1
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Šofranková L, Baňas M, Pipová N, Majláth I, Kurimský J, Cimbala R, Zbojovský J, Šimo L, Majláthová V. Anthropogenic electromagnetic radiation alters the transcription levels of the genes encoding the SIFamide and myoinhibitory peptide and their receptors in Ixodes ricinus synganglion. Parasitol Res 2024; 123:306. [PMID: 39167261 PMCID: PMC11339154 DOI: 10.1007/s00436-024-08326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The research of the influences of man-made electromagnetic fields on tick physiology has been very sparse and long neglected since the pioneer studies published in 1996 and 2000. Once multiple behavioral tests confirmed an attraction and possible perception of electromagnetic fields in ticks, a new interest in this topic erupted in recent years. In this study, qRT-PCR is utilized to determine the changes in the mRNA transcript levels of neuropeptides SIFamide and myoinhibitory peptide (mip and sifa) and their representative receptors (mip-r1 and sifa-r1) in the synganglia of the tick Ixodes ricinus irradiated by 900 MHz radiofrequency electromagnetic field. It was determined that 40 V/m intensity has a significant suppressory effect on the transcript levels of all genes after at least 60 minutes of constant exposure in both sexes. Commonly occurring intensity of radiation in urban areas (2 V/m) produced an elevation in mRNA levels after various timespans in every gene. A significant decrease of transcript abundances was detected in females after one hour of exposure to 2 V/m. Results of this study widen the knowledge of EMF-induced alterations in the neurophysiology of I. ricinus, the most commonly distributed hard tick in Europe.
Collapse
Affiliation(s)
- Lívia Šofranková
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Miroslav Baňas
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Natália Pipová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Igor Majláth
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia
| | - Juraj Kurimský
- Department of Electric Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120, Košice, Slovakia
| | - Roman Cimbala
- Department of Electric Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120, Košice, Slovakia
| | - Ján Zbojovský
- Department of Electric Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120, Košice, Slovakia
| | - Ladislav Šimo
- Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d'Immunologie Parasitaires (UMR BIPAR), École Nationale Vétérinaire d'Alfort, INRAE, F-94700, Maisons-Alfort, ANSES, France
| | - Viktória Majláthová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180, Košice, Slovakia.
| |
Collapse
|
3
|
Khira R, Uggini GK. Effects of non-ionizing radio frequency electromagnetic radiation on the development and behavior of early embryos of Danio rerio. Electromagn Biol Med 2024; 43:156-163. [PMID: 38734994 DOI: 10.1080/15368378.2024.2352429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Biological effects of radio frequency electromagnetic radiation (RF-EMR) in the range of 900-1800 MHz emerging from the mobile phone were investigated and were found to influence the locomotor pattern when exposure was initiated from 1 hour post fertilization (hpf) in zebrafish embryos (ZE), Danio rerio. Mobile phones and other wireless devices offer tremendous advantages. However, on the flipside they are leading to an increased electromagnetic energy in the environment, an excess of which could be termed as electromagnetic pollution. Herein, we tried to understand the effects of RF-EMR emerging from the mobile phone, on the development and behavior of ZE, exposed to RF-EMR (specific absorption rate of 1.13 W/kg and 1800 MHz frequency) 1 hr daily, for 5 days. To understand if there could be any developmental stage-specific vulnerability to RF-EMR, the exposure was initiated at three different time points: 1hpf, 6hpf and 24hpf of ZE development. Observations revealed no significant changes in the survival rate, morphology, oxidative stress or cortisol levels. However, statistically significant variations were observed in the batch where exposure started at 1hpf, with respect to locomotion patterns (distance travelled: 659.1 ± 173.1 mm Vs 963.5 ± 200.4 mm), which could be correlated to anxiety-like behavior; along with a corresponding increase in yolk consumption (yolk sac area: 0.251 ± 0.019 mm2 Vs 0.225 ± 0.018 mm2). Therefore, we conclude that RF-EMR exposure influences the organism maximally during the earliest stage of development, and we also believe that an increase in the time of exposure (corresponding to the patterns of current usage of mobile phones) might reveal added afflictions.
Collapse
Affiliation(s)
- Rifat Khira
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Gowri K Uggini
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
4
|
Katirci E, Kirimlioglu E, Oflamaz AO, Hidisoglu E, Cernomorcenco A, Yargıcoğlu P, Ozen S, Demir N. Expression levels of tam receptors and ligands in the testes of rats exposed to short and middle-term 2100 MHz radiofrequency radiation. Bioelectromagnetics 2024; 45:235-248. [PMID: 38725116 DOI: 10.1002/bem.22504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 06/18/2024]
Abstract
With advances in technology, the emission of radiofrequency radiation (RFR) into the environment, particularly from mobile devices, has become a growing concern. Tyro 3, Axl, and Mer (TAM) receptors and their ligands are essential for spermatogenesis and testosterone production. RFR has been shown to induce testicular cell apoptosis by causing inflammation and disrupting homeostasis. This study aimed to investigate the role of TAM receptors and ligands in the maintenance of homeostasis and elimination of apoptotic cells in the testes (weeks), short-term sham exposure (sham/1 week), and middle-term sham exposure (sham/10 weeks). Testicular morphology was assessed using hematoxylin-eosin staining, while immunohistochemical staining was performed to assess expression levels of TAM receptors and ligands in the testes of all groups. The results showed that testicular morphology was normal in the control, sham/1 week, and sham/10 weeks groups. However, abnormal processes of spermatogenesis and seminiferous tubule morphology were observed in RFR exposure groups. Cleaved Caspase 3 immunoreactivity showed statistically significant difference in 1 and 10 weeks exposure groups compared to control group. Moreover, there was no significant difference in the immunoreactivity of Tyro 3, Axl, Mer, Gas 6, and Pros 1 between groups. Moreover, Tyro 3 expression in Sertoli cells was statistically significantly increased in RFR exposure groups compared to the control. Taken together, the results suggest that RFR exposure negatively affects TAM signalling, preventing the clearance of apoptotic cells, and this process may lead to infection and inflammation. As a result, rat testicular morphology and function may be impaired.
Collapse
Affiliation(s)
- Ertan Katirci
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Esma Kirimlioglu
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Asli O Oflamaz
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Enis Hidisoglu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
- Department of Biophysics, Faculty of Medicine, Izmir Bakircay University, Izmir, Turkey
- Department of Drug Science and Technology, Universityof Turin, Turin, Italy
| | - Alexandra Cernomorcenco
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Piraye Yargıcoğlu
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Akdeniz University Faculty of Engineering, Antalya, Turkey
| | - Necdet Demir
- Department of Histology and Embryology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
5
|
Sun C, Zhu L, Qin H, Su H, Zhang J, Wang S, Xu X, Zhao Z, Mao G, Chen J. Inhibition of mitochondrial calcium uptake by Ru360 enhances the effect of 1800 MHz radio-frequency electromagnetic fields on DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115472. [PMID: 37716072 DOI: 10.1016/j.ecoenv.2023.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Today, the existence of radio-frequency electromagnetic fields (RF-EMF) emitted from cell phones, wireless routers, base stations, and other sources are everywhere around our living environment, and the dose is increasing. RF-EMF have been reported to be cytotoxic and supposed to be a risk factor for various human diseases, thus, more attention is necessary. In recent years, interfere with mitochondrial calcium uptake by using mitochondrial calcium uniporter (MCU) inhibitor were suggested to be potential clinical treatment in mitochondrial calcium overload diseases, like neurodegeneration, ischemia/reperfusion injury, and cancer, but whether this approach increases the health risk of RF-EMF exposure are unknown. To address our concern, we did a preliminary study to determine whether inhibition of MCU will increase the genotoxicity of RF-EMF exposure in cells, and found that short-time (15 min) exposure to 1800 MHz RF-EMF induced significant DNA damage and cell apoptosis in mouse embryonic fibroblasts (MEFs) treated with Ruthenium 360 (Ru360), a specific inhibitor of MCU, but no significant effects on cell cycle, cell proliferation, or cell viability were observed. In conclusion, our results indicated that inhibiting MCU increases the genotoxicity of RF-EMF exposure, and more attention needs to be paid to the possible health impact of RF-EMF exposure under these treatments.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Longtao Zhu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Houbing Qin
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huili Su
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Jun Chen
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
6
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
7
|
Yadav H, Sharma RS, Singh R. Immunotoxicity of radiofrequency radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119793. [PMID: 35863710 DOI: 10.1016/j.envpol.2022.119793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | | | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
8
|
Belpomme D, Irigaray P. Why electrohypersensitivity and related symptoms are caused by non-ionizing man-made electromagnetic fields: An overview and medical assessment. ENVIRONMENTAL RESEARCH 2022; 212:113374. [PMID: 35537497 DOI: 10.1016/j.envres.2022.113374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Much of the controversy over the cause of electrohypersensitivity (EHS) lies in the absence of recognized clinical and biological criteria for a widely accepted diagnosis. However, there are presently sufficient data for EHS to be acknowledged as a distinctly well-defined and objectively characterized neurologic pathological disorder. Because we have shown that 1) EHS is frequently associated with multiple chemical sensitivity (MCS) in EHS patients, and 2) that both individualized disorders share a common pathophysiological mechanism for symptom occurrence; it appears that EHS and MCS can be identified as a unique neurologic syndrome, regardless their causal origin. In this overview we distinguish the etiology of EHS itself from the environmental causes that trigger pathophysiological changes and clinical symptoms after EHS has occurred. Contrary to present scientifically unfounded claims, we indubitably refute the hypothesis of a nocebo effect to explain the genesis of EHS and its presentation. We as well refute the erroneous concept that EHS could be reduced to a vague and unproven "functional impairment". To the contrary, we show here there are objective pathophysiological changes and health effects induced by electromagnetic field (EMF) exposure in EHS patients and most of all in healthy subjects, meaning that excessive non-thermal anthropogenic EMFs are strongly noxious for health. In this overview and medical assessment we focus on the effects of extremely low frequencies, wireless communications radiofrequencies and microwaves EMF. We discuss how to better define and characterize EHS. Taken into consideration the WHO proposed causality criteria, we show that EHS is in fact causally associated with increased exposure to man-made EMF, and in some cases to marketed environmental chemicals. We therefore appeal to all governments and international health institutions, particularly the WHO, to urgently consider the growing EHS-associated pandemic plague, and to acknowledge EHS as a mainly new real EMF causally-related pathology.
Collapse
Affiliation(s)
- Dominique Belpomme
- Medical Oncology Department, Paris University, Paris, France; European Cancer and Environment Research Institute (ECERI), Brussels, Belgium.
| | - Philippe Irigaray
- European Cancer and Environment Research Institute (ECERI), Brussels, Belgium
| |
Collapse
|
9
|
Guo L, Azam SR, Guo Y, Liu D, Ma H. Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108496] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Kim WS, Khot MI, Woo HM, Hong S, Baek DH, Maisey T, Daniels B, Coletta PL, Yoon BJ, Jayne DG, Park SI. AI-enabled, implantable, multichannel wireless telemetry for photodynamic therapy. Nat Commun 2022; 13:2178. [PMID: 35449140 PMCID: PMC9023557 DOI: 10.1038/s41467-022-29878-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Photodynamic therapy (PDT) offers several advantages for treating cancers, but its efficacy is highly dependent on light delivery to activate a photosensitizer. Advances in wireless technologies enable remote delivery of light to tumors, but suffer from key limitations, including low levels of tissue penetration and photosensitizer activation. Here, we introduce DeepLabCut (DLC)-informed low-power wireless telemetry with an integrated thermal/light simulation platform that overcomes the above constraints. The simulator produces an optimized combination of wavelengths and light sources, and DLC-assisted wireless telemetry uses the parameters from the simulator to enable adequate illumination of tumors through high-throughput (<20 mice) and multi-wavelength operation. Together, they establish a range of guidelines for effective PDT regimen design. In vivo Hypericin and Foscan mediated PDT, using cancer xenograft models, demonstrates substantial suppression of tumor growth, warranting further investigation in research and/or clinical settings.
Collapse
Affiliation(s)
- Woo Seok Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - M Ibrahim Khot
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Hyun-Myung Woo
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Sungcheol Hong
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Dong-Hyun Baek
- Department of Display and Semiconductor Engineering, Sun Moon University, Asan-si, Republic of Korea
| | - Thomas Maisey
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Brandon Daniels
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - P Louise Coletta
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA.
| | - David G Jayne
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Sung Il Park
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
11
|
Liu Y, Zhang S, Fang H, Wang Q, Jiang S, Zhang C, Qiu P. Inactivation of antibiotic resistant bacterium Escherichia coli by electrochemical disinfection on molybdenum carbide electrode. CHEMOSPHERE 2022; 287:132398. [PMID: 34597647 DOI: 10.1016/j.chemosphere.2021.132398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic-resistant bacteria (ARB) pose a substantial threat to public health worldwide. Electrochemistry, as a low energy consumption and environmentally friendly technique, is ideal for inactivating ARB. This study explored the utility of electrochemical disinfection (ED) for inactivating ARB (Escherichia coli K-12 LE392 resistant to kanamycin, tetracycline, and ampicillin) and the regrowth potential of the treated ARB. The results revealed that 5.12-log ARB removal was achieved within 30 min of applying molybdenum carbide as the anode and cathode material under a voltage of 2.0 V. No ARB regrowth was observed in the cathode chamber after 60 min of incubation in unselective broth, demonstrating that the process in the cathode chamber was more effective for permanent inactivation of ARB. The mechanisms underlying the ARB inactivation were verified based on intercellular reactive oxygen species (ROS) measurement, membrane integrity detection, and genetic damage assessment. Higher ROS production and membrane permeability were observed in the cathode and anode groups (p < 0.001) compared to the control group (0 V). In addition, the DNA was more likely to be damaged during the ED process. Collectively, our results demonstrate that ED is a promising technology for disinfecting water to prevent the spread of ARB.
Collapse
Affiliation(s)
- Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shan Jiang
- South China Institute of Environmental Science, MEE, China
| | - Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
12
|
Methodology of Studying Effects of Mobile Phone Radiation on Organisms: Technical Aspects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312642. [PMID: 34886365 PMCID: PMC8656635 DOI: 10.3390/ijerph182312642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022]
Abstract
The negative influence of non-ionizing electromagnetic radiation on organisms, including humans, has been discussed widely in recent years. This paper deals with the methodology of examining possible harmful effects of mobile phone radiation, focusing on in vivo and in vitro laboratory methods of investigation and evaluation and their main problems and difficulties. Basic experimental parameters are summarized and discussed, and recent large studies are also mentioned. For the laboratory experiments, accurate setting and description of dosimetry are essential; therefore, we give recommendations for the technical parameters of the experiments, especially for a well-defined source of radiation by Software Defined Radio.
Collapse
|
13
|
Rivera González MX, Félix González N, López I, Ochoa Zambrano JS, Miranda Martínez A, Maestú Unturbe C. Compact Exposimeter Device for the Characterization and Recording of Electromagnetic Fields from 78 MHz to 6 GHz with Several Narrow Bands (300 kHz). SENSORS (BASEL, SWITZERLAND) 2021; 21:7395. [PMID: 34770707 PMCID: PMC8588337 DOI: 10.3390/s21217395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022]
Abstract
A novel compact device with spectrum analyzer characteristics has been designed, which allows the measuring of the maximum power received in multiple narrow frequency bands of 300 kHz, recording the entire spectrum from 78 MHz to 6 GHz; the device is capable of measuring the entire communications spectrum and detecting multiple sources of electromagnetic fields using the same communications band. The proposed device permits the evaluation of the cross-talk effect that, in conventional exposimeters, generates a mistake estimation of electromagnetic fields. The device was calibrated in an anechoic chamber for far-fields and was validated against a portable spectrum analyzer in a residential area. A strong correlation between the two devices with a confidence higher than 95% was obtained; indicating that the device could be considered as an important tool for electromagnetic field studies.
Collapse
Affiliation(s)
- Marco Xavier Rivera González
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Nazario Félix González
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Isabel López
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | | | - Andrés Miranda Martínez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
| | - Ceferino Maestú Unturbe
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (N.F.G.); (I.L.); (A.M.M.); (C.M.U.)
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| |
Collapse
|
14
|
Panagopoulos DJ, Karabarbounis A, Yakymenko I, Chrousos GP. Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 2021; 59:92. [PMID: 34617575 PMCID: PMC8562392 DOI: 10.3892/ijo.2021.5272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
Collapse
Affiliation(s)
- Dimitris J. Panagopoulos
- Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research 'Demokritos', 15310 Athens, Greece
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Electromagnetic Field-Biophysics Research Laboratory, 10681 Athens, Greece
| | - Andreas Karabarbounis
- Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Igor Yakymenko
- Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine
- Department of Public Health, Kyiv Medical University, 02000 Kyiv, Ukraine
| | - George P. Chrousos
- Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Tyagi A, Prasad AK, Bhatia D. Effects of excessive use of mobile phone technology in India on human health during COVID-19 lockdown. TECHNOLOGY IN SOCIETY 2021; 67:101762. [PMID: 34566205 PMCID: PMC8456111 DOI: 10.1016/j.techsoc.2021.101762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The global health crisis in the form of COVID-19 has forced people to shift their routine activities into a remote environment with the help of technology. The outbreak of the COVID-19 has caused several organizations to be shut down and forced them to initiate work from home employing technology. Now more than ever, it's important for people and institutions to understand the impact of excessive use of mobile phone technology and electronic gadgets on human health, cognition, and behavior. It is important to understand their perspective and how individuals are coping with this challenge in the wake of the COVID-19 pandemic. The investigation is an effort to answer the research question: whether dependency on technology during lockdown has more effects on human health in comparison to normal times. METHODS The study included participants from India (n = 122). A questionnaire was framed and the mode of conducting the survey chosen was online to maintain social distancing during the time of the Pandemic. The gathered data was statistically analysed employing RStudio and multiple regression techniques. RESULTS The statistical analysis confirms that lockdown scenarios have led to an increase in the usage of mobile phone technology which has been confirmed by around 90% of participants. Moreover, 95% of the participants perceive an increased risk of developing certain health problems due to excessive usage of mobile phones and technology. It has been evaluated that participants under the age group 15-30 years are highly affected (45.9%) during lockdown due to excessive dependence on technology. And, amongst different professions, participants involved in online teaching-learning are the most affected (42.6%). CONCLUSION The findings indicate that dependency on technology during lockdown has more health effects as compared to normal times. So, it is suggested that as more waves of pandemics are being predicted, strategies should be planned to decrease the psychological and physiological effects of the overuse of technology during lockdown due to pandemics. As the lockdown situation unfolds, people and organization functioning styles should be rolled back to the limited dependency on technology.
Collapse
Affiliation(s)
- Aruna Tyagi
- Department of Electronics and Communication Engineering, Ajay Kumar Garg Engineering College, Ghaziabad, 201009, India
| | - Anoop Kumar Prasad
- Department of Computer Science and Engineering, Royal School of Engineering and Technology, Guwahati, Assam, India
| | - Dinesh Bhatia
- Department of Biomedical Engineering, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| |
Collapse
|
16
|
Georgiou CD, Margaritis LH. Oxidative Stress and NADPH Oxidase: Connecting Electromagnetic Fields, Cation Channels and Biological Effects. Int J Mol Sci 2021; 22:10041. [PMID: 34576203 PMCID: PMC8470280 DOI: 10.3390/ijms221810041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Electromagnetic fields (EMFs) disrupt the electrochemical balance of biological membranes, thereby causing abnormal cation movement and deterioration of the function of membrane voltage-gated ion channels. These can trigger an increase of oxidative stress (OS) and the impairment of all cellular functions, including DNA damage and subsequent carcinogenesis. In this review we focus on the main mechanisms of OS generation by EMF-sensitized NADPH oxidase (NOX), the involved OS biochemistry, and the associated key biological effects.
Collapse
Affiliation(s)
- Christos D. Georgiou
- Department of Biology, Section of Genetics, Cell & Developmental Biology, University of Patras, 10679 Patras, Greece;
| | - Lukas H. Margaritis
- Section of Cell Biology and Biophysics, Department of Biology, National and Kapodistrian University of Athens, 26504 Athens, Greece
| |
Collapse
|
17
|
Khorram FS, Mehdipour A, Moghadam-Ahmadi A, Farahmand H, Askari A, Moosavi SM, Shabanizadeh A, Parsi M, Arababadi MK. Brain magnetic resonance imaging without contrast significantly increased serum levels of IL-6, but not IL-10, IL-17A and TGF-β. Brain Inj 2021; 35:1451-1456. [PMID: 34495795 DOI: 10.1080/02699052.2021.1972446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality. However, the effects of MRI on the immune system in the in vivo conditions are yet to be clarified. In this study we explored the effects of routine brain MRI on the protein and mRNA peripheral blood levels of interleukin-6 (IL-6), IL-10, IL-17A and transforming growth factor-beta (TGF-β).Material and methods: 40 subjects, who referred for brain MRI, were entered for evaluating effects of routine brain MRI on the protein and mRNA peripheral blood levels of IL-6, IL-10, IL-17A and TGF-β. Accordingly, peripheral blood were collected before and 3 hours after MRI from the participants. Protein levels of the cytokines were evaluated using ELISA. Also, mRNA levels were analyzed using Real-Time PCR techniques.Results: Brain MRI without contrast led to an increase in protein levels of IL-6 in the peripheral serum, but did not change protein and mRNA levels of IL-10, IL-17A and TGF-β. IL-6 mRNA levels after MRI were higher in the participants with mild anxiety compared to those without anxiety.Conclusion: brain MRI without contrast can induce secretion of IL-6 and may be associated with its functions, such as development of plasma cells or induction of inflammation.
Collapse
Affiliation(s)
- Faezeh-Sadat Khorram
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Radiology, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Mehdipour
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Radiology, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Moghadam-Ahmadi
- Non-Communicable Diseases Research Center. Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department Neurology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Habib Farahmand
- Non-Communicable Diseases Research Center. Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department Radiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azadeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Seyed Mohsen Moosavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Shabanizadeh
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Anatomy, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoumeh Parsi
- Geriatric Care Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Radiology, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
18
|
Jalali AH, Mozdarani H, Ghanaati H. The Effect of Contrast Enhanced Abdominopelvic Magnetic Resonance Imaging on Expression and Methylation Level of ATM and AKT Genes. CELL JOURNAL 2021; 23:335-340. [PMID: 34308577 PMCID: PMC8286456 DOI: 10.22074/cellj.2021.7258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/28/2019] [Indexed: 11/12/2022]
Abstract
Objective To evaluate the effect of contrast enhanced abdominopelvic magnetic resonance imaging (MRI), using a 3 Tesla
scanner, on expression and methylation level of ATM and AKT genes in human peripheral blood lymphocytes. Materials and Methods In this prospective in vivo study, blood samples were obtained from 20 volunteer patients with mean
age of 43 ± 8 years (range 32-68 years) before contrast enhanced MRI, 2 hours and 24 hours after contrast enhanced abdominopelvic
3 Tesla MRI. After separation of mononuclear cells from peripheral blood, using Ficoll-Hypaque, we analyzed gene expression
changes of ATM and AKT genes 2 hours and 24 hours after MRI using quantitative reverse transcription polymerase chain reaction
(qRT-PCR). We also evaluated methylation percentage of the above mentioned genes in before, 2 hours and 24 hours after MRI,
using MethySYBR method.
Results Fold change analysis, in comparison with the baseline, respectively showed 1.1 ± 0.7 and 0.8 ± 0.5 mean of gene
expressions in 2 and 24 hours after MRI for ATM, while the results were 1.4 ± 0.6 and 1.4 ± 1 for AKT (P>0.05). Methylation of
the ATM gene promoter were 8.8 ± 1.5%, 9 ± 0.6% and 9 ± 0.8% in before contrast enhanced MRI, 2 and 24 hours after contrast
enhanced MRI, respectively (P>0.05). Methylation of AKT gene promoter in before contrast enhanced MRI, 2 hours and 24 hours
after contrast enhanced MRI was 5.4 ± 2.5, 5 ± 3.2, 4.9 ± 2.9 respectively (P>0.05). Conclusion Contrast enhanced abdominopelvic MRI using 3 Tesla scanner apparently has no negative effect on the expression
and promoter methylation level of ATM and AKT genes involved in the repair pathways of genome.
Collapse
Affiliation(s)
- Amir Hossein Jalali
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Ghanaati
- Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Uche UI, Naidenko OV. Development of health-based exposure limits for radiofrequency radiation from wireless devices using a benchmark dose approach. Environ Health 2021; 20:84. [PMID: 34273995 PMCID: PMC8286570 DOI: 10.1186/s12940-021-00768-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/01/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Epidemiological studies and research on laboratory animals link radiofrequency radiation (RFR) with impacts on the heart, brain, and other organs. Data from the large-scale animal studies conducted by the U.S. National Toxicology Program (NTP) and the Ramazzini Institute support the need for updated health-based guidelines for general population RFR exposure. OBJECTIVES The development of RFR exposure limits expressed in whole-body Specific Absorption Rate (SAR), a metric of RFR energy absorbed by biological tissues. METHODS Using frequentist and Bayesian averaging modeling of non-neoplastic lesion incidence data from the NTP study, we calculated the benchmark doses (BMD) that elicited a 10% response above background (BMD10) and the lower confidence limits on the BMD at 10% extra risk (BMDL10). Incidence data for individual neoplasms and combined tumor incidence were modeled for 5% and 10% response above background. RESULTS Cardiomyopathy and increased risk of neoplasms in male rats were the most sensitive health outcomes following RFR exposures at 900 MHz frequency with Code Division Multiple Access (CDMA) and Global System for Mobile Communications (GSM) modulations. BMDL10 for all sites cardiomyopathy in male rats following 19 weeks of exposure, calculated with Bayesian model averaging, corresponded to 0.27-0.42 W/kg whole-body SAR for CDMA and 0.20-0.29 W/kg for GSM modulation. BMDL10 for right ventricle cardiomyopathy in female rats following 2 years of exposure corresponded to 2.7-5.16 W/kg whole-body SAR for CDMA and 1.91-2.18 W/kg for GSM modulation. For multi-site tumor modeling using the multistage cancer model with a 5% extra risk, BMDL5 in male rats corresponded to 0.31 W/kg for CDMA and 0.21 W/kg for GSM modulation. CONCLUSION BMDL10 range of 0.2-0.4 W/kg for all sites cardiomyopathy in male rats was selected as a point of departure. Applying two ten-fold safety factors for interspecies and intraspecies variability, we derived a whole-body SAR limit of 2 to 4 mW/kg, an exposure level that is 20-40-fold lower than the legally permissible level of 0.08 W/kg for whole-body SAR under the current U.S. regulations. Use of an additional ten-fold children's health safety factor points to a whole-body SAR limit of 0.2-0.4 mW/kg for young children.
Collapse
Affiliation(s)
- Uloma Igara Uche
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA.
| | - Olga V Naidenko
- Environmental Working Group, 1250 I Street NW, Suite 1000, Washington, DC, 20005, USA
| |
Collapse
|
20
|
Ioniţă E, Marcu A, Temelie M, Savu D, Şerbănescu M, Ciubotaru M. Radiofrequency EMF irradiation effects on pre-B lymphocytes undergoing somatic recombination. Sci Rep 2021; 11:12651. [PMID: 34135382 PMCID: PMC8208969 DOI: 10.1038/s41598-021-91790-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Intense electromagnetic fields (EMFs) induce DNA double stranded breaks (DSBs) in exposed lymphocytes.We study developing pre-B lymphocytes following V(D)J recombination at their Immunoglobulin light chain loci (IgL). Recombination physiologically induces DNA DSBs, and we tested if low doses of EMF irradiation affect this developmental stage. Recombining pre-B cells, were exposed for 48 h to low intensity EMFs (maximal radiative power density flux S of 9.5 µW/cm2 and electric field intensity 3 V/m) from waves of frequencies ranging from 720 to 1224 MHz. Irradiated pre-B cells show decreased levels of recombination, reduction which is dependent upon the power dose and most remarkably upon the frequency of the applied EMF. Although 50% recombination reduction cannot be obtained even for an S of 9.5 µW/cm2 in cells irradiated at 720 MHz, such an effect is reached in cells exposed to only 0.45 µW/cm2 power with 950 and 1000 MHz waves. A maximal four-fold recombination reduction was measured in cells exposed to 1000 MHz waves with S from 0.2 to 4.5 µW/cm2 displaying normal levels of γH2AX phosphorylated histone. Our findings show that developing B cells exposure to low intensity EMFs can affect the levels of production and diversity of their antibodies repertoire.
Collapse
Affiliation(s)
- Elena Ioniţă
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania.,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania
| | - Aurelian Marcu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihaela Temelie
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Diana Savu
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania
| | - Mihai Şerbănescu
- Center for Advanced Laser Technologies, National Institute for Laser Plasma and Radiation Physics, 077125, Măgurele, Ilfov, Romania
| | - Mihai Ciubotaru
- Department of Physics of Life and Environmental Sciences, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125, Măgurele, Ilfov, Romania. .,Department of Immunology, Internal Medicine, Colentina Clinical Hospital, 72202, Bucharest, Romania.
| |
Collapse
|
21
|
The Protective Effects of EMF-LTE against DNA Double-Strand Break Damage In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22105134. [PMID: 34066270 PMCID: PMC8152012 DOI: 10.3390/ijms22105134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
With the rapid growth of the wireless communication industry, humans are extensively exposed to electromagnetic fields (EMF) comprised of radiofrequency (RF). The skin is considered the primary target of EMFs given its outermost location. Recent evidence suggests that extremely low frequency (ELF)-EMF can improve the efficacy of DNA repair in human cell-lines. However, the effects of EMF-RF on DNA damage remain unknown. Here, we investigated the impact of EMF-long term evolution (LTE, 1.762 GHz, 8 W/kg) irradiation on DNA double-strand break (DSB) using the murine melanoma cell line B16 and the human keratinocyte cell line HaCaT. EMF-LTE exposure alone did not affect cell viability or induce apoptosis or necrosis. In addition, DNA DSB damage, as determined by the neutral comet assay, was not induced by EMF-LTE irradiation. Of note, EMF-LTE exposure can attenuate the DNA DSB damage induced by physical and chemical DNA damaging agents (such as ionizing radiation (IR, 10 Gy) in HaCaT and B16 cells and bleomycin (BLM, 3 μM) in HaCaT cells and a human melanoma cell line MNT-1), suggesting that EMF-LTE promotes the repair of DNA DSB damage. The protective effect of EMF-LTE against DNA damage was further confirmed by attenuation of the DNA damage marker γ-H2AX after exposure to EMF-LTE in HaCaT and B16 cells. Most importantly, irradiation of EMF-LTE (1.76 GHz, 6 W/kg, 8 h/day) on mice in vivo for 4 weeks reduced the γ-H2AX level in the skin tissue, further supporting the protective effects of EMF-LTE against DNA DSB damage. Furthermore, p53, the master tumor-suppressor gene, was commonly upregulated by EMF-LTE irradiation in B16 and HaCaT cells. This finding suggests that p53 plays a role in the protective effect of EMF-LTE against DNA DSBs. Collectively, these results demonstrated that EMF-LTE might have a protective effect against DNA DSB damage in the skin, although further studies are necessary to understand its impact on human health.
Collapse
|
22
|
Jalilian H, Najafi K, Khosravi Y, Röösli M. Amyotrophic lateral sclerosis, occupational exposure to extremely low frequency magnetic fields and electric shocks: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:129-142. [PMID: 32946420 DOI: 10.1515/reveh-2020-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to extremely low frequency magnetic fields (ELF-MF) and electric shocks occurs in many workplaces and occupations but it is unclear whether any of these exposures cause Amyotrophic lateral sclerosis (ALS). The aim of this systematic review and meta-analysis is to explore whether occupational exposure to ELF-MF and/or electric shocks are risk factor for ALS. We searched PubMed, Embase, and Web of Science databases up to the end of 2019. Pooled risk estimates were calculated using random-effects meta-analysis including exploration of the sources of heterogeneity between studies and publication bias. Twenty-seven publications fulfilled the inclusion criteria. We found a weak, significant, association between occupational exposure to ELF-MF and the risk of ALS (RRPooled estimate: 1.20; 95%CI: 1.05, 1.38) with moderate to high heterogeneity (I2=66.3%) and indication of publication bias (PEgger's test=0.03). No association was observed between occupational exposure to electric shocks and risk of ALS (RRPooled estimate: 0.97; 95%CI: 0.80, 1.17) with high heterogeneity (I2=80.5%), and little indication for publication bias (PEgger's test=0.24). The findings indicate that occupational exposure to ELF-MF, but not electric shocks, might be a risk factor for ALS. However, given the moderate to high heterogeneity and potential publication bias, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health and Safety Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Kamran Najafi
- Student Research Committee, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Yahya Khosravi
- Department of Occupational Health and Safety Engineering, School of Health, Research Center for Health, Safety and Environment, Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Gunes M, Ates K, Yalcin B, Akkurt S, Ozen S, Kaya B. An Evaluation of the Genotoxic Effects of Electromagnetic Radiation at 900 MHz, 1800 MHz, and 2100 MHz Frequencies with a SMART Assay in Drosophila melanogaster. Electromagn Biol Med 2021; 40:254-263. [PMID: 33622140 DOI: 10.1080/15368378.2021.1878210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With the development of today's technology, the electromagnetic radiation spread by mobile phones and base stations is also rapidly increasing, and this causes serious concerns about the environment and human health. The Drosophila model organism is widely used in genetic toxicology studies because its genome is highly similar to the genes identified in human diseases. In this study, the genotoxic effects of radiofrequency electromagnetic radiation were evaluated by the wing Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster at 900 MHz, 1800 MHz, and 2100 MHz. The SMART method is based on the observation of genetic changes occurring in the trichomes of the Drosophila wings appearing as mutant clones under the microscope. Throughout the study, total clone parameters were evaluated by exposing the Drosophila larvae to electromagnetic fields for two, four, and six hours per day for two days. As a result of the study, it was observed that the number of mutant clones was statistically increased according to the negative control group in all applications except for the six-hour application at 1800 MHz.
Collapse
Affiliation(s)
- Merve Gunes
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Kayhan Ates
- Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Burcin Yalcin
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Sibel Akkurt
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Bulent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Wongkasem N. Electromagnetic pollution alert: Microwave radiation and absorption in human organs and tissues. Electromagn Biol Med 2021; 40:236-253. [PMID: 33566706 DOI: 10.1080/15368378.2021.1874976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Electromagnetic radiation from communication and electronic devices, networks, systems and base stations has drawn concern due to excessive global usage with increasing power and operating frequency level. Numerous previous researches only focus on how the radiation from certain frequency ranges of particular devices could harm specific human organs and tissues, resulting in distinct symptoms. In this research, electromagnetic propagation and properties in 14 human organs and tissues were analyzed and investigated based on the organs and tissues' electromagnetic and mechanical parameters, and chemical composition. Counting the organs and tissues as electromagnetic materials, their permittivity and conductivity, computed by a 4-Cole-Cole mode, directly respective to the operating frequency, are interrelated to wave behavior and hence influence the organs' response. Tests were conducted in 1 GHz to 105 GHz system settings, covering most microwave frequency uses: 2.4 GHz of 4G-LTE, Wi-Fi, Bluetooth, ZigBee and the 5G ranges: 28 GHz of 5G-mmW and 95 GHz of 5G-IoT. Trial human organs and tissues were placed in the wave propagation direction of 2.4 GHz and 28 GHz dipole antennas, and a waveguide port operating from 95 to 105 GHz. The quantitative data on the effects of 5G penetration and dissipation within human tissues are presented. The absorbance in all organs and tissues is significantly higher as frequency increases. As the wave enters the organ-tissue model, the wavelength is shortened due to the high organ-tissue permittivity. Skin-Bone-Brain layer simulation results demonstrate that both electric and magnetic fields vanish before passing the brain layer at all three focal frequencies of 2.4 GHz, 28 GHz and 100 GHz.
Collapse
Affiliation(s)
- Nantakan Wongkasem
- Department of Electrical and Computer Engineering, College of Engineering and Computer Science, the University of Texas Rio Grande Valley, Edinburg, Texas, USA
| |
Collapse
|
25
|
Delen K, Sırav B, Oruç S, Seymen CM, Kuzay D, Yeğin K, Take Kaplanoğlu G. Effects of 2600 MHz Radiofrequency Radiation in Brain Tissue of Male Wistar Rats and Neuroprotective Effects of Melatonin. Bioelectromagnetics 2021; 42:159-172. [PMID: 33440456 DOI: 10.1002/bem.22318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 02/05/2023]
Abstract
The debate on the biological effects of radiofrequency radiation (RFR) still continues due to differences in the design of studies (frequency, power density, specific absorption rate [SAR], exposure duration, cell, tissue, or animal type). The current study aimed to investigate the effects of 2,600 MHz RFR and melatonin on brain tissue biochemistry and histology of male rats. Thirty-six rats were divided into six groups randomly: cage-control, sham, RFR, melatonin, sham melatonin, and RFR melatonin. In RFR groups, animals were exposed to 2,600 MHz RFR for 30 days (30 min/day, 5 days/week) and the melatonin group animals were subcutaneously injected with melatonin (7 days/week, 10 mg/kg/day) for 30 days. SAR in brain gray matter was calculated as 0.44 and 0.295 W/kg for 1 and 10 g averaging, respectively. RFR exposure decreased the GSH, GSH-Px, and SOD levels and increased the MPO, MDA, and NOx levels (P < 0.005) significantly. RFR exposure also led to an increase in structural deformation and apoptosis in the brain tissue. This study revealed that exogenous high-dose melatonin could reduce these adverse effects of RFR. Limiting RFR exposure as much as possible is recommended, and taking daily melatonin supplements may be beneficial. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Kevser Delen
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bahriye Sırav
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sinem Oruç
- Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cemile M Seymen
- Department of Histology and Embryology Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Dilek Kuzay
- Department of Physiology, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Korkut Yeğin
- Department of Electrical and Electronics Engineering, Ege University, Izmir, Turkey
| | - Gülnur Take Kaplanoğlu
- Department of Histology and Embryology Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
26
|
Darvishi M, Mashati P, Kandala S, Paridar M, Takhviji V, Ebrahimi H, Zibara K, Khosravi A. Electromagnetic radiation: a new charming actor in hematopoiesis? Expert Rev Hematol 2021; 14:47-58. [PMID: 32951483 DOI: 10.1080/17474086.2020.1826301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Electromagnetic waves play indispensable roles in life. Many studies addressed the outcomes of Electromagnetic field (EMF) on various biological functions such as cell proliferation, gene expression, epigenetic alterations, genotoxic, and carcinogenic effects, and its therapeutic applications in medicine. The impact of EMF on bone marrow (BM) is of high importance; however, EMF effects on BM hematopoiesis are not well understood. AREAS COVERED Publications in English were searched in ISI Web of Knowledge and Google Scholar with no restriction on publication date. A literature review has been conducted on the consequences of EMF exposure on BM non-hematopoietic stem cells, mesenchymal stem cells, and the application of these waves in regenerative medicine. Human blood cells such as lymphocytes, red blood cells and their precursors are altered qualitatively and quantitatively following electromagnetic radiation. Therefore, studying the impact of EMF on related signaling pathways in hematopoiesis and hematopoietic stem cell (HSC) differentiation could give a better insight into its efficacy on hematopoiesis and its potential therapeutic usage. EXPERT OPINION In this review, authors evaluated the possible biologic consequences of EMF on the hematopoiesis process in addition to its probable application in the treatment of hematologic disorders.
Collapse
Affiliation(s)
- Mina Darvishi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pargol Mashati
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sahithi Kandala
- University of Colorado, Boulder Department: Electrical, Computer and Energy Engineering , Colarada, USA
| | - Mostafa Paridar
- Deputy of Management and Resources Development, Ministry of Health and Medical Education , Tehran, Iran
| | - Vahideh Takhviji
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Hossein Ebrahimi
- School of Nursing, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Kazem Zibara
- PRASE & Biology Department, Faculty of Sciences I, Lebanese University , Beirut, Lebanon
| | - Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
27
|
Yan H, Cui Z, Manoli T, Zhang H. Recent advances in non-thermal disinfection technologies in the food industry. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Han Yan
- School of Food Science, Henan Institute of Science and Technology
| | - ZhenKun Cui
- School of Food Science, Henan Institute of Science and Technology
| | - Tatiana Manoli
- Faculty of Technology and Commodity Science of Food Products and Food Business, Odessa National Academy of Food Technologies
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology
| |
Collapse
|
28
|
Kim K, Lee YS, Kim N, Choi HD, Kang DJ, Kim HR, Lim KM. Effects of Electromagnetic Waves with LTE and 5G Bandwidth on the Skin Pigmentation In Vitro. Int J Mol Sci 2020; 22:E170. [PMID: 33375304 PMCID: PMC7794711 DOI: 10.3390/ijms22010170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid growth of wireless communication devices, the influences of electromagnetic fields (EMF) on human health are gathering increasing attention. Since the skin is the largest organ of the body and is located at the outermost layer, it is considered a major target for the health effects of EMF. Skin pigmentation represents one of the most frequent symptoms caused by various non-ionizing radiations, including ultraviolet radiation, blue light, infrared, and extremely low frequency (ELF). Here, we investigated the effects of EMFs with long-term evolution (LTE, 1.762 GHz) and 5G (28 GHz) bandwidth on skin pigmentation in vitro. Murine and Human melanoma cells (B16F10 and MNT-1) were exposed to either LTE or 5G for 4 h per day, which is considered the upper bound of average smartphone use time. It was shown that neither LTE nor 5G exposure induced significant effects on cell viability or pigmentation. The dendrites of MNT-1 were neither lengthened nor regressed after EMF exposure. Skin pigmentation effects of EMFs were further examined in the human keratinocyte cell line (MNT-1-HaCaT) co-culture system, which confirmed the absence of significant hyper-pigmentation effects of LTE and 5G EMFs. Lastly, MelanoDerm™, a 3D pigmented human epidermis model, was irradiated with LTE (1.762 GHz) or 5G (28 GHz), and image analysis and special staining were performed. No changes in the brightness of MelanoDerm™ tissues were observed in LTE- or 5G-exposed tissues, except for only minimal changes in the size of melanocytes. Collectively, these results imply that exposure to LTE and 5G EMFs may not affect melanin synthesis or skin pigmentation under normal smartphone use condition.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Pharmacy, Ewha Womans University, Seodaemungu, Seoul 03760, Korea;
| | - Young Seung Lee
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Yuseong-gu, Daejeon 34129, Korea; (Y.S.L.); (H.-D.C.)
| | - Nam Kim
- Department of Computer and Communication Engineering, Chungbuk National University, Seowon-gu, Cheongju 28644, Korea;
| | - Hyung-Do Choi
- Radio & Satellite Research Division, Electronics and Telecommunications Research Institute, Yuseong-gu, Daejeon 34129, Korea; (Y.S.L.); (H.-D.C.)
| | - Dong-Jun Kang
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea; (D.-J.K.); (H.R.K.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam 31116, Korea; (D.-J.K.); (H.R.K.)
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seodaemungu, Seoul 03760, Korea;
| |
Collapse
|
29
|
Alkis ME, Akdag MZ, Dasdag S. Effects of Low-Intensity Microwave Radiation on Oxidant-Antioxidant Parameters and DNA Damage in the Liver of Rats. Bioelectromagnetics 2020; 42:76-85. [PMID: 33368426 DOI: 10.1002/bem.22315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/18/2020] [Accepted: 12/05/2020] [Indexed: 01/09/2023]
Abstract
The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low-intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague-Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham-control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and total oxidant-antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low-intensity MWR caused a significant increase in MDA, 8-OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole-body exposure to 1800 and 2100 MHz low-intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant-antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76-85. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Mehmet E Alkis
- Department of Occupational Health and Safety, Health School of Muş Alparslan University, Muş, Turkey
| | - Mehmet Z Akdag
- Department of Biophysics, Medical School of Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
30
|
Pardhiya S, Gaharwar US, Gautam R, Priyadarshini E, Nirala JP, Rajamani P. Cumulative effects of manganese nanoparticle and radiofrequency radiation in male Wistar rats. Drug Chem Toxicol 2020; 45:1395-1407. [DOI: 10.1080/01480545.2020.1833905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
31
|
|
32
|
Karimi A, Ghadiri Moghaddam F, Valipour M. Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol Biol Rep 2020; 47:5621-5633. [DOI: 10.1007/s11033-020-05563-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
33
|
Schuermann D, Ziemann C, Barekati Z, Capstick M, Oertel A, Focke F, Murbach M, Kuster N, Dasenbrock C, Schär P. Assessment of Genotoxicity in Human Cells Exposed to Modulated Electromagnetic Fields of Wireless Communication Devices. Genes (Basel) 2020; 11:E347. [PMID: 32218170 PMCID: PMC7230863 DOI: 10.3390/genes11040347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Modulated electromagnetic fields (wEMFs), as generated by modern communication technologies, have raised concerns about adverse health effects. The International Agency for Research on Cancer (IARC) classifies them as "possibly carcinogenic to humans" (Group 2B), yet, the underlying molecular mechanisms initiating and promoting tumorigenesis remain elusive. Here, we comprehensively assess the impact of technologically relevant wEMF modulations on the genome integrity of cultured human cells, investigating cell type-specificities as well as time- and dose-dependencies. Classical and advanced methodologies of genetic toxicology and DNA repair were applied, and key experiments were performed in two separate laboratories. Overall, we found no conclusive evidence for an induction of DNA damage nor for alterations of the DNA repair capacity in cells exposed to several wEMF modulations (i.e., GSM, UMTS, WiFi, and RFID). Previously reported observations of increased DNA damage after exposure of cells to GSM-modulated signals could not be reproduced. Experimental variables, presumably underlying the discrepant observations, were investigated and are discussed. On the basis of our data, we conclude that the possible carcinogenicity of wEMF modulations cannot be explained by an effect on genome integrity through direct DNA damage. However, we cannot exclude non-genotoxic, indirect, or secondary effects of wEMF exposure that may promote tumorigenesis in other ways.
Collapse
Affiliation(s)
- David Schuermann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Zeinab Barekati
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Myles Capstick
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
| | - Antje Oertel
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Frauke Focke
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| | - Manuel Murbach
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
| | - Niels Kuster
- IT’IS Foundation, Zeughausstrasse 43, CH-8004 Zurich, Switzerland; (M.C.); (M.M.); (N.K.)
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Strasse 1, D-30625 Hannover, Germany; (A.O.); (C.D.)
| | - Primo Schär
- Department of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland; (Z.B.); (F.F.); (P.S.)
| |
Collapse
|
34
|
Luo J, Li H, Deziel NC, Huang H, Zhao N, Ma S, Ni X, Udelsman R, Zhang Y. Genetic susceptibility may modify the association between cell phone use and thyroid cancer: A population-based case-control study in Connecticut. ENVIRONMENTAL RESEARCH 2020; 182:109013. [PMID: 31918310 PMCID: PMC7061309 DOI: 10.1016/j.envres.2019.109013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 05/17/2023]
Abstract
Emerging studies have provided evidence on the carcinogenicity of radiofrequency radiation (RFR) from cell phones. This study aims to test the genetic susceptibility on the association between cell phone use and thyroid cancer. Population-based case-control study was conducted in Connecticut between 2010 and 2011 including 440 thyroid cancer cases and 465 population-based controls with genotyping information for 823 single nucleotide polymorphisms (SNPs) in 176 DNA genes. We used multivariate unconditional logistic regression models to estimate the genotype-environment interaction between each SNP and cell phone use and to estimate the association with cell phone use in populations according to SNP variants. Ten SNPs had P < 0.01 for interaction in all thyroid cancers. In the common homozygote groups, no association with cell phone use was observed. In the variant group (heterozygotes and rare homozygotes), cell phone use was associated with an increased risk for rs11070256 (odds ratio (OR): 2.36, 95% confidence interval (CI): 1.30-4.30), rs1695147 (OR: 2.52, 95% CI: 1.30-4.90), rs6732673 (OR: 1.59, 95% CI: 1.01-2.49), rs396746 (OR: 2.53, 95% CI: 1.13-5.65), rs12204529 (OR: 2.62, 95% CI: 1.33-5.17), and rs3800537 (OR: 2.64, 95% CI: 1.30-5.36) with thyroid cancers. In small tumors, increased risk was observed for 5 SNPs (rs1063639, rs1695147, rs11070256, rs12204529 and rs3800537), In large tumors, increased risk was observed for 3 SNPs (rs11070256, rs1695147, and rs396746). Our result suggests that genetic susceptibilities modify the associations between cell phone use and risk of thyroid cancer. The findings provide more evidence for RFR carcinogenic group classification.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Hang Li
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Huang Huang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nan Zhao
- Peking Union Medical College Hospital, Beijing, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Xin Ni
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, China; Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Robert Udelsman
- Endocrine Neoplasm Institute, Miami Cancer Institute, Miami, FL, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Section of Surgical Outcomes and Epidemiology, Department of Surgery, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Multifunctional Stretchable Conductive Woven Fabric Containing Metal Wire with Durable Structural Stability and Electromagnetic Shielding in the X-Band. Polymers (Basel) 2020; 12:polym12020399. [PMID: 32050650 PMCID: PMC7077671 DOI: 10.3390/polym12020399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
Elastomeric, conductive composite yarns have recently received attention around the opportunity for them to offer special protective fields. A straightforward approach for fabricating tri-component elastic-conductive composite yarns (t-ECCYs) containing stainless steel wire (SSW) was proposed previously. This work mainly focuses on the electromagnetic shielding effectiveness (EMSE) of weft-stretchable woven fabric containing t-ECCY over the X-band under different testing conditions, e.g., single step-by-step elongation, cyclic stretch and lamination events. Results showed that a woven cotton fabric with weft yarn of t-ECCY not only exhibited superior weft stretch-ability to a higher elongation (>40%) compared with a pure cotton control but also had an acceptable 15-cyclic stability with 80% shape recovery retention. The t-ECCY weft fabric was effective in shielding electromagnetic radiation, and its EMSE was also enhanced at elevated elongations during stretch at parallel polarization of EM waves. There was also no decay in EMSE before and after the t-ECCY fabric was subject to 15 stretch cycles at extension of 20%. In addition, a 90° by 90° cross lamination of t-ECCY fabric remarkably improved the EMSE compared to a 0°/90° one. The scalable fabrication strategy and excellent EMSE seen in t-ECCY-incorporated fabrics represent a significant step forward in protective fields.
Collapse
|
36
|
Alkis ME, Akdag MZ, Dasdag S, Yegin K, Akpolat V. Single-strand DNA breaks and oxidative changes in rat testes exposed to radiofrequency radiation emitted from cellular phones. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1696702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Mehmet Esref Alkis
- Departmen of Occupational Health and Safety, Health School, Muş Alparslan University, Muş, Turkey
| | - Mehmet Zulkuf Akdag
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School, Istanbul Medeniyet University, Istanbul, Turkey
| | - Korkut Yegin
- Department of Electrical and Electronics Engineering, Engineering School, Ege University, Izmir, Turkey
| | - Veysi Akpolat
- Department of Biophysics, Medical School, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
37
|
Hansen CL, Hingorani R. LNT RIP: It is time to bury the linear no threshold hypothesis. J Nucl Cardiol 2019; 26:1358-1360. [PMID: 30761480 DOI: 10.1007/s12350-019-01646-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rittu Hingorani
- Thomas Jefferson University, 925 Chestnut St, Philadelphia, PA, 19107, USA
| |
Collapse
|
38
|
Wang P, Ma S, Ning G, Chen W, Wang B, Ye D, Chen B, Yang Y, Jiang Q, Gu N, Sun J. Entry-Prohibited Effect of kHz Pulsed Magnetic Field Upon Interaction Between SPIO Nanoparticles and Mesenchymal Stem Cells. IEEE Trans Biomed Eng 2019; 67:1152-1158. [PMID: 31369367 DOI: 10.1109/tbme.2019.2931774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The interaction between superparamagnetic iron oxide (SPIO) nanoparticles and mesenchymal stem cells (MSCs) in the presence of pulsed magnetic field (PMF) has become an important area of research in recent years. METHODS A parameter-adjustable pulsed magnetic field was developed based on the principle of insulated gate bipolar translator transistor-controlled discharge of large capacitances. The internalizations of SPIO nanoparticles by MSCs were investigated under the treatment of PMF in both intermittent stimulation mode and continuous stimulation mode. RESULTS The intensities and frequencies of pulsed magnetic field can be adjustable in the range of 1.9-4.6 mT and 3-5 kHz, respectively. This PMF was safe to the MSCs. However, the uptake of SPIO nanoparticles by MSCs was significantly prohibited under the treatment of kHz-ranged PMF while the 10 Hz PMF enhanced the cellular uptake of nanoparticles. This phenomenon was relative with the magnetic effect of the PMF with different frequency. CONCLUSION The PMF can be used to effectively regulate the cellular uptake of SPIO nanoparticles and the mechanism lies in the magnetic effect. SIGNIFICANCE The interaction between SPIO nanoparticles and the MSCs is a fundamental and important issue for nanomedicine and stem cell research. Our results demonstrate that the external magnetic field can be used to regulate their interaction. We believe that this safe, facile, and flexible method will greatly promote the development and clinical translation of regenerative medicine and nanomedicine.
Collapse
|
39
|
Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol Ther (Seoul) 2019; 27:265-275. [PMID: 30481957 PMCID: PMC6513191 DOI: 10.4062/biomolther.2018.152] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
40
|
Comparing DNA damage induced by mobile telephony and other types of man-made electromagnetic fields. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:53-62. [PMID: 31416578 DOI: 10.1016/j.mrrev.2019.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/04/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022]
Abstract
The number of studies showing adverse effects on living organisms induced by different types of man-made Electromagnetic Fields (EMFs) has increased tremendously. Hundreds of peer reviewed published studies show a variety of effects, the most important being DNA damage which is linked to cancer, neurodegenerative diseases, reproductive declines etc. Those studies that are far more effective in showing effects employ real-life Mobile Telephony (MT) exposures emitted by commercially available mobile phones. The present review - of results published by my group from 2006 until 2016 - compares DNA fragmentation induced by six different EMFs on the same biological system - the oogenesis of Drosophila melanogaster - under identical conditions and procedures. Such a direct comparison between different EMFs - especially those employed in daily life - on the same biological endpoint, is very useful for drawing conclusions on their bioactivity, and novel. It shows that real MT EMFs are far more damaging than 50 Hz alternating magnetic field (MF) - similar or much stronger to those of power lines - or a pulsed electric field (PEF) found before to increase fertility. The MT EMFs were significantly more bioactive even for much shorter exposure durations than the other EMFs. Moreover, they were more damaging than previously tested cytotoxic agents like certain chemicals, starvation, dehydration. Individual parameters of the real MT EMFs like intensity, frequency, exposure duration, polarization, pulsing, modulation, are discussed in terms of their role in bioactivity. The crucial parameter for the intense bioactivity seems to be the extreme variability of the polarized MT signals, mainly due to the large unpredictable intensity changes.
Collapse
|
41
|
Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med 2019; 38:32-47. [PMID: 30669883 DOI: 10.1080/15368378.2019.1567526] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ubiquitous and ever increasing use of mobile phones led to the growing concern about the effects of radiofrequency radiation (RFR) emitted by cell phones on biological systems. The aim of this study is to explore whether long-term RFR exposure at different frequencies affects DNA damage and oxidant-antioxidant parameters in the blood and brain tissue of rats. 28 male Sprague Dawley rats were randomly divided into four equal groups (n = 7). They were identified as Group 1: sham-control, Group 2: 900 MHz, Group 3: 1800 MHz, and Group 4: 2100 MHz. Experimental groups of rats were exposed to RFR 2 h/day for 6 months. The sham-control group of rats was subjected to the same experimental condition but generator was turned off. Specific absorption rates (SARs) at brain with 1 g average were calculated as 0.0845 W/kg, 0.04563 W/kg, and 0.03957, at 900 MHz, 1800 MHz, and 2100 MHz, respectively. Additionally, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), total antioxidant status (TAS), and total oxidant status (TOS) analyses were conducted in the brain tissue samples. Results of the study showed that DNA damage and oxidative stress indicators were found higher in the RFR exposure groups than in the sham-control group. In conclusion, 900-, 1800-, and 2100-MHz RFR emitted from mobile phones may cause oxidative damage, induce increase in lipid peroxidation, and increase oxidative DNA damage formation in the frontal lobe of the rat brain tissues. Furthermore, 2100-MHz RFR may cause formation of DNA single-strand breaks.
Collapse
Affiliation(s)
- Mehmet Esref Alkis
- a Department of Electronics , Engineering and Architecture Faculty of Mus Alparslan University , Mus , Turkey
| | - Hakki Murat Bilgin
- b Department of Physiology , Medical School of Dicle University , Diyarbakir , Turkey
| | - Veysi Akpolat
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| | - Suleyman Dasdag
- d Department of Biophysics , Medical School of Istanbul Medeniyet University , Istanbul , Turkey
| | - Korkut Yegin
- e Department of Electrical and Electronics Engineering , Ege University , Izmir , Turkey
| | - Mehmet Cihan Yavas
- f Department of Biophysics , Medical School of Ahi Evran University , Kirsehir , Turkey
| | - Mehmet Zulkuf Akdag
- c Department of Biophysics , Medical School of Dicle University , Diyarbakir , Turkey
| |
Collapse
|
42
|
Seif F, Reza Bayatiani M, Ansarihadipour H, Habibi G, Sadelaji S. Protective properties of Myrtus communis extract against oxidative effects of extremely low-frequency magnetic fields on rat plasma and hemoglobin. Int J Radiat Biol 2019; 95:215-224. [PMID: 30496018 DOI: 10.1080/09553002.2019.1542182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE This study investigates the protective properties of Myrtus communis extract against the oxidative effects of extremely low-frequency magnetic fields (ELFMF). Also, this study is aimed to analyze the conformational changes of hemoglobin, oxidative damages to plasma proteins and antioxidant power of plasma following exposure to ELFMF. MATERIALS AND METHODS Adult male rats were divided into 3 groups: (1) control, (2) ELFMF exposure, and (3) ELFMF exposure after M. communis extract administration. The magnetic field (0.7 mT, 50 Hz) was produced by a Helmholtz coil for one month, 2 hours a day. The M. communis extract was injected intraperitoneally at a dose of 0.5 mg/kg before exposure to ELFMF. The oxidative effects of ELFMF were studied by evaluating the hemoglobin, methemoglobin (metHb) and hemichrome levels, absorption spectrum of hemoglobin (200-700 nm), oxidative damage to plasma proteins by measuring protein carbonyl (PCO) levels and plasma antioxidant power according to the ferric reducing ability of plasma (FRAP). The mean and standard errors of the mean were determined for each group. One-way ANOVA analysis was used to compare the means of groups. The significance level was considered to be p < .05. Moreover, artificial neural network (ANN) analysis was used to identify the predictive parameters for estimating the oxyhemoglobin (oxyHb) concentration. RESULTS Exposure to ELFMF decreased the FRAP which was in concomitant with a significant increase in plasma PCO, metHb and hemichrome concentrations (p < .001). Oxidative modifications of Hb were shown by reduction in optical density at 340 nm (globin-heme interaction) and 420 nm (heme-heme interaction). Administration of M. communis extract increased FRAP values and decreased plasma POC, metHb, and hemichrome concentrations. Also, a significant increase in Hb absorbance at 340, 420, 542, and 577 nm showed the protective properties of M. communis extract against ELFMF-induced oxidative stress in erythrocytes. ANN analysis showed that optical absorption of hemoglobin at 520, 577, 542, and 630 nm and concentration of metHb and hemichrome were the most important parameters in predicting the oxyHb concentration. CONCLUSIONS Myrtus communis extract enhances the ability of erythrocytes and plasma to deal with oxidative conditions during exposure to ELFMF. Also, ANN analysis can predict the most important parameters in relation to Hb structure during oxidative stress.
Collapse
Affiliation(s)
- Fatemeh Seif
- a Department of Medical Physics and Radiotherapy , Arak University of Medical Sciences and Khansari Hospital , Arak , Iran
| | - Mohamad Reza Bayatiani
- a Department of Medical Physics and Radiotherapy , Arak University of Medical Sciences and Khansari Hospital , Arak , Iran
| | - Hadi Ansarihadipour
- b Department of Biochemistry and Genetics , Arak University of Medical Sciences , Arak , Iran
| | - Ghasem Habibi
- c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran
| | - Samira Sadelaji
- c Arak University of Medical Sciences, Infectious Diseases Research Center , Arak , Iran
| |
Collapse
|
43
|
Diab KA. The Impact of the Low Frequency of the Electromagnetic Field on Human. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1237:135-149. [PMID: 31376139 DOI: 10.1007/5584_2019_420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, there has been attention and controversial debate topic about the effect of low-frequency electromagnetic fields (EMFs) on human beings. The catalyst for public awareness initiated from the first epidemiological study in 1979 that reported an association between residential EMFs exposure and the incidence of childhood leukemia. For over 40 years, many epidemiological and laboratory investigations were conducted to identify the possible biological effects of low-frequency EMF. Several studies conducted at frequencies 50/60 Hz, which related to generating of electricity from electrical appliances. Experimental studies on low-frequency EMF have provided conflicting data under specific "in vivo" and "in vitro" environments. Some original papers have reported the damaging effect on DNA molecule in EMF-exposed cells. Other studies have suggested no such damage in EMF-exposed cells. Also, the conclusions from other studies were inconclusive. These conflicting findings may attribute to the differences in the apparatus used to generate electromagnetic fields, experimental design, exposure time, genetic endpoints, and biological materials such as cell lines and animal species, strain, and age. As DNA damage is frequently a prerequisite for cancer disease, this review provided an experimental body of evidence on the effect of EMF on genetic material.
Collapse
Affiliation(s)
- Kawthar A Diab
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Cairo, Egypt.
| |
Collapse
|
44
|
Altun G, Deniz ÖG, Yurt KK, Davis D, Kaplan S. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. ENVIRONMENTAL RESEARCH 2018; 167:700-707. [PMID: 29884548 DOI: 10.1016/j.envres.2018.02.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed. In addition, the present review also evaluates metabolomic effects of GSM-modulated EMFs on the male and female reproductive systems in recent human and animal studies. In this context, experimental and epidemiological studies which examine the impact of mobile phone radiation on the processes of oogenesis and spermatogenesis are examined in line with current approaches.
Collapse
Affiliation(s)
- Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Environmental Health Trust, 7100 N Rachel Way Unit 6 Eagles Rest, Teton Village, WY 83025, United States
| | - Devra Davis
- Hadassah Medical School, Hebrew University, Jerusalem, Isreal and Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey; Environmental Health Trust, 7100 N Rachel Way Unit 6 Eagles Rest, Teton Village, WY 83025, United States
| | - Süleyman Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey.
| |
Collapse
|
45
|
Yahyazadeh A, Deniz ÖG, Kaplan AA, Altun G, Yurt KK, Davis D. The genomic effects of cell phone exposure on the reproductive system. ENVIRONMENTAL RESEARCH 2018; 167:684-693. [PMID: 29884549 DOI: 10.1016/j.envres.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Humans are exposed to increasing levels of electromagnetic fields (EMF) at various frequencies as technology advances. In this context, improving understanding of the biological effects of EMF remains an important, high priority issue. Although a number of studies in this issue and elsewhere have focused on the mechanisms of the oxidative stress caused by EMF, the precise understanding of the processes involved remains to be elucidated. Due to unclear results among the studies, the issue of EMF exposure in the literature should be evaluated at the genomic level on the reproductive system. Based on this requirement, a detail review of recently published studies is necessary. The main objectives of this study are to show differences between negative and positive effect of EMF on the reproductive system of animal and human. Extensive review of literature has been made based on well known data bases like Web of Science, PubMed, MEDLINE, Google Scholar, Science Direct, Scopus. This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects. Although the cellular targets of global system for mobile communications (GSM)-modulated EMF are associated with the cell membrane, the subject is still controversial. Studies regarding the genotoxic effects of EMF have generally focused on DNA damage. Possible mechanisms are related to ROS formation due to oxidative stress. EMF increases ROS production by enhancing the activity of nicotinamide adenine dinucleotide (NADH) oxidase in the cell membrane. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells exposed to EMF.
Collapse
Affiliation(s)
- Ahmad Yahyazadeh
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Ömür Gülsüm Deniz
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| | - Devra Davis
- Environmental Health Trust, P.O. Box 58, Teton Village, WY 83025, United States
| |
Collapse
|
46
|
Luo J, Deziel NC, Huang H, Chen Y, Ni X, Ma S, Udelsman R, Zhang Y. Cell phone use and risk of thyroid cancer: a population-based case-control study in Connecticut. Ann Epidemiol 2018; 29:39-45. [PMID: 30446214 DOI: 10.1016/j.annepidem.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/11/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aims to investigate the association between cell phone use and thyroid cancer. METHODS A population-based case-control study was conducted in Connecticut between 2010 and 2011 including 462 histologically confirmed thyroid cancer cases and 498 population-based controls. Multivariate unconditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for associations between cell phone use and thyroid cancer. RESULTS Cell phone use was not associated with thyroid cancer (OR: 1.05, 95% CI: 0.74-1.48). A suggestive increase in risk of thyroid microcarcinoma (tumor size ≤10 mm) was observed for long-term and more frequent users. Compared with cell phone nonusers, several groups had nonstatistically significantly increased risk of thyroid microcarcinoma: individuals who had used a cell phone >15 years (OR: 1.29, 95% CI: 0.83-2.00), who had used a cell phone >2 hours per day (OR: 1.40, 95% CI: 0.83-2.35), who had the most cumulative use hours (OR: 1.58, 95% CI: 0.98-2.54), and who had the most cumulative calls (OR: 1.20, 95% CI: 0.78-1.84). CONCLUSIONS This study found no significant association between cell phone use and thyroid cancer. A suggestive elevated risk of thyroid microcarcinoma associated with long-term and more frequent uses warrants further investigation.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Huang Huang
- Department of Surgery, Yale School of Medicine, New Haven, CT
| | - Yingtai Chen
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ni
- Department of Otorhinolaryngology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT
| | - Robert Udelsman
- Endocrine Neoplasm Institute, Miami Cancer Institute, Miami, FL
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine, New Haven, CT; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT.
| |
Collapse
|
47
|
Vijayalaxmi, Prihoda TJ. Comprehensive Review of Quality of Publications and Meta-analysis of Genetic Damage in Mammalian Cells Exposed to Non-Ionizing Radiofrequency Fields. Radiat Res 2018; 191:20-30. [PMID: 30339042 DOI: 10.1667/rr15117.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There have been numerous published studies reporting on the extent of genetic damage observed in animal and human cells exposed in vitro and in vivo to non-ionizing radiofrequency fields (RF, electromagnetic waves that carry energy as they propagate in air and dense media). Overall, the data are inconsistent; while some studies have suggested significantly increased damage in cells exposed to RF energy compared to unexposed and/or sham-exposed control cells, others have not. Several variables in exposure conditions used in the experiments might have contributed to the controversy. In this comprehensive review, four specific quality control measures were used to determine the quality of 225 published studies in animal and human cells exposed in vitro and in vivo to RF energy, and the results from 2,160 tests with different sample sizes were analyzed. The four specific quality control measures were as follows: 1. "Blind" collection/analysis of the data to eliminate individual/observer "bias"; 2. Adequate description of "dosimetry" for independent replication/confirmation; 3. Inclusion of "positive controls" to confirm the outcomes; and 4. Inclusion of "sham-exposed controls" which are more appropriate to compare the data with those in RF exposure conditions. In addition, meta-analysis of the genetic damage in cells exposed to RF energy and control cells, thus far available in the RF literature database, was performed to obtain the "d" values, i.e., standardized mean difference between these two types of cells or the effect size. The relationship between d values and the above-mentioned quality control measures was ascertained. In addition, the correlation between the quality control measures and the conclusions reported in the publications (no significant difference between the cells exposed to RF energy and control cells; increased damage in former cells compared to the latter; increased, no significant difference and decreased damage in cells exposed to RF energy in the same experiment; or decreased damage in cells exposed to RF energy) was examined. The overall conclusions were as follows: 1. When all four quality control measures were mentioned in the publication, the d values were smaller compared to those when one or more quality control measures were not mentioned in the investigation; 2. Based on the inclusion of quality control measures, the weighted outcome in cells exposed to RF energy (d values) indicated a very small effect, if any; 3. The number of published studies reporting no significant difference in genetic damage of cells exposed to RF energy, compared to that of control cells, increased with increased number of quality control measures employed in investigations; 4. The number of published studies reporting increased genetic damage in cells exposed to RF energy decreased with increased number of quality control measures; and 5. There was a "bias" towards the publications reporting increased genetic damage in cells exposed to RF energy even with very small sample size. Overall, the results from this study underscore the importance of including quality control measures in investigations so that the resulting data are useful, nationally and internationally, in evaluating "potential" health risks from exposure to RF energy.
Collapse
Affiliation(s)
- Vijayalaxmi
- Department of a Radiology, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Thomas J Prihoda
- b Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229
| |
Collapse
|
48
|
Sun C, Wei X, Yimaer A, Xu Z, Chen G. Ataxia telangiectasia mutated deficiency does not result in genetic susceptibility to 50 Hz magnetic fields exposure in mouse embryonic fibroblasts. Bioelectromagnetics 2018; 39:476-484. [PMID: 30091795 DOI: 10.1002/bem.22140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
Extremely low frequency magnetic field (ELF-MF) has been classified as a possible carcinogen to humans by the International Agency for Research on Cancer [2002]. However, debate on the genotoxic effects of ELF-MF has continued due to lack of sufficient experimental evidence. Ataxia telangiectasia mutated (ATM) plays a central role in DNA damage repair; its deficiency can result in cellular sensitivity to DNA-damaging agents. To evaluate the genotoxicity of ELF-MF, we investigated the effects of 50 Hz MF on DNA damage in ATM-proficient (Atm+/+ ) mouse embryonic fibroblasts (MEFs) and ATM-deficient (Atm-/- ) MEFs, a radiosensitive cell line. Results showed no significant difference in average number of γH2AX foci per cell (9.37 ± 0.44 vs. 9.08 ± 0.28, P = 0.58) or percentage of γH2AX foci positive cells (49.22 ± 1.86% vs. 49.74 ± 1.44%, P = 0.83) between sham and exposure groups when Atm+/+ MEFs were exposed to 50 Hz MF at 2.0 mT for 15 min. Extending exposure duration to 1 or 24 h did not significantly change γH2AX foci formation in Atm+/+ MEFs. Similarly, the exposure did not significantly affect γH2AX foci formation in Atm-/- MEFs. Furthermore, 50 Hz MF exposure also did not significantly influence DNA fragmentation, cell viability, or cell cycle progression in either cell types. In conclusion, exposure to 50 Hz MF did not induce significant DNA damage in either Atm+/+ or Atm-/- MEFs under the reported experimental conditions. Bioelectromagnetics. 39:476-484, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chuan Sun
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Aziguli Yimaer
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Environmental Health, Zhejiang University School of Public Health, Hangzhou, China
| |
Collapse
|
49
|
In Vivo Cytotoxicity Induced by 60 Hz Electromagnetic Fields under a High-Voltage Substation Environment. SUSTAINABILITY 2018. [DOI: 10.3390/su10082789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Living beings permanently receive electromagnetic radiation, particularly from extremely low-frequency electromagnetic fields (ELF-EMFs), which may cause adverse health effects. In this work, we studied the in vivo cytotoxic effects of exposing BALB/c mice to 60 Hz and 8.8 µT EMFs during 72 h and 240 h in a switchyard area, using animals exposed to 60 Hz and 2.0 mT EMFs or treated with 5 mg/kg mitomycin C (MMC) as positive controls. Micronucleus (MN) frequency and male germ cell analyses were used as cytological endpoints. ELF-EMF exposure was observed to significantly (p < 0.05) increase MN frequency at all conditions tested, with the 2 mT/72 h treatment causing the highest response, as compared with untreated control. In addition, increased sperm counts were observed after switchyard area ELF-EMF exposure, as compared with untreated control. In contrast, low sperm counts were obtained for 72 h/2.0 mT-exposed animals and for MMC-treated mice (p < 0.05), without altering male germ cell morphological characteristics.
Collapse
|
50
|
Saliev T, Begimbetova D, Masoud AR, Matkarimov B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 141:25-36. [PMID: 30030071 DOI: 10.1016/j.pbiomolbio.2018.07.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Controversial, sensational and often contradictory scientific reports have triggered active debates over the biological effects of electromagnetic fields (EMFs) in literature and mass media the last few decades. This could lead to confusion and distraction, subsequently hampering the development of a univocal conclusion on the real hazards caused by EMFs on humans. For example, there are lots of publications indicating that EMF can induce apoptosis and DNA strand-breaks in cells. On the other hand, these effects could rather be beneficial, in that they could be effectively harnessed for treatment of various disorders, including cancer. This review discusses and analyzes the results of various in vitro, in vivo and epidemiological studies on the effects of non-ionizing EMFs on cells and organs, including the consequences of exposure to the low and high frequencies EM spectrum. Emphasis is laid on the analysis of recent data on the role of EMF in the induction of oxidative stress and DNA damage. Additionally, the impact of EMF on the reproductive system has been discussed, as well as the relationship between EM radiation and blood cancer. Apart from adverse effects, the therapeutic potential of EMFs for clinical use in different pathologies is also highlighted.
Collapse
Affiliation(s)
- Timur Saliev
- Kazakh National Medical University Named After S.D. Asfendiyarov, Tole Bi Street 94, Almaty, 050000, Kazakhstan; National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan.
| | - Dinara Begimbetova
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Abdul-Razak Masoud
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay batyr Ave., Astana, 010000, Kazakhstan
| |
Collapse
|