for CD73, CD90, CD105, HLA-ABC, CD14 and CD45 markers and by Western blot for pref-1. Their differentiation in mature adipocytes was followed by lipid and adiponectin secretion or by oil red O staining and radioimmunoassay. Neosynthesized extracellular matrix (ECM) of 3-D hypodermis was investigated by immunohistochemistry (collagen type I, V and VI) and transmission electron microscopy. RESULTS Our results demonstrate that the culture of preadipocytes in proliferation medium for 15 days followed by 16 days of culture in differentiation medium allowed production of the thickest single-layer hypodermis in which preadipocytes and mature adipocytes coexist and synthesize adiponectin and ECM components. Functionality of our 3-D single-layer hypodermis was demonstrated both by a 3.5-fold glycerol production after its stimulation with norepinephrine (adrenergic agonist) and by its slimming after caffeine treatment versus the nontreated 3-D hypodermis. CONCLUSION This economic 3-D model, easy to prepare and giving reproducible results after the treatment of actives, is useful for pharmacotoxicological trials as an alternative to animal experimentation.
Collapse
Affiliation(s)
- C Lequeux
- Banque de Tissus et Cellules, Hôpital Edouard Herriot, Lyon, France. charlotte.lequeux @ chu-lyon.fr
| | | | | | | | | | | | | |
Collapse
|
43
|
Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL. Adipose tissue engineering for soft tissue regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:413-26. [PMID: 20166810 DOI: 10.1089/ten.teb.2009.0544] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue in both structure and function. Recently, a number of studies have been designed to explore various methods to engineer human adipose tissue. This review will focus on these developments in the area of adipose tissue engineering for soft tissue replacement. The physiology of adipose tissue and current surgical therapies used to replace lost tissue volume, specifically in breast tissue, are introduced, and current biomaterials, cell sources, and tissue culture strategies are discussed. We discuss future areas of study in adipose tissue engineering.
Collapse
Affiliation(s)
- Jennifer H Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 2011; 7:463-77. [PMID: 20688199 DOI: 10.1016/j.actbio.2010.07.037] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues such as bone marrow aspirates, fat or umbilical cord blood. These cells have the ability to proliferate in vitro and differentiate into a series of mesoderm-type lineages, including osteoblasts, chondrocytes, adipocytes, myocytes and vascular cells. Due to this ability, MSCs provide an appealing source of progenitor cells which may be used in the field of tissue regeneration for both research and clinical purposes. The key factors for successful MSC proliferation and differentiation in vitro are the culture conditions. Hence, we here summarize the culture media and their compositions currently available for the differentiation of MSCs towards osteogenic, chondrogenic, adipogenic, endothelial and vascular smooth muscle phenotypes. However, optimal combination of growth factors, cytokines and serum supplements and their concentration within the media is essential for the in vitro culture and differentiation of MSCs and thereby for their application in advanced tissue engineering.
Collapse
|
45
|
Labbé B, Marceau-Fortier G, Fradette J. Cell sheet technology for tissue engineering: the self-assembly approach using adipose-derived stromal cells. Methods Mol Biol 2011; 702:429-441. [PMID: 21082420 DOI: 10.1007/978-1-61737-960-4_31] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In the past years, adipose tissue has spurred a wide interest, not only as a source of adult multipotent stem cells but also as a highly eligible tissue for reconstructive surgery procedures. Tissue engineering is one field of regenerative medicine progressing at great strides in part due to its important use of adipose-derived stem/stromal cells (ASCs). The development of diversified technologies combining ASCs with various biomaterials has lead to the reconstruction of numerous types of tissue-engineered substitutes such as bone, cartilage, and adipose tissues from rodent, porcine, or human ASCs. We have recently achieved the reconstruction of connective and adipose tissues composed entirely of cultured human ASCs and their secreted endogenous extracellular matrix components by a methodology known as the self-assembly approach of tissue engineering. The latter is based on the stimulation of ASCs to secrete and assemble matrix components in culture, leading to the production of cell sheets that can be manipulated and further assembled into thicker multilayer tissues. In this chapter, protocols to generate both reconstructed connective and adipocyte-containing tissues using the self-assembly approach are described in detail. The methods include amplification and cell banking of human ASCs, as well as culture protocols for the production of individual stromal and adipose sheets, which are the building blocks for the reconstruction of multilayered human connective and adipose tissues, respectively.
Collapse
Affiliation(s)
- Benoît Labbé
- LOEX (Laboratoire d'Organogénèse Expérimental Organogenesis Laboratory), Centre de Recherche FRSQ du CHA Universitaire de Québec, Québec, QC, Canada
| | | | | |
Collapse
|
46
|
Benabdallah BF, Allard E, Yao S, Friedman G, Gregory PD, Eliopoulos N, Fradette J, Spees JL, Haddad E, Holmes MC, Beauséjour CM. Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy 2010; 12:394-9. [PMID: 20331411 DOI: 10.3109/14653240903583803] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Gene-modified mesenchymal stromal cells (MSC) provide a promising tool for cell and gene therapy-based applications by potentially acting as a cellular vehicle for protein-replacement therapy. However, to avoid the risk of insertional mutagenesis, targeted integration of a transgene into a 'safe harbor' locus is of great interest. METHODS We sought to determine whether zinc finger nuclease (ZFN)-mediated targeted addition of the erythropoietin (Epo) gene into the chemokine [C-C motif] receptor 5 (CCR5) gene locus, a putative safe harbor locus, in MSC would result in stable transgene expression in vivo. RESULTS Whether derived from bone marrow (BM), umbilical cord blood (UCB) or adipose tissue (AT), 30-40% of human MSC underwent ZFN-driven targeted gene addition, as determined by a combination of fluorescence-activated cell sorting (FACS)- and polymerase chain reaction (PCR)-based analyzes. An enzyme-linked immunosorbent assay (ELISA)-based analysis of gene-targeted MSC expressing Epo from the CCR5 locus showed that these modified MSC were found to secrete a significant level of Epo (c. 2 IU/10(6)cells/24 h). NOD/SCID/gammaC mice injected with ZFN-modified MSC expressing Epo exhibited significantly higher hematocrit and Epo plasma levels for several weeks post-injection, compared with mice receiving control MSC. CONCLUSIONS These data demonstrate that MSC modified by ZFN-driven targeted gene addition may represent a cellular vehicle for delivery of plasma-soluble therapeutic factors.
Collapse
Affiliation(s)
- Basma F Benabdallah
- Centre Hospitalier Universitaire Ste-Justine, Department of Pharmacology, Université de Montréal, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|