1
|
Ali MA, Zeng M, Alkuhali AA, Zeng Z, Yuan M, Wang X, Liu X, Issotina Zibrila A, Liu J, Wang Z. Toll-like receptor 4 inhibition by pyridostigmine is associated with a reduction in hypertension and inflammation in rat models of preeclampsia. J Hypertens 2025; 43:336-350. [PMID: 39748739 DOI: 10.1097/hjh.0000000000003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Preeclampsia (PE) is marked by hypertension and detrimental sterile inflammatory response. Despite the reported anti-inflammatory effect of pyridostigmine bromide (PYR) in different models, its anti-inflammatory mechanism in PE is unclear. This study assessed whether such an anti-inflammatory effect involves inhibition of placental Toll-like receptor 4 (TLR4) signaling. METHODS Placental TLR4 expression and its signaling were assessed respectively in PE women and Sprague-Dawley rats with reduced uterine perfusion pressure (RUPP) induced on gestational day14 (GD14). RUPP and lipopolysaccharides (LPS, 5 μg/kg)-induced PE rats were treated with a selective TLR4 signaling inhibitor (TAK-242, 2.5 mg/kg/day). The effect of PYR (20 mg/kg/day) on TLR4 expression and signaling was also assessed in RUPP or LPS-infused rats. On GD19, rats' mean arterial pressure (MAP) and samples were collected and processed. At the cellular level, the effect of acetylcholine (ACh), the indirect by-product of PYR activity, on LPS-stimulated HTR-8/SVneo cells was assessed. RESULTS Both PE women and RUPP rats had increased (P < 0.05) placental TLR4 expression and elevated (P < 0.05) MAP. Selective inhibition of TLR4 signaling with TAK-242 blunted (P < 0.05) RUPP-elevated MAP. Activation of TLR4 induced PE-like symptoms in dams, which were prevented by TAK-242. PYR reduced (P < 0.05) MAP and downregulated placental TLR4 expression and TLR4/TRAF6/NF-κB signaling-mediated inflammation in RUPP and in response to TLR4 selective activation. ACh inhibited the same signaling pathway in LPS-stimulated HTR-8 in vitro. CONCLUSION Our data support that PYR attenuates placental TLR4 expression and inhibits TLR4/TRAF6/NF-κB signaling pathway-mediated inflammation in RUPP, clarifying the anti-inflammatory mechanisms of PYR in the PE rat model.
Collapse
Affiliation(s)
- Md Ahasan Ali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Asma A Alkuhali
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Zhaoshu Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Meng Yuan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Xiaomin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Xiaoxu Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Abdoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases
| | - Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
2
|
Mia GK, Hawley E, Yusuf M, Amat S, Ward AK, Keller WL, Dorsam G, Swanson KC. The impact of exogenous vasoactive intestinal polypeptide on inflammatory responses and mRNA expression of tight junction genes in lambs fed a high-grain diet. J Anim Sci 2024; 102:skae309. [PMID: 39396104 PMCID: PMC11537799 DOI: 10.1093/jas/skae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
This study assessed the impact of administering vasoactive intestinal polypeptide (VIP) on inflammation and intestinal VIP and tight junction mRNA expression in lambs fed grain-based finishing diets. Sixteen wether lambs (69.6 ± 1.9 kg) were individually housed, adapted to a corn-based diet containing no forage, and randomly assigned to 2 treatment groups. Lambs were intraperitoneally injected every other day for 28 d with either saline (0.9% NaCl) with no VIP (n = 8; control) or saline with VIP (n = 8; 1.3 nmol/kg BW). Blood samples were collected weekly for analysis of cytokine concentrations, and on days 0 and 28 for lipopolysaccharide (LPS), and LPS-binding protein (LBP) concentrations. Upon completion of the treatment period, lambs were euthanized and gastrointestinal tissues, including rumen, jejunum, cecum, and colon samples, were collected for analysis of the expression of tight junction mRNA (claudin-1, claudin-4, occludin, and ZO-1), endogenous VIP, and VIP receptor (VPAC-1). No treatment effects (P ≥ 0.38) were observed for VIP and VPAC-1 mRNA expression in the colon. Supplementation with VIP did not influence (P ≥ 0.28) the expression of claudin-1, claudin-4, occludin, and ZO-1 tight junction mRNA in the rumen, jejunum, cecum, and colon. Lambs treated with VIP had greater (P ≤ 0.01) plasma concentrations of the anti-inflammatory cytokines, IL-10 and IL-36RA. There were treatment-by-day interactions observed (P ≤ 0.02) for concentrations of the pro-inflammatory cytokines, MIP-1α and MIP-1β. Lambs that did not receive VIP had greater serum concentrations of LPS (P = 0.05) than the lambs receiving VIP. These data suggest that VIP administration may not influence tight junction mRNA expression but may decrease LPS concentrations and thus inflammation in lambs fed a grain-based diet.
Collapse
Affiliation(s)
- Golam K Mia
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Emma Hawley
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Mustapha Yusuf
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Alison K Ward
- Departments of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Wanda L Keller
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Glenn Dorsam
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kendall C Swanson
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
3
|
Cheng Y, Li H, Wu D, Hu Y, Li J, Yang Y, Li J, Zhou H, Zhang H, Xie C, Yang C. Anti-inflammatory polyoxygenated cyclohexene derivatives from Uvaria macclurei. PHYTOCHEMISTRY 2023; 214:113797. [PMID: 37495182 DOI: 10.1016/j.phytochem.2023.113797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Two undescribed polyoxygenated seco-cyclohexene derivatives named macclureins A and B, and three undescribed polyoxygenated cyclohexene derivatives macclureins C-E, together with 15 known analogues were isolated from the twigs and leaves of Uvaria macclurei. Their structures were established by extensive spectroscopic and circular dichroism analyses. Macclurein C is a chlorinated polyoxygenated cyclohexene. All isolates were evaluated for their anti-inflammatory activities on NO generation in the LPS-stimulated RAW 264.7 cells. (-)-Zeylenone showed the most potent effect against NO production with the IC50 value of 20.18 μM. Meanwhile, (-)-zeylenone also decreased the mRNA expression of pro-inflammatory factors IFN-γ, iNOS, IL-6 and TNF-α via downregulating NF-κB signaling pathway. Further in vivo experiments using a mouse model of sepsis showed that (-)-zeylenone significantly alleviated sepsis severity by measuring weight, murine sepsis score, survival rate and the serum levels of pro-inflammatory factors TNF-α and IL-6.
Collapse
Affiliation(s)
- Yexin Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Dan Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Yayue Hu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Jinhe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China; High-throughput Molecular Drug Screening Centre, Tianjin International Joint Academy of Biomedicine, Tianjin 300070, People's Republic of China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China
| | - Hongfeng Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116001, People's Republic of China.
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China.
| |
Collapse
|
4
|
TLR4 and TNFR1 blockade dampen M1 macrophage activation and shifts them towards an M2 phenotype. Immunol Res 2021; 69:334-351. [PMID: 34235623 DOI: 10.1007/s12026-021-09209-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
The Gram-negative bacterial lipopolysaccharide (LPS)-induced sepsis has emerged as major concern worldwide due to the pressing need to develop its effective treatment strategies which is not available yet. LPS is the major causative agent in the pathogenesis of septic shock. In macrophages, LPS interacts with cell surface TLR4 leading to reactive oxygen species (ROS), TNF-α, IL-1β production, oxidative stress and markedly activated the MAPKs and NF-kB pathway. Post cell isolation, the macrophages were subjected to administration with neutralizing antibodies to TLR4 and TNFR1 either alone or in combination prior to LPS challenge. Subsequently, we performed flow cytometric analysis along with Western blots, reactive oxygen species production, and TNF-α, IL-1β release. Outcomes suggested that the dual blockade of TLR4 and TNFR1 was indeed beneficial in shifting the LPS-induced M1 polarization towards M2. Both TLR4 and TNFR1 exhibited dependency during LPS stimulation. Furthermore, the switch towards the M2 phenotype might be responsible for the decreased levels of TNF-α, IL-1β, NO, and superoxide anion and the simultaneous elevation in the activity level of anti-oxidant enzymes like SOD, CAT (catalase), and GSH content in the isolated peritoneal macrophages. Simultaneous blocking of both TLR4 and TNFR1 also showed reduced expression of NF-kB, JNK, and COX-2 by promoting TNFR2-mediated TNF-α signaling. The increased arginase activity further confirmed the polarization towards M2. Thus it may be inferred that dual blockade of TLR4 and TNFR1 might be an alternative therapeutic approach for regulating of sepsis in future.
Collapse
|
5
|
Chen J, Deng X, Liu Y, Tan Q, Huang G, Che Q, Guo J, Su Z. Kupffer Cells in Non-alcoholic Fatty Liver Disease: Friend or Foe? Int J Biol Sci 2020; 16:2367-2378. [PMID: 32760204 PMCID: PMC7378652 DOI: 10.7150/ijbs.47143] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing all around the world and it may become the primary cause of terminal liver disease in adults and children in the next few decades. However, the pathogenesis of NAFLD is complex, and the Food and Drug Administration (FDA) has not approved any drugs for its treatment. Kupffer cells are the key cells regulating immunity in the liver, and the effect of their unique polarization on NAFLD has received increasing attention. Kupffer cells mainly reside in the lumen of hepatic sinusoids and account for 80% to 90% of colonized macrophages in the human body. They are phagocytic cells with the capacity for self-renewal that rarely migrate from their niche in the liver, and play a crucial role in regulating and maintaining homeostasis. Upon liver damage, Kupffer cells will be activated, releasing a good deal of inflammatory cytokines and chemokines. This review summarizes the multiple roles of Kupffer cells in the pathogenesis of NAFLD, the role of infiltrating macrophages in the pathogenesis of NAFLD is also briefly discussed, and aims to provide a theoretical basis for designing an NAFLD treatment strategy with Kupffer cells as the therapeutic target.
Collapse
Affiliation(s)
- Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guidong Huang
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University; 15# Lequn Road, Guilin, Guangxi Zhuang Autonomous Region 54101, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech CO., LTD 5F, No.10 Yongsheng Road, Yonghe Econoic region, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Li LM, Shi SD, Liu Y, Zou Q. Bioactivity-Guided Isolation and Identification of New and Immunosuppressive Monoterpenoid Indole Alkaloids from Rauvolfia yunnanensis Tsiang. Molecules 2019; 24:E4574. [PMID: 31847258 PMCID: PMC6943595 DOI: 10.3390/molecules24244574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Three new 11-hydroxyburnamine (1) and rauvoyunnanines A-B (2-3), and fourteen known (4-17) monoterpenoid indole alkaloids were isolated from the total alkaloids extract of Rauvolfia yunnanensis, which exhibited promising immunosuppressive activity on T cell proliferation in preliminary screening. Their structures were determined by analysis of high-resolution electrospray ionization mass (HRESIMS), ultraviolet (UV) and nuclear magnetic resonance (NMR) data, and by comparison with the literature. All the alkaloids were evaluated for inhibitory activity on T cell proliferation. Among them, one new compound (1) and reserpine (6) exhibited moderate immunosuppressive activity, with IC50 values of 5.9 μM and 5.0 μM, respectively.
Collapse
Affiliation(s)
- Li-Mei Li
- School of Pharmacy, Southwest University for Nationalities, Chengdu 610041, Sichuan, China
- Research Center, Chengdu Medical College, Chengdu 610500, Sichuan, China; (S.-D.S.); (Y.L.); (Q.Z.)
| | - Shun-Dong Shi
- Research Center, Chengdu Medical College, Chengdu 610500, Sichuan, China; (S.-D.S.); (Y.L.); (Q.Z.)
| | - Yang Liu
- Research Center, Chengdu Medical College, Chengdu 610500, Sichuan, China; (S.-D.S.); (Y.L.); (Q.Z.)
| | - Qiang Zou
- Research Center, Chengdu Medical College, Chengdu 610500, Sichuan, China; (S.-D.S.); (Y.L.); (Q.Z.)
| |
Collapse
|
7
|
Barakat MM, Dallal Bashi YH, Carson L, Graham WG, Gilmore BF, Flynn PB. Atmospheric pressure non-thermal plasma exposure reduces Pseudomonas aeruginosa lipopolysaccharide toxicity in vitro and in vivo. Microb Pathog 2019; 136:103679. [PMID: 31437578 DOI: 10.1016/j.micpath.2019.103679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/26/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022]
Abstract
Lipopolysaccharide (LPS) is an endotoxin composed of a polysaccharide and lipid component. It is intrinsically responsible for the pathogenicity of Gram-negative bacteria and is involved in the development of bacterial sepsis. Atmospheric pressure non-thermal plasma is proposed as a potential new approach for the treatment of infected tissue such as chronic wounds, with both antibacterial and wound-healing activities extensively described. Using both the RAW264.7 murine macrophage cell line in vitro assays and the Galleria mellonella insect in vivo toxicity model, the effect non-thermal plasma exposure on LPS-mediated toxicity has been characterised. Short (60 s) non-thermal plasma exposures of Pseudomonas aeruginosa conditioned growth media, membrane lysates and purified P. aeruginosa LPS, resulted in a substantial detoxification and reduction of LPS-induced cytotoxicity in RAW264.7 murine macrophages. Non-thermal plasma exposure (60 s) of purified P. aeruginosa LPS led to a significant (p < 0.05) improvement in the G. mellonella health index (GHI) score, a measure of in vivo toxicity. These findings demonstrate the ability of short plasma exposures to significantly reduce LPS-induced cytotoxicity both in vitro and in vivo; attenuating the toxicity of this important virulence factor intrinsic to the pathogenicity of Gram-negative bacteria.
Collapse
Affiliation(s)
- Muna M Barakat
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK; School of Pharmacy, Applied Sciences Private University, Amman, 11931, Jordan
| | - Yahya H Dallal Bashi
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | - Louise Carson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | - William G Graham
- Centre for Plasma Physics, School of Maths and Physics, Queen's University Belfast, BT7 1NN, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK
| | - Padrig B Flynn
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
8
|
Zhou X, Wang P, Chen Y, Ma SY. Intact anti-LPS IgY is found in the blood after intragastric administration in mice. FEBS Open Bio 2019; 9:428-436. [PMID: 30868051 PMCID: PMC6396156 DOI: 10.1002/2211-5463.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022] Open
Abstract
Severe burn injury and cirrhosis often cause the translocation of bacterial endotoxins into blood, leading to systemic damage and even death. Our previous studies have shown that anti‐lipopolysaccharide egg yolk antibody (anti‐LPS IgY) can neutralize bacterial endotoxins in vitro and in vivo effectively, thereby reducing endotoxin damage. Whether anti‐LPS IgY can be absorbed into the blood through the intestinal barrier and neutralize endotoxins in circulation remains unclear. In this study, we used in vivo small animal imaging techniques, protein purification, molecular biology, and mass spectrometry to show that intragastrically administered anti‐LPS IgY is detected in the blood of mice as an intact molecule and has the capacity to bind to LPS. Immunohistochemical analysis confirmed that anti‐LPS IgY is associated with the intestinal mucosa of mice. However, the route of absorption of this large protein molecule was not determined. This study suggests that anti‐LPS IgY can be absorbed into the circulation, with the same molecular mass as purified anti‐LPS IgY as a macromolecular protein, suggesting a new strategy for the prevention of damage caused by endotoxins.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| | - Pei Wang
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| | - Yajie Chen
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| | - Si-Yuan Ma
- Institute of Burn Research State Key Laboratory of Trauma, Burns and Combined Injury Third Military Medical University (Army Medical University) Chongqing China
| |
Collapse
|
9
|
Behjani ZZ, Ai J, Soleimani M, Atashi A, Taheri B, Ebrahimi‐Barough S, Siavashi V, Shirian S, Hamidieh AA. Human unrestricted somatic stem cells ameliorate sepsis‐related acute lung injury in mice. J Cell Physiol 2019; 234:13942-13950. [PMID: 30624762 DOI: 10.1002/jcp.28077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Hematology and Cell Therapy Department Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
- Department of Stem Cell Biology Stem Cell Technology Research Center Tehran Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences Shahroud Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology Tabriz University of Medical Sciences, Faculty of Advanced Medical Sciences Tabriz Iran
| | - Somayeh Ebrahimi‐Barough
- Department of Tissue Engineering and Applied Cell Sciences Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Vahid Siavashi
- Department of Clinical Pathology Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Sadegh Shirian
- Department of Pathology School of Veterinary Medicine, Shahrekord University, Shahrekord Iran
| | - Amir Ali Hamidieh
- Department of Tissue Engineering and Applied Cell Sciences Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
- Pediatric Stem Cell Transplant Department Children's Medical center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M, Royce SG. Insights into endotoxin-mediated lung inflammation and future treatment strategies. Expert Rev Respir Med 2018; 12:941-955. [PMID: 30221563 DOI: 10.1080/17476348.2018.1523009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease.
Collapse
Affiliation(s)
- Amlan Chakraborty
- a Department of Chemical Engineering , Monash University , Clayton , Australia.,b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Jennifer C Boer
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Cordelia Selomulya
- a Department of Chemical Engineering , Monash University , Clayton , Australia
| | - Magdalena Plebanski
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia.,c School of Health and Biomedical Sciences and Enabling Capability platforms, Biomedical and Health Innovation , RMIT University , Melbourne , Australia
| | - Simon G Royce
- d Central Clinical School , Monash University , Clayton , Victoria , Australia.,e Department of Pharmacology , Monash University , Clayton , Australia
| |
Collapse
|
11
|
Li XM, Miao Y, Su QY, Yao JC, Li HH, Zhang GM. Gastroprotective effects of arctigenin of Arctium lappa L. on a rat model of gastric ulcers. Biomed Rep 2016; 5:589-594. [PMID: 27882222 DOI: 10.3892/br.2016.770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022] Open
Abstract
In the present study, the gastroprotective effects of arctigenin of Fructus Arctii were evaluated and the possible underlying mechanisms of action were elucidated. Arctigenin (high-performance liquid chromatography purity, >99.0%) was isolated and purified from the seeds of Arctium lappa L. The anti-ulcerogenic activity of arctigenin against ulcers induced by absolute ethanol and acetic acid was evaluated in a Sprague-Dawley rat model. In addition, the antioxidant activity was assessed by measuring malondialdehyde (MDA) levels in an ethanol-induced model and the anti-inflammatory effects were assessed by measuring five factors in an acetic acid-induced model. In the ethanol-induced model, arctigenin inhibited gastric lesions in a dose-dependent manner, by 53.04, 53.91 and 64.43% at doses of 0.05, 0.15 and 0.45 mg/kg, respectively. In addition, arctigenin reduced MDA (P<0.01) and increased superoxide dismutase (P<0.01) levels in serum when compared with the vehicle group. The lesion index induced by acetic acid was significantly inhibited by all doses of arctigenin (0.05, 0.15 and 0.45 mg/kg; P<0.01) in comparison to the vehicle group and in a dose-dependent manner. In addition, it was shown that the expression levels of tumor necrosis factor-α, interleukin-6 (IL-6), IL-10 and C-reactive protein were significantly decreased (P<0.05) in the arctigenin group compared with the vehicle group. Thus, the current study indicated that arctigenin exerted anti-ulcer activity, which may be associated with its reduction in oxidative and inflammatory damage. All the results indicate that arctigenin may be used as an effective therapeutic agent to prevent gastric ulcers.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong 276006, P.R. China
| | - Yu Miao
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong 276006, P.R. China
| | - Qin-Yong Su
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong 276006, P.R. China
| | - Jing-Chun Yao
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong 276006, P.R. China
| | - Hong-Hua Li
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong 276006, P.R. China
| | - Gui-Min Zhang
- Lunan Pharmaceutical Group Co., Ltd., State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, Shandong 276006, P.R. China
| |
Collapse
|
12
|
Marzabadi CH, Franck RW. Small-Molecule Carbohydrate-Based Immunostimulants. Chemistry 2016; 23:1728-1742. [PMID: 27385422 DOI: 10.1002/chem.201601539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 01/07/2023]
Abstract
In this review, we discuss small-molecule, carbohydrate-based immunostimulants that target Toll-like receptor 4 (TLR-4) and cluster of differentiation 1D (CD1d) receptors. The design and use of these molecules in immunotherapy as well as results from their use in clinical trials are described. How these molecules work and their utilization as vaccine adjuvants are also discussed. Future applications and extensions for the use of these analogues as therapeutic agents will be outlined.
Collapse
Affiliation(s)
- Cecilia H Marzabadi
- Department of Chemistry & Biochemistry, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07079, USA
| | - Richard W Franck
- Department of Chemistry & Biochemistry, Hunter College/CUNY, 695 Park Ave., New York, NY, 10065, USA
| |
Collapse
|
13
|
TAK-242 attenuates acute cigarette smoke-induced pulmonary inflammation in mouse via the TLR4/NF-κB signaling pathway. Biochem Biophys Res Commun 2016; 472:508-15. [PMID: 26944017 DOI: 10.1016/j.bbrc.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 11/19/2022]
|
14
|
Al-Harbi NO, Imam F, Nadeem A, Al-Harbi MM, Korashy HM, Sayed-Ahmed MM, Hafez MM, Al-Shabanah OA, Nagi MN, Bahashwan S. Riboflavin attenuates lipopolysaccharide-induced lung injury in rats. Toxicol Mech Methods 2015; 25:417-23. [PMID: 26360969 DOI: 10.3109/15376516.2015.1045662] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Riboflavin (vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) and is therefore required by all flavoproteins. Riboflavin also works as an antioxidant by scavenging free radicals. The present study was designed to evaluate the effects of riboflavin against acute lungs injury induced by the administration of a single intranasal dose (20 μg/rat) of lipopolysaccharides (LPS) in experimental rats. Administration of LPS resulted in marked increase in malondialdehyde (MDA) level (p < 0.01) and MPO activity (p < 0.001), whereas marked decrease in glutathione (GSH) content (p < 0.001), glutathione reductase (GR) (p < 0.001) and glutathione peroxidase (p < 0.01) activity. These changes were significantly (p < 0.001) improved by treatment with riboflavin in a dose-dependent manner (30 and 100 mg/kg, respectively). Riboflavin (100 mg/kg, p.o.) showed similar protective effects as dexamethasone (1 mg/kg, p.o.). Administration of LPS showed marked cellular changes including interstitial edema, hemorrhage, infiltration of PMNs, etc., which were reversed by riboflavin administration. Histopathological examinations showed normal morphological structures of lungs tissue in the control group. These biochemical and histopathological examination were appended with iNOS and CAT gene expression. The iNOS mRNA expression was increased significantly (p < 0.001) and levels of CAT mRNA expression was decreased significantly (p < 0.001) in the animals exposed to LPS, while treatment with riboflavin significantly (p < 0.01) improved expression of both gene. In conclusion, the present study clearly demonstrated that riboflavin caused a protective effect against LPS-induced ALI. These results suggest that riboflavin may be used to protect against toxic effect of LPS in lungs.
Collapse
Affiliation(s)
- Naif O Al-Harbi
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Faisal Imam
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Ahmed Nadeem
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Mohammed M Al-Harbi
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Hesham M Korashy
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Mohammed M Sayed-Ahmed
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Mohamed M Hafez
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Othman A Al-Shabanah
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Mahmoud N Nagi
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA and
| | - Saleh Bahashwan
- b Department of Pharmacology and Toxicology , College of Pharmacy, Taibah University , Medina , KSA
| |
Collapse
|
15
|
Chen J, Wang JB, Yu CH, Chen LQ, Xu P, Yu WY. Total flavonoids of Mosla scabra leaves attenuates lipopolysaccharide-induced acute lung injury via down-regulation of inflammatory signaling in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:835-841. [PMID: 23747643 DOI: 10.1016/j.jep.2013.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/02/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mosla scabra (Thunb.) C.Y. Wu, belonging to the Labiatae family, is a tomentose and aromatic plant, which is widely used as an antipyretic and antiviral drug for pulmonary diseases and famous for its efficiency in treating colds, fever, pneumonia and chronic bronchitis. To investigate therapeutic effects and possible mechanism of Mosla scabra flavonoids (MF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. MATERIALS AND METHODS Mice were orally administrated with MF once (30 mg/kg or 90 mg/kg) 1 h before LPS challenge. Lung specimens and the bronchoalveolar lavage fluid (BALF) were isolated for histopathological examinations and biochemical analyses 6 h after LPS challenge. RESULTS Pretreatment with MF could decrease significantly lung wet-to-dry weight (W/D) ratio, lower myeloperoxidase (MPO) activity and total protein concentrations in the BALF, reduce serum levels of NO, TNF-α, IL-1β and IL-6 in ALI model. Additionally, MF attenuated lung histopathological changes and significantly inhibited the phosphorylation of p38 MAPK and translocation of NF-κB p65. CONCLUSIONS These results showed MF significantly attenuate LPS-induced acute lung injury and production of inflammatory mediators via inhibiting MAPK and NF-κB activation, indicating it as a potential therapeutic agent for ALI.
Collapse
Affiliation(s)
- Jing Chen
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | | | | | | | | | | |
Collapse
|
16
|
Hamburger T, Broecker-Preuss M, Hartmann M, Schade FU, de Groot H, Petrat F. Effects of glycine, pyruvate, resveratrol, and nitrite on tissue injury and cytokine response in endotoxemic rats. J Surg Res 2013; 183:e7-e21. [PMID: 23434211 DOI: 10.1016/j.jss.2013.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/15/2012] [Accepted: 01/11/2013] [Indexed: 12/15/2022]
|
17
|
Feng AW, Gao W, Zhou GR, Yu R, Li N, Huang XL, Li QR, Li JS. Berberine ameliorates COX-2 expression in rat small intestinal mucosa partially through PPARγ pathway during acute endotoxemia. Int Immunopharmacol 2012; 12:182-8. [PMID: 22155099 DOI: 10.1016/j.intimp.2011.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/13/2011] [Accepted: 11/23/2011] [Indexed: 02/03/2023]
|
18
|
Zhou H, Bian D, Jiao X, Wei Z, Zhang H, Xia Y, He Y, Dai Y. Paeoniflorin protects against lipopolysaccharide-induced acute lung injury in mice by alleviating inflammatory cell infiltration and microvascular permeability. Inflamm Res 2011; 60:981-90. [PMID: 21744312 DOI: 10.1007/s00011-011-0359-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The present study aims to explore the effects of paeoniflorin (PF), a monoterpene glycoside isolated from the roots of Paeonia lactiflora Pallas, on acute lung injury (ALI) and the possible mechanisms. MATERIALS AND METHOD ALI was induced in mice by an intratracheal instillation of lipopolysaccharide (LPS, 1 mg/kg), and PF was injected intraperitoneally 30 min prior to LPS administration. After 24 h, lung water content, histology, microvascular permeability and proinflammatory cytokines in the bronchoaveolar lavage fluid were evaluated. RESULTS It was shown that PF (50, 100 mg/kg) could alleviate LPS-induced ALI, evidenced by reduced pulmonary edema, improved histological changes, and attenuated inflammatory cell accumulation in the interstitium and alveolar space as well as microvascular permeability. It also markedly down-regulated the expressions of proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α at both transcription and protein levels. Additionally, PF inhibited the phosphorylations of p38 MAP kinase (p38) and c-Jun NH2-terminal kinase (JNK) but not extracellular signal-regulated kinase (ERK), and prevented the activation of nuclear factor-kappa B (NF-κB) in the lung tissues. CONCLUSION The findings suggest that PF is able to alleviate ALI, and the underlying mechanisms are probably attributed to decreasing the production of proinflammatory cytokines through down-regulation of the activation of p38, JNK and NF-κB pathways in lung tissues.
Collapse
Affiliation(s)
- Haiqiang Zhou
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nemec A, Jerin A, Zdovc I, Budefeld T, Verstraete FJM, Eržen D, Sentjurc M, Petelin M, Hitti T, Pavlica Z. Early systemic inflammatory response in mice after a single oral gavage with live Escherichia coli is evidenced by increased TNF-alpha and nitric oxide production. Res Vet Sci 2011; 92:401-7. [PMID: 21489584 DOI: 10.1016/j.rvsc.2011.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 11/27/2010] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
Twenty-four female BALB/c mice were orally inoculated with 10(8) CFU Escherichia coli ATCC 25922 and euthanized 2.5, 7, 13 and 25 h post-inoculation. The levels of organ nitric oxide (NO) and plasma endotoxin, TNF-alpha and nitrite/nitrate (NO(x)) were compared to those found in sham-inoculated mice, to evaluate systemic host-response to a low-level oral exposure to Gram-negative bacteria. Organ bacterial culture and immunohistochemistry for iNOS were performed on lungs, liver, kidneys and brain from all mice. Organ NO and plasma TNF-alpha levels were higher in E. coli-inoculated animals, but no differences were detected in plasma endotoxin levels, NO(x) or iNOS immunostaining for any of the animal groups. Single oral gavage with live E. coli stimulates an early systemic immune response in clinically healthy mice as evidenced by increased plasma TNF-alpha and organ NO levels, but bacteremia and endotoxemia are not related to this inflammatory response.
Collapse
Affiliation(s)
- Ana Nemec
- Veterinary Faculty Small Animal Clinic, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cao W, Zhang W, Liu J, Wang Y, Peng X, Lu D, Qi R, Wang Y, Wang H. Paeoniflorin improves survival in LPS-challenged mice through the suppression of TNF-α and IL-1β release and augmentation of IL-10 production. Int Immunopharmacol 2011; 11:172-8. [PMID: 21094290 DOI: 10.1016/j.intimp.2010.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/16/2010] [Accepted: 11/04/2010] [Indexed: 02/05/2023]
Abstract
Lipopolysaccharide (LPS) plays an important role in Gram-negative bacteria-induced sepsis and multiple organ dysfunction syndrome, which are still the leading cause of high mortality in intensive care units. Although paeoniflorin (Pae) has reportedly exhibited anti-inflammatory effect and protection against immunological liver injury in mice, it is not known whether Pae improve survival in endotoxemic mice. The purpose of this study was to determine the effect of Pae on the mortality, multiple organ dysfunction and cytokine production in lipopolysaccharide (LPS)-treated mice. We found that pretreatment with Pae decreased mortality, reduced lung and kidney injury, decreased serum creatinine level and improve systolic function of heart in mice challenged with LPS. Further experiments showed that Pae inhibited LPS-stimulated tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) release and promoted LPS-induced interleukin-10 (IL-10) production. Our results indicate that Pae protects mice against lethal LPS challenge, at least in part, through inhibiting TNF-α and IL-1β production and accelerating IL-10 expression.
Collapse
Affiliation(s)
- Wenjuan Cao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cirioni O, Wu G, Li L, Orlando F, Silvestri C, Ghiselli R, Shen Z, Scalise A, Gabrielli E, Scuppa D, Romiti C, Provinciali M, Guerrieri M, Giacometti A. S-thanatin enhances the efficacy of tigecycline in an experimental rat model of polymicrobial peritonitis. Peptides 2010; 31:1231-6. [PMID: 20381561 DOI: 10.1016/j.peptides.2010.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/18/2022]
Abstract
We investigated the efficacy of the peptide s-thanatin alone and in combination with tigecycline in an animal model of sepsis induced by cecal ligation and puncture. Adult male Wistar rats were randomized to receive intravenously isotonic sodium chloride solution, 5mg/kg s-thanatin, 2mg/kg tigecycline, 5mg/kg s-thanatin combined with 2mg/kg tigecycline. The experiment was also performed with administration of the drugs 360 min after the surgical procedure to better investigate the clinical situation where there is an interval between the onset of sepsis and the initiation of therapy. Lethality, bacterial growth in blood, peritoneum, spleen and liver, and NO indices were evaluated. All compounds reduced the lethality when compared to control. In all experiments, the compounds reduced significantly bacterial growth and lethality compared with saline treatment. Treatment with s-thanatin resulted in significant decrease in plasma NO levels compared to tigecycline and control group. The combination between s-thanatin and tigecycline proved to be the most effective treatment in reducing all variables measured. S-thanatin may have potential therapeutic usefulness alone and when associated to tigecycline in polymicrobial peritonitis.
Collapse
Affiliation(s)
- Oscar Cirioni
- Institute of Infectious Diseases and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Toll-like receptor 4 modulation as a strategy to treat sepsis. Mediators Inflamm 2010; 2010:568396. [PMID: 20396414 PMCID: PMC2855078 DOI: 10.1155/2010/568396] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/02/2010] [Indexed: 01/08/2023] Open
Abstract
Despite a decrease in mortality over the last decade, sepsis remains the tenth leading causes of death in western countries and one of the most common cause of death in intensive care units. The recent discovery of Toll-like receptors and their downstream signalling pathways allowed us to better understand the pathophysiology of sepsis-related disorders. Particular attention has been paid to Toll-like receptor 4, the receptor for Gram-negative bacteria outer membrane lipopolysaccharide or endotoxin. Since most of the clinical trial targeting single inflammatory cytokine in the treatment of sepsis failed, therapeutic targeting of Toll-like receptor 4, because of its central role, looks promising. The purpose of this paper is to focus on the recent data of various drugs targeting TLR4 expression and pathway and their potential role as adjunctive therapy in severe sepsis and septic shock.
Collapse
|
23
|
Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 2009; 11:2717-39. [PMID: 19558211 DOI: 10.1089/ars.2009.2721] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO), plays multiple roles in the nervous system. In addition to regulating proliferation, survival and differentiation of neurons, NO is involved in synaptic activity, neural plasticity, and memory function. Nitric oxide promotes survival and differentiation of neural cells and exerts long-lasting effects through regulation of transcription factors and modulation of gene expression. Signaling by reactive nitrogen species is carried out mainly by targeted modifications of critical cysteine residues in proteins, including S-nitrosylation and S-oxidation, as well as by lipid nitration. NO and other reactive nitrogen species are also involved in neuroinflammation and neurodegeneration, such as in Alzheimer disease, amyotrophic lateral sclerosis, Parkinson disease, multiple sclerosis, Friedreich ataxia, and Huntington disease. Susceptibility to NO and peroxynitrite exposure may depend on factors such as the intracellular reduced glutathione and cellular stress resistance signaling pathways. Thus, neurons, in contrast to astrocytes, appear particularly vulnerable to the effects of nitrosative stress. This article reviews the current understanding of the cytotoxic versus cytoprotective effects of NO in the central nervous system, highlighting the Janus-faced properties of this small molecule. The significance of NO in redox signaling and modulation of the adaptive cellular stress responses and its exciting future perspectives also are discussed.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania , Catania, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Heemskerk S, Masereeuw R, Russel FGM, Pickkers P. Selective iNOS inhibition for the treatment of sepsis-induced acute kidney injury. Nat Rev Nephrol 2009; 5:629-40. [PMID: 19786992 DOI: 10.1038/nrneph.2009.155] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The incidence and mortality of sepsis and the associated development of acute kidney injury (AKI) remain high, despite intense research into potential treatments. Targeting the inflammatory response and/or sepsis-induced alterations in the (micro)circulation are two therapeutic strategies. Another approach could involve modulating the downstream mechanisms that are responsible for organ system dysfunction. Activation of inducible nitric oxide (NO) synthase (iNOS) during sepsis leads to elevated NO levels that influence renal hemodynamics and cause peroxynitrite-related tubular injury through the local generation of reactive nitrogen species. In many organs iNOS is not constitutively expressed; however, it is constitutively expressed in the kidney and, in humans, a relationship between the upregulation of renal iNOS and proximal tubular injury during systemic inflammation has been demonstrated. For these reasons, the selective inhibition of renal iNOS might have important implications for the treatment of sepsis-induced AKI. Various animal studies have demonstrated that selective iNOS inhibition-in contrast to nonselective NOS inhibition-attenuates sepsis-induced renal dysfunction and improves survival, a finding that warrants investigation in clinical trials. In this Review, the selective inhibition of iNOS as a potential novel treatment for sepsis-induced AKI is discussed.
Collapse
Affiliation(s)
- Suzanne Heemskerk
- Department of Intensive Care Medicine and the Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|