1
|
Baptista LC, Zumbro EL, Graham ZA, Hernandez AR, Buchanan T, Sun Y, Yang Y, Banerjee A, Verma A, Li Q, Carter CS, Buford TW. Multiomics profiling of the impact of an angiotensin (1-7)-expressing probiotic combined with exercise training in aged male rats. J Appl Physiol (1985) 2023; 134:1135-1153. [PMID: 36892893 PMCID: PMC10125028 DOI: 10.1152/japplphysiol.00508.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
Angiotensin (1-7) [Ang (1-7)] is an active heptapeptide of the noncanonical arm of the renin-angiotensin system that modulates molecular signaling pathways associated with vascular and cellular inflammation, vasoconstriction, and fibrosis. Preclinical evidence suggests that Ang (1-7) is a promising therapeutic target that may ameliorate physical and cognitive function in late life. However, treatment pharmacodynamics limits its clinical applicability. Therefore, this study explored the underlying mechanisms altered by a genetically modified probiotic (GMP) that expresses Ang (1-7) combined with and without exercise training in an aging male rat model as a potential adjunct strategy to exercise training to counteract the decline of physical and cognitive function. We evaluated cross-tissue (prefrontal cortex, hippocampus, colon, liver, and skeletal muscle) multi-omics responses. After 12 wk of intervention, the 16S mRNA microbiome analysis revealed a main effect of probiotic treatment within- and between groups. The probiotic treatment enhanced α diversity (Inverse Simpson (F[2,56] = 4.44; P = 0.02); Shannon-Wiener (F[2,56] = 4.27; P = 0.02)) and β-diversity (F[2,56] = 2.66; P = 0.01) among rats receiving our GMP. The analysis of microbes' composition revealed three genera altered by our GMP (Enterorhabdus, Muribaculaceae unclassified, and Faecalitalea). The mRNA multi-tissue data analysis showed that our combined intervention upregulated neuroremodeling pathways on prefrontal cortex (i.e., 140 genes), inflammation gene expression in the liver (i.e., 63 genes), and circadian rhythm signaling on skeletal muscle. Finally, the integrative network analysis detected different communities of tightly (|r| > 0.8 and P < 0.05) correlated metabolites, genera, and genes in these tissues.NEW & NOTEWORTHY This manuscript uses a multiomics approach (i.e., microbiome, metabolomics, and transcriptomics) to explore the underlying mechanisms driven by a genetically modified probiotic (GMP) designed to express angiotensin (1-7) combined with moderate exercise training in an aged male rat model. After 12 wk of intervention, our findings suggest that our GMP enhanced gut microbial diversity while exercise training altered the transcriptional response in relevant neuroremodeling genes, inflammation, and circadian rhythm signaling pathways in an aging animal model.
Collapse
Affiliation(s)
- Liliana C Baptista
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Research Center for Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
| | - Emily L Zumbro
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Zachary A Graham
- Research Service, Birmingham Veterans Affair Medical Center, Birmingham, Alabama, United States
- Healthspan, Resilience and Performance, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Taylor Buchanan
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yi Sun
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - YouFeng Yang
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amrisha Verma
- Department of Life, Health, and Physical Sciences, Gordon College, Wenham, Massachusetts, United States
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, United States
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Taguchi S, Choudhury ME, Mikami K, Utsunomiya R, Yano H, Tanaka J. Treadmill Exercise as a Preventive Measure Against Age-Related Anxiety and Social Behavioral Disorders in Rats: When Is It Worth Starting? Ann Rehabil Med 2022; 46:320-328. [PMID: 36588447 PMCID: PMC9810656 DOI: 10.5535/arm.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/31/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To determine the appropriate time points to start regular exercise which could reduce age-related anxiety and impaired social behavior. METHODS For this study, 8-week-old male Wistar rats were divided into three groups: no exercise (NoEX), short-term exercise (S-Ex), and long-term exercise (L-Ex) groups. S-Ex-group rats started treadmill exercise at 12 months of age, while L-Ex rats started from at 2 months of age. Exercise rats were forced to walk on the treadmill three times per week, with 1- to 2-day intervals for 10 minutes during the first 2 weeks, at 10 m/min until 17 months of age, and at 8 m/min thereafter. At 19 months of age, behavioral tests were performed to assess the effects of exercise on age-induced behavioral change as well as quantitative polymerase chain reaction were done to uncover the mechanism behind the behavioral changes. RESULTS Anxiety-like behavior was improved by long-term exercise. Additionally, rats belonging to the S-Ex and L-Ex groups showed improved social behavior and increased curiosity about interesting objects. The qPCR data showed that treadmill exercise suppressed the expression of immediate-early genes in the prefrontal cortex of the aged rats. CONCLUSION This study suggests that long-term exercise represses early response genes, and in this way, it increases resistance to stress, diminishes anxiety-related behavior, and improves social behavior. These findings underscore the need to consider appropriate time to start exercise to prevent stress induced anxiety related behavior.
Collapse
Affiliation(s)
- Satoru Taguchi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mohammed E. Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan,Corresponding author: Mohammed E. Choudhury Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295 Japan. Tel: +81-89-960-5241, Fax: +81-89-960-5242, E-mail:
| | - Kanta Mikami
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Ryo Utsunomiya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Japan
| |
Collapse
|
3
|
Restoring Age-Related Cognitive Decline through Environmental Enrichment: A Transcriptomic Approach. Cells 2022; 11:cells11233864. [PMID: 36497123 PMCID: PMC9736066 DOI: 10.3390/cells11233864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cognitive decline is one of the greatest health threats of old age and the maintenance of optimal brain function across a lifespan remains a big challenge. The hippocampus is considered particularly vulnerable but there is cross-species consensus that its functional integrity benefits from the early and continuous exercise of demanding physical, social and mental activities, also referred to as environmental enrichment (EE). Here, we investigated the extent to which late-onset EE can improve the already-impaired cognitive abilities of lifelong deprived C57BL/6 mice and how it affects gene expression in the hippocampus. To this end, 5- and 24-month-old mice housed in standard cages (5mSC and 24mSC) and 24-month-old mice exposed to EE in the last 2 months of their life (24mEE) were subjected to a Barnes maze task followed by next-generation RNA sequencing of the hippocampal tissue. Our analyses showed that late-onset EE was able to restore deficits in spatial learning and short-term memory in 24-month-old mice. These positive cognitive effects were reflected by specific changes in the hippocampal transcriptome, where late-onset EE affected transcription much more than age (24mSC vs. 24mEE: 1311 DEGs, 24mSC vs. 5mSC: 860 DEGs). Remarkably, a small intersection of 72 age-related DEGs was counter-regulated by late-onset EE. Of these, Bcl3, Cttnbp2, Diexf, Esr2, Grb10, Il4ra, Inhba, Rras2, Rps6ka1 and Socs3 appear to be particularly relevant as key regulators involved in dendritic spine plasticity and in age-relevant molecular signaling cascades mediating senescence, insulin resistance, apoptosis and tissue regeneration. In summary, our observations suggest that the brains of aged mice in standard cage housing preserve a considerable degree of plasticity. Switching them to EE proved to be a promising and non-pharmacological intervention against cognitive decline.
Collapse
|
4
|
Dastgerdi HH, Radahmadi M, Reisi P. Comparative study of the protective effects of crocin and exercise on long-term potentiation of CA1 in rats under chronic unpredictable stress. Life Sci 2020; 256:118018. [DOI: 10.1016/j.lfs.2020.118018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
|
5
|
Kovacevic A, Fenesi B, Paolucci E, Heisz JJ. The effects of aerobic exercise intensity on memory in older adults. Appl Physiol Nutr Metab 2020; 45:591-600. [DOI: 10.1139/apnm-2019-0495] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aerobic exercise may enhance memory in older adults. However, the optimal intensity and underlying mechanism are unclear. This community-based study examined the effect of aerobic exercise intensity on memory and general cognitive abilities. Brain-derived neurotrophic factor (BDNF) was examined as a potential mechanism. Sixty-four sedentary older adults participated in 1 of 3 groups: (i) high-intensity interval training (HIIT); (ii) moderate continuous training (MCT); or (iii) stretching control (CON). Prior to and following the intervention, high-interference memory was assessed using a Mnemonic Similarity task and executive functions were assessed using Go Nogo and Flanker tasks. HIIT led to the greatest memory performance compared with MCT and CON (F[2,55] = 6.04, p = 0.004) and greater improvements in memory correlated with greater increases in fitness (rs (46) = 0.27, p = 0.03). Exercise intensity seemed to matter less for executive functioning, as positive trends were observed for both HIIT and MCT. No significant differences in BDNF were found between groups. Overall, these results suggest that aerobic exercise may enhance memory in older adults, with the potential for higher intensity exercise to yield the greatest benefit. While our findings suggest that BDNF does not regulate these adaptations, the mechanisms remain to be determined. Novelty High-intensity interval training results in the greatest memory performance in inactive older adults compared with moderate continuous training or stretching. Improvement in fitness correlates with improvement in memory performance.
Collapse
Affiliation(s)
- Ana Kovacevic
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Barbara Fenesi
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Emily Paolucci
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jennifer J. Heisz
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
6
|
Martini F, Régis Leite M, Gonçalves Rosa S, Pregardier Klann I, Wayne Nogueira C. Strength exercise suppresses STZ-induced spatial memory impairment and modulates BDNF/ERK-CAMKII/CREB signalling pathway in the hippocampus of mice. Cell Biochem Funct 2020; 38:213-221. [PMID: 31978253 DOI: 10.1002/cbf.3470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 09/11/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has generated scientific interest because of its prevalence in the population. Studies indicate that physical exercise promotes neuroplasticity and improves cognitive function in animal models and in human beings. The aim of the present study was to investigate the effects of strength exercise on the hippocampal protein contents and memory performance in mice subjected to a model of sporadic AD induced by streptozotocin (STZ). Swiss mice received two injections of STZ (3 mg/kg, intracerebroventricular). After 21 days, they began physical training using a ladde. Mice performed this protocol for 4 weeks. After the last exercise training session, mice performed the Morris Water Maze test. The samples of hippocampus were excised and used to determine protein contents of brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase-Ca2+ (ERK), calmodulin-dependent protein kinase (CAMKII) and cAMP-response element-binding protein (CREB) signalling pathway. Strength exercise was effective against the decrease in the time spent and distance travelled in the target quadrant by STZ-injected mice. Strength exercise was also effective against the reduction of mature BDNF, tropomyosin receptor kinase B and neuronal nuclear antigen (NeuN) hippocampal protein levels in STZ mice. The decrease in the hippocampal ratio of pERK/ERK, pCAMKII/CAMKII and pCREB/CREB induced by STZ was reversed by strength exercise. Strength exercise decreased Bax/Bcl2 ratio in the hippocampus of STZ-injected mice. The present study demonstrates that strength exercise modulated the hippocampal BDNF/ERK-CAMKII/CREB signalling pathway and suppressed STZ-induced spatial memory impairment in mice.
Collapse
Affiliation(s)
- Franciele Martini
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marlon Régis Leite
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Isabella Pregardier Klann
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Ruotsalainen I, Renvall V, Gorbach T, Syväoja HJ, Tammelin TH, Karvanen J, Parviainen T. Aerobic fitness, but not physical activity, is associated with grey matter volume in adolescents. Behav Brain Res 2019; 362:122-130. [DOI: 10.1016/j.bbr.2018.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
8
|
Dastgerdi HH, Radahmadi M, Reisi P, Dastgerdi AH. Effect of Crocin, Exercise, and Crocin-accompanied Exercise on Learning and Memory in Rats under Chronic Unpredictable Stress. Adv Biomed Res 2018; 7:137. [PMID: 30464937 PMCID: PMC6206744 DOI: 10.4103/abr.abr_153_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Stress affects brain functions and induces psychological disorders. Previous studies have indicated different effects of crocin and exercise on the improvement of memory in some types of stress. The present study investigated the effect of crocin, exercise, and crocin-accompanied exercise on learning, memory, and memory consolidation in rats under chronic unpredictable stress (CUS). Materials and Methods: Male rats were randomly allocated to different groups: control, sham, stress, stress-exercise, stress-crocin, and stress-crocin-accompanied exercise groups. The CUS and treadmill running were applied 2 h/day and 1 h/day, respectively, for 21 days. Crocin (30 mg/kg) was daily intraperitoneally injected to the rats and their behavioral variables were evaluated as a brain function using the passive avoidance test. Results: Results showed that the CUS significantly decreased learning and memory compared to the control group, while crocin alone and crocin-accompanied exercise significantly improved learning and memory compared to the stressed group. It was found that exercise alone caused learning but did not improve memory in unpredictable stress rats. Conclusion: The data indicated that unpredictable stress had very destructive effects on the brain functions. Furthermore, unlike exercise, crocin improved memory under unpredictable stress conditions. Overall, it seems that the beneficial effects of crocin-accompanied exercise on learning and memory were probably because of crocin, but not exercise.
Collapse
Affiliation(s)
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
9
|
dos Santos FV, Targa AD, Hammerschmidt I, Zanata SM, Maia FG, Visentainer JV, Santos Junior OO, da Costa BA, Lagranha CJ, Ferraz AC. Fish oil supplementation reverses behavioral and neurochemical alterations induced by swimming exercise in rats. Physiol Behav 2018; 194:95-102. [DOI: 10.1016/j.physbeh.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/12/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
|
10
|
Seo JH, Pyo S, Shin YK, Nam BG, Kang JW, Kim KP, Lee HY, Cho SR. The Effect of Environmental Enrichment on Glutathione-Mediated Xenobiotic Metabolism and Antioxidation in Normal Adult Mice. Front Neurol 2018; 9:425. [PMID: 30022966 PMCID: PMC6039562 DOI: 10.3389/fneur.2018.00425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Olfactory bulb (OB) plays an important role in protecting against harmful substances via the secretion of antioxidant and detoxifying enzymes. Environmental enrichment (EE) is a common rehabilitation method and known to have beneficial effects in the central nervous system. However, the effects of EE in the OB still remain unclear. At 6 weeks of age, CD-1® (ICR) mice were assigned to standard cages or EE cages. After 2 months, we performed proteomic analysis. Forty-four up-regulated proteins were identified in EE mice compared to the control mice. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes Pathway demonstrated that the upregulated proteins were mainly involved in metabolic pathways against xenobiotics. Among those upregulated proteins, 9 proteins, which participate in phase I or II of the xenobiotic metabolizing process and are known to be responsible for ROS detoxification, were validated by qRT-PCR. To explore the effect of ROS detoxification mediated by EE, glutathione activity was measured by an ELISA assay. The ratio of reduced glutathione to oxidized glutathione was significantly increased in EE mice. Based on a linear regression analysis, GSTM2 and UGT2A1 were found to be the most influential genes in ROS detoxification. For further analysis of neuroprotection, the level of iNOS and the ratio of Bax to Bcl-2 were significantly decreased in EE mice. While TUNEL+ cells were significantly decreased, Ki67+ cells were significantly increased in EE mice, implicating that EE creates an optimal state for xenobiotic metabolism and antioxidant activity. Taken together, our results suggested that EE protects olfactory layers via the upregulation of glutathione-related antioxidant and xenobiotic metabolizing enzymes, eventually lowering ROS-mediated inflammation and apoptosis and increasing neurogenesis. This study may provide an opportunity for a better understanding of the beneficial effects of EE in the OB.
Collapse
Affiliation(s)
- Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon-Kyum Shin
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Bae-Geun Nam
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea
| | - Jeong Won Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, South Korea.,Precision Medicine Branch, Research Institute, National Cancer Center, Goyang, South Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, South Korea
| | - Hoo Young Lee
- Department of Medicine, The Graduate School of Yonsei University, Seoul, South Korea.,TBI Rehabilitation Center, National Traffic Injury Rehabilitation Hospital, Yangpyeong, South Korea.,Department of Rehabilitation Medicine, School of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Graduate Program of NanoScience and Technology, Yonsei University, Seoul, South Korea.,Department of Medicine, The Graduate School of Yonsei University, Seoul, South Korea.,Yonsei Stem Cell Research Center, Avison Biomedical Research Center, Seoul, South Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Vanzella C, Neves JD, Vizuete AF, Aristimunha D, Kolling J, Longoni A, Gonçalves CAS, Wyse AT, Netto CA. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav Brain Res 2017; 334:78-85. [DOI: 10.1016/j.bbr.2017.07.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/30/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
12
|
Sex differences in aerobic exercise efficacy to improve cognition: A systematic review and meta-analysis of studies in older rodents. Front Neuroendocrinol 2017; 46:86-105. [PMID: 28614695 DOI: 10.1016/j.yfrne.2017.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022]
Abstract
Research in humans indicates that women may show greater cognitive benefits from aerobic training (AT) than men. To determine whether this sex difference extends to rodents, we conducted a systematic review and meta-analysis of studies in healthy, older rodents. Results indicate that compared to controls, AT improved hippocampus-dependent and -independent learning and memory. A sex difference was found with males showing larger benefits from AT on conditioned-avoidance and non-spatial memory tasks. AT also increased brain-derived neurotrophic factor compared to controls, with larger effects in females. As an exploratory analysis, sex differences in voluntary AT were examined separately from forced AT. Voluntary AT enhanced non-spatial memory to a greater extent in males. Forced AT enhanced hippocampus-dependent learning and memory more so in females. These findings suggest that sex is an important factor to consider, and studies directly assessing sex differences in the ability of exercise to improve brain function are needed.
Collapse
|
13
|
Ravikiran T, Sowbhagya R, Anupama SK, Anand S, Bhagyalakshmi D. Age-related changes in the brain antioxidant status: modulation by dietary supplementation of Decalepis hamiltonii and physical exercise. Mol Cell Biochem 2016; 419:103-13. [PMID: 27379504 DOI: 10.1007/s11010-016-2754-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
The synergistic effects of physical exercise and diet have profound benefits on brain function. The present study was aimed to determine the effects of exercise and Decalepis hamiltonii (Dh) on age-related responses on the antioxidant status in discrete regions of rat brain. Male Wistar albino rats of 4 and 18 months old were orally supplemented with Dh extract and swim trained at 3 % intensity for 30 min/day, 5 days/week, for a period of 30 days. Supplementation of 100 mg Dh aqueous extract/kg body weight and its combination with exercise significantly elevated the antioxidant enzyme activities irrespective of age. Age-related and region-specific changes were observed in superoxide levels, and protein carbonyl and malondialdehyde contents, and were found to be decreased in both trained and supplemented groups. Levels of total thiols, protein, and nonprotein thiols decreased with age and significantly increased in the SW-T(+100 mg) groups. Our results demonstrated that the interactive effects of two treatments enhanced the antioxidant status and decreased the risk of protein and lipid oxidation in the rat brain.
Collapse
Affiliation(s)
- Tekupalli Ravikiran
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India.
| | | | | | - Santosh Anand
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| | - Dundaiah Bhagyalakshmi
- Department of Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, India
| |
Collapse
|
14
|
Rizi AA, Reisi P, Naghsh N. Effect of forced treadmill exercise and blocking of opioid receptors with naloxone on memory in male rats. Adv Biomed Res 2016; 5:20. [PMID: 26962522 PMCID: PMC4770631 DOI: 10.4103/2277-9175.175906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022] Open
Abstract
Background: The forced treadmill running can influence the opioid contents of the brain, through both effects of exercise and the effects of stress caused by coercion. Since opioids can cause negative effects on brain functions, this study aimed to evaluate the effect of forced treadmill exercise and blocking of opioid receptors with naloxone on memory in male rats. Materials and Methods: Experimental groups were the control, the exercise, the naloxone, and the naloxone exercise. The exercise program was treadmill running at 22 m/min at 0° inclination for 50 min/day, 6 days/week, for 4 weeks. Naloxone (1 mg/kg) was injected 5 min before the treadmill running. Morris water maze and passive avoidance learning tests were used for evaluation of memory. Acquisition phase of both tests was performed before interventions, and memory was evaluated 1-day and 1-week after the last session of exercise and treatments. Results: Our data showed that forced exercise impaired performance in passive avoidance learning test (P < 0.05 and P <0.01, 1-day, and 1-week after the last session of exercise and treatments, respectively). Spatial memory was only impaired after 1-week in the exercise group. Naloxone had no significant effect on memory in the control group. However, it improved memory in the exercise group, as there was no significant difference between the control and the naloxone exercise in both tests. Conclusion: The data correspond to the possibility that opioidergic system may have mediatory roles in exercise-induced responses in forced exercise. These roles are likely harmful for memory.
Collapse
Affiliation(s)
- Atefeh Asadi Rizi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Naghsh
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
15
|
Jafary L, Reisi P, Naghsh N. Effects of fluoxetine on memory under forced treadmill exercise conditions in male rats. Adv Biomed Res 2015; 4:235. [PMID: 26645020 PMCID: PMC4647126 DOI: 10.4103/2277-9175.167962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/19/2015] [Indexed: 11/05/2022] Open
Abstract
Background: Studies show inconsistent effects of forced exercise on cognitive processes. These differences are probably due to the stress of coercion in forced exercise. Because fluoxetine is used to treat complications caused by stress, this study aimed to evaluate the effects of fluoxetine on memory in rats under forced treadmill exercise. Materials and Methods: Experimental groups were the control, the control exercise, the fluoxetine, and the fluoxetine exercise. The exercise program was treadmill running at 22 m/min, 0° inclination for 50 min/day, 6 days/week, for 4 weeks. Fluoxetine (5 mg/kg) was injected 30 min before treadmill. Morris water maze and passive avoidance learning tests were used for evaluation of memory. Acquisition phase of both tests were performed before interventions and memory was evaluated 1-day and 1-week after the last session of exercise and treatments. Results: Our data showed that forced exercise impaired performance in passive avoidance learning test (P < 0.05 and P < 0.01, 1-day and 1-week after the last session of exercise and treatments, respectively). Spatial memory was only impaired after 1-week in the exercise group. Fluoxetine improved spatial memory after 1-day in the control group. However, it had no significant effects on memory in the exercise group. Conclusion: The data correspond to the possibility that forced treadmill exercise can cause stress, and thereby cause damage to memory. The present results suggest that although fluoxetine may improve memory in intact rats but it cannot prevent damages that are caused by forced exercise.
Collapse
Affiliation(s)
- Leila Jafary
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ; Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Naghsh
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
16
|
Sun BF, Wang QQ, Yu ZJ, Yu Y, Xiao CL, Kang CS, Ge G, Linghu Y, Zhu JD, Li YM, Li QM, Luo SP, Yang D, Li L, Zhang WY, Tian G. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB. PLoS One 2015; 10:e0137810. [PMID: 26368803 PMCID: PMC4569337 DOI: 10.1371/journal.pone.0137810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022] Open
Abstract
High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.
Collapse
Affiliation(s)
- Bao-Fei Sun
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Qing-Qing Wang
- Department of Hospital Infection Management, Affiliated Hospital of Guiyang Medical University, Guiyang, 550004, China
| | - Zi-Jiang Yu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yan Yu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Chao-Lun Xiao
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Chao-Sheng Kang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Guo Ge
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yan Linghu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Jun-De Zhu
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Yu-Mei Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Qiang-Ming Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Shi-Peng Luo
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Dang Yang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Lin Li
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Wen-Yan Zhang
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| | - Guang Tian
- Department of Anatomy, Guiyang Medical University, Guiyang, 550004, China
| |
Collapse
|
17
|
Li C, Liu Y, Yin S, Lu C, Liu D, Jiang H, Pan F. Long-term effects of early adolescent stress: dysregulation of hypothalamic-pituitary-adrenal axis and central corticotropin releasing factor receptor 1 expression in adult male rats. Behav Brain Res 2015; 288:39-49. [PMID: 25882722 DOI: 10.1016/j.bbr.2015.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 12/26/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related mental disorder caused by traumatic experiences. Studies have found that exposure to early stressful events is a risk factor for developing PTSD. However, a limited number of studies have explored the effects of traumatic stress in early adolescence on behavior, hypothalamic-pituitary-adrenal (HPA) axis function, central corticotropin releasing factor receptor 1 (CRFR1) expression and the relative vulnerability of PTSD in adulthood. The current study aims to explore these issues using inescapable electric foot shock to induce a PTSD model in early adolescent rats. Meanwhile, running on a treadmill for six weeks and administration of the antagonist with 3.2mg/kg/day of CP-154, 526 for 14 consecutive days were used as therapeutic measures. Presently, the stress (S) group showed more anxiety and depression in the open field (OF) test and elevated plus maze (EPM) test, memory damage in the Y maze test, decreased basal CORT level, increased DEX negative feedback inhibition and exacerbated and longer-lasting reaction to CRH challenge in the DEX/CRH test compared with the control group. Central CRFR1 expression was also changed in the S group, as evidenced by the increased CRFR1 expression in the hypothalamus, amygdala and the prefrontal cortex (PFC). However, treadmill exercise alleviated early adolescent stress-induced behavior abnormalities and improved the functional state of the HPA axis, performing a more powerful effect than the CRFR1 antagonist CP-154, 526. Additionally, this study revealed that the alteration of central CRFR1 expression might play an important role in etiology of PTSD in adulthood.
Collapse
Affiliation(s)
- Chuting Li
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Yuan Liu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Shiping Yin
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Cuiyan Lu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Hong Jiang
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China
| | - Fang Pan
- Department of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
18
|
Hippocampal BDNF content in response to short- and long-term exercise. Neurol Sci 2015; 36:1163-6. [DOI: 10.1007/s10072-015-2208-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
|
19
|
Wang S, Chen L, Zhang L, Huang C, Xiu Y, Wang F, Zhou C, Luo Y, Xiao Q, Tang Y. Effects of long-term exercise on spatial learning, memory ability, and cortical capillaries in aged rats. Med Sci Monit 2015; 21:945-54. [PMID: 25828032 PMCID: PMC4395020 DOI: 10.12659/msm.893935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background This study aimed to determine the effects of long-term running exercise on spatial learning, spatial memory, and cortical capillaries in aged rats. Material/Methods Fourteen-month-old female and male Sprague-Dawley rats were randomly divided into an exercised group (EG) and a non-exercised group (NG). The EG rats were trained on treadmill running for 4 or 14 months. The NG rats were housed under identical conditions without running. Spatial learning and memory were assessed with the Morris water maze. The cortical capillary parameters were quantitatively investigated using immunohistochemical and stereological methods. Results The escaped latencies of the EG were significantly different from those of the NG in 18-month-old females and 28-month-old males (p<0.05). However, 28-month-old females and 18-month-old males showed no differences in escape latency between the EG and NG (p>0.05). In 28-month-old female rats, stereological techniques showed significant differences between the EG and NG in the cortical capillary volume (median, 22.55 vs. 11.42, p<0.05) and the cortical capillary surface area (median, 7474.13 vs. 3935.90, p<0.05). In 28-month-old male rats, the EG had a significantly longer total cortical capillary length (median, 530.35 vs. 156.27, p<0.05), significantly larger cortical capillary volume (median, 16.47 vs. 3.65, p<0.01), and a significantly larger cortical capillary total surface area (median, 7885.79 vs. 1957.16, p<0.01) compared with the NG group. Conclusions These data demonstrate that exercise improved spatial learning, memory capacity and cortical capillaries in aged rats.
Collapse
Affiliation(s)
- Sanrong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Lin Chen
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Chunxia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Yun Xiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Feifei Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Chunni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
20
|
Metabolic brain activity underlying behavioral performance and spatial strategy choice in sedentary and exercised Wistar rats. Neuroscience 2014; 281:110-23. [DOI: 10.1016/j.neuroscience.2014.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/05/2014] [Accepted: 09/25/2014] [Indexed: 02/02/2023]
|
21
|
Effects of green tea and physical exercise on memory impairments associated with aging. Neurochem Int 2014; 78:53-60. [DOI: 10.1016/j.neuint.2014.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023]
|
22
|
Etemad A, Sheikhzadeh F, Asl NA. Evaluation of brain-derived neurotrophic factor in diabetic rats. Neurol Res 2014; 37:217-22. [DOI: 10.1179/1743132814y.0000000428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Hatchard T, Ting JJ, Messier C. Translating the impact of exercise on cognition: methodological issues in animal research. Behav Brain Res 2014; 273:177-88. [PMID: 25026095 DOI: 10.1016/j.bbr.2014.06.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
Abstract
Physical exercise and fitness have been proposed as potential factors that promote healthy cognitive aging. Some of the support for this hypothesis has come from animal research. Animal studies are also used to propose the physiological mechanisms underlying the cognitive performance improvement associated with exercise. In the present review and meta-analysis, we discuss several methodological problems that limit the contribution of animal studies to the understanding of the putative effects of exercise on cognitive aging. We suggest that the most likely measure to equate exercise intensity in rodent and humans may be oxygen consumption (VO2) because observed values are surprisingly similar in young and older rodents and humans. For practical reasons, several animal studies use young rodents kept in social isolation. We show that social isolation is associated with an enhanced impact of exercise on cognitive performance but not on some physiological measures thought to mediate the effect of exercise. Surprisingly, two months or more of exercise intervention appeared to be ineffective to promote cognitive performance compared to shorter durations. We argue that impact of exercise in socially isolated animals is explained by an alleviation of environmental impoverishment as much as an effect of physical exercise. It is possible that the introduction of exercise in rodents is partly mediated by environmental changes. It may explain why larger effects are observed for the shorter durations of exercise while much smaller effects are found after longer periods of exercise.
Collapse
Affiliation(s)
- Taylor Hatchard
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2076A, Ottawa, ON, Canada K1N 6N5
| | - Jaimee J Ting
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2076A, Ottawa, ON, Canada K1N 6N5
| | - Claude Messier
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier Room 2076A, Ottawa, ON, Canada K1N 6N5.
| |
Collapse
|
24
|
Pudell C, Vicente BA, Delattre AM, Carabelli B, Mori MA, Suchecki D, Machado RB, Zanata SM, Visentainer JV, de Oliveira Santos O, Lima MMS, Ferraz AC. Fish oil improves anxiety-like, depressive-like and cognitive behaviors in olfactory bulbectomised rats. Eur J Neurosci 2013; 39:266-74. [DOI: 10.1111/ejn.12406] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Claudia Pudell
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| | - Bianca A. Vicente
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| | - Ana M. Delattre
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| | - Bruno Carabelli
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| | - Marco A. Mori
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia; Universidade Federal do São Paulo; São Paulo Brazil
| | - Ricardo B. Machado
- Departamento de Psicobiologia; Universidade Federal do São Paulo; São Paulo Brazil
| | - Sílvio M. Zanata
- Laboratório de Neurobiologia; Departamento de Patologia Básica; Universidade Federal do Paraná; Curitiba PR Brazil
| | - Jesuí V. Visentainer
- Laboratório de Química de Alimentos; Departamento de Química; Universidade Estadual de Maringá; Maringá PR Brazil
| | - Oscar de Oliveira Santos
- Laboratório de Química de Alimentos; Departamento de Química; Universidade Estadual de Maringá; Maringá PR Brazil
| | - Marcelo M. S. Lima
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| | - Anete C. Ferraz
- Laboratório de Neurofisiologia; Departamento de Fisiologia; Universidade Federal do Paraná; 81.531-990 Curitiba PR Brazil
| |
Collapse
|
25
|
Sampedro-Piquero P, Zancada-Menendez C, Begega A, Mendez M, Arias J. Effects of forced exercise on spatial memory and cytochrome c oxidase activity in aged rats. Brain Res 2013; 1502:20-9. [DOI: 10.1016/j.brainres.2012.12.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/19/2012] [Accepted: 12/13/2012] [Indexed: 11/25/2022]
|
26
|
Cassilhas RC, Lee KS, Venâncio DP, Oliveira MGM, Tufik S, de Mello MT. Resistance exercise improves hippocampus-dependent memory. Braz J Med Biol Res 2012; 45:1215-20. [PMID: 22930413 PMCID: PMC3854211 DOI: 10.1590/s0100-879x2012007500138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023] Open
Abstract
It has been demonstrated that resistance exercise improves cognitive functions in humans. Thus, an animal model that mimics this phenomenon can be an important tool for studying the underlying neurophysiological mechanisms. Here, we tested if an animal model for resistance exercise was able to improve the performance in a hippocampus-dependent memory task. In addition, we also evaluated the level of insulin-like growth factor 1/insulin growth factor receptor (IGF-1/IGF-1R), which plays pleiotropic roles in the nervous system. Adult male Wistar rats were divided into three groups (N = 10 for each group): control, SHAM, and resistance exercise (RES). The RES group was submitted to 8 weeks of progressive resistance exercise in a vertical ladder apparatus, while the SHAM group was left in the same apparatus without exercising. Analysis of a cross-sectional area of the flexor digitorum longus muscle indicated that this training period was sufficient to cause muscle fiber hypertrophy. In a step-through passive avoidance task (PA), the RES group presented a longer latency than the other groups on the test day. We also observed an increase of 43 and 94% for systemic and hippocampal IGF-1 concentration, respectively, in the RES group compared to the others. A positive correlation was established between PA performance and systemic IGF-1 (r = 0.46, P < 0.05). Taken together, our data indicate that resistance exercise improves the hippocampus-dependent memory task with a concomitant increase of IGF-1 level in the rat model. This model can be further explored to better understand the effects of resistance exercise on brain functions.
Collapse
Affiliation(s)
- R C Cassilhas
- Centro de Estudos em Psicobiologia e Exercício, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
27
|
Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 2012; 202:309-17. [DOI: 10.1016/j.neuroscience.2011.11.029] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/05/2023]
|
28
|
Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC. Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 2011; 33:828.e1-17. [PMID: 21820213 DOI: 10.1016/j.neurobiolaging.2011.06.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 06/13/2011] [Accepted: 06/23/2011] [Indexed: 01/11/2023]
Abstract
Aged (20-22 months) male Fischer 344 rats were randomly assigned to sedentary (A-SED), environmentally-enriched (A-ENR), or exercise (A-EX) conditions. After 10-12 weeks of differential experience, the 3 groups of aged rats and young sedentary controls were tested for physical and cognitive function. Spatial discrimination learning and memory consolidation, tested on the water maze, were enhanced in environmentally-enriched compared with sedentary. A-EX exhibited improved and impaired performance on the cue and spatial task, respectively. Impaired spatial learning in A-EX was likely due to a bias in response selection associated with exercise training, as object recognition memory improved for A-EX rats. An examination of senescent hippocampal physiology revealed that enrichment and exercise reversed age-related changes in long-term depression (LTD) and long-term potentiation (LTP). Rats in the enrichment group exhibited an increase in cell excitability compared with the other 2 groups of aged animals. The results indicate that differential experience biased the selection of a spatial or a response strategy and factors common across the 2 conditions, such as increased hippocampal activity associated with locomotion, contribute to reversal of senescent synaptic plasticity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0244, USA
| | | | | | | | | |
Collapse
|