1
|
Turan Yücel N, Can ÖD, Demir Özkay Ü. Catecholaminergic and opioidergic system mediated effects of reboxetine on diabetic neuropathic pain. Psychopharmacology (Berl) 2020; 237:1131-1145. [PMID: 31912189 DOI: 10.1007/s00213-019-05443-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
RATIONALE Current data indicate that the noradrenergic system plays a critical role in neuropathic pain treatment. Notably, drugs that directly affect this system may have curative potential in neuropathy-associated pain. OBJECTIVES The aim of this study was to evaluate the potential therapeutic efficacy of reboxetine, a potent and selective noradrenaline reuptake inhibitor, on hyperalgesia and allodynia responses in rats with experimental diabetes. Furthermore, mechanistic studies were performed to elucidate the possible mode of actions. METHODS Experimental diabetes was induced by a single dose of streptozotocin. Mechanical hyperalgesia, mechanical allodynia, thermal hyperalgesia, and thermal allodynia responses in diabetic rats were evaluated by Randall-Selitto, dynamic plantar, Hargreaves, and warm plate tests, respectively. RESULTS Reboxetine treatment (8 and 16 mg/kg for 2 weeks) demonstrated an effect comparable to that of the reference drug, pregabalin, improving the hyperalgesic and allodynic responses secondary to diabetes mellitus. Pretreatment with phentolamine, metoprolol, SR 59230A, and atropine did not alter the abovementioned effects of reboxetine; however, the administration of α-methyl-para-tyrosine methyl ester, propranolol, ICI-118,551, SCH-23390, sulpiride, and naltrindole significantly inhibited these effects. Moreover, reboxetine did not induce a significant difference in the rat plasma glucose levels. CONCLUSIONS Our findings indicate that the antihyperalgesic and antiallodynic effects of reboxetine are mediated by the catecholaminergic system; β2-adrenoceptors; D1-, D2/D3-dopaminergic receptors; and δ-opioid receptors. The results suggest that this analgesic effect of reboxetine, besides its neutral profile on glycemic control, may be advantageous in the pharmacotherapy of diabetic neuropathy-induced pain.
Collapse
Affiliation(s)
- Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
2
|
Barbaros MB, Can ÖD, Üçel Uİ, Turan Yücel N, Demir Özkay Ü. Antihyperalgesic Activity of Atomoxetine on Diabetes-Induced Neuropathic Pain: Contribution of Noradrenergic and Dopaminergic Systems. Molecules 2018; 23:molecules23082072. [PMID: 30126223 PMCID: PMC6222656 DOI: 10.3390/molecules23082072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023] Open
Abstract
Atomoxetine is a selective noradrenaline reuptake inhibitor drug. Based on the knowledge that agents increasing monoamine levels in the central nervous system have therapeutic potential for neuropathic pain, it is planned to investigate the possible efficacy of atomoxetine on diabetes-induced hyperalgesia, in this study. Randall-Selitto (mechanical noxious stimuli) and Hargreaves (thermal noxious stimuli) tests were used to evaluate nociceptive perception of rats. Obtained data indicated that streptozotocin-induced diabetes causes significant decreases in the paw withdrawal threshold and paw withdrawal latency values of the animals, respectively. However, atomoxetine administered at 3 mg/kg/day for 7 and 14 days improved these diabetes-induced hyperalgesia responses. Furthermore, antihyperalgesic activity was antagonized with α-methyl-para-tyrosine methyl ester, phentolamine, propranolol, and sulpiride pre-treatments. The same effect was not reversed, however, by SCH 23390. These findings demonstrated, for the first time, that atomoxetine possesses significant antihyperalgesic activity on diabetes-induced neuropathic pain and this effect seems to be mediated by α- and β-adrenergic and D₂/D₃ dopaminergic receptors. Results of this present study seem to offer a new indication for an old drug; atomoxetine, but these preclinical data should first be confirmed with further well-designed clinical trials.
Collapse
Affiliation(s)
- Mustafa Burak Barbaros
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Umut İrfan Üçel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
3
|
Ghorbanzadeh B, Mansouri MT, Naghizadeh B, Alboghobeish S. Local antinociceptive action of fluoxetine in the rat formalin assay: role of l-arginine/nitric oxide/cGMP/K ATP channel pathway. Can J Physiol Pharmacol 2017; 96:165-172. [PMID: 28787580 DOI: 10.1139/cjpp-2017-0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study was conducted to evaluate the local antinociceptive actions of fluoxetine, a selective serotonin reuptake inhibitor, and the possible involvement of the l-arginine/NO/cGMP/KATP channel pathway in this effect using the formalin test in rats. To elucidate the underlying mechanisms, animals were pre-treated with l-NAME, aminoguanidine, methylene blue, glibenclamide, l-arginine, sodium nitroprusside, or diazoxide. Local ipsilateral, but not contralateral, administration of fluoxetine (10-300 μg/paw) dose-dependently suppressed flinching number during both early and late phases of the test, and this was comparable with morphine also given peripherally. Pre-treatment with l-NAME, aminoguanidine, methylene blue, or glibenclamide dose-dependently prevented fluoxetine (100 μg/paw)-induced antinociception in the late phase. In contrast, administration of l-arginine, sodium nitroprusside, and diazoxide significantly enhanced the antinociception caused by fluoxetine in the late phase of the test. However, these treatments had no significant effect on the antinociceptive response of fluoxetine in the early phase of the formalin test. Our data demonstrate that local peripheral antinociception of fluoxetine during the late phase of the formalin test could be due to activation of l-arginine/NO/cGMP/KATP channel pathway. The peripheral action of fluoxetine raises the possibility that topical application of this drug (e.g., as a cream, ointment, or jelly) may be a useful method for relieving the inflammatory pain states.
Collapse
Affiliation(s)
- Behnam Ghorbanzadeh
- a Department of Pharmacology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Taghi Mansouri
- b Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahareh Naghizadeh
- b Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- b Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Aydın TH, Can ÖD, Demir Özkay Ü, Turan N. Effect of subacute agomelatine treatment on painful diabetic neuropathy: involvement of catecholaminergic mechanisms. Fundam Clin Pharmacol 2016; 30:549-567. [PMID: 27421789 DOI: 10.1111/fcp.12224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
Abstract
In this study, we investigated the effects of subacute agomelatine (40 and 80 mg/kg) administration on chronic hyperglycemia, metabolic parameters, and pain perception in streptozotocin-induced diabetic rats. Fasting blood glucose measurements and oral glucose tolerance tests were performed to evaluate the effect of agomelatine on glycemia, while metabolic parameters were monitored using metabolic cages. Potential effect of agomelatine on diabetes-induced mechanical and thermal allodynia was evaluated using dynamic plantar aesthesiometer and warm plate (38 °C) tests, respectively. Additionally, influence of agomelatine on hyperalgesia occurring in connection with diabetic neuropathy was examined using the Randall-Selitto (mechanical nociceptive stimulus), Hargreaves (thermal nociceptive stimulus), and cold plate (4 °C, thermal nociceptive stimulus) tests. Obtained data indicated that, in diabetic rats, agomelatine significantly improved hyperalgesia and allodynia responses, without no effect on hyperglycemia or the associated polydipsia, polyuria, and hyperphagia. Therapeutic potential of agomelatine on neuropathic pain was suppressed with α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis), phentolamine (a nonselective α-adrenoceptor antagonist), and propranolol (a nonselective β-adrenoceptor antagonist) administrations. However, p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis) pretreatment could not be achieved to reverse these antihyperalgesic and antiallodynic effects. These results suggest that the curative effect of agomelatine on neuropathic pain is mediated through rising synaptic catecholamine levels as well as through interactions with both α- and β-adrenoceptors. To our knowledge, this is the first study to show findings that indicate catecholaminergic system mediated antihyperalgesic and antiallodynic effects of agomelatine.
Collapse
Affiliation(s)
- Taliha H Aydın
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Özgür D Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| | - Nazlı Turan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Turkey
| |
Collapse
|
5
|
Okkerse P, Alvarez-Jimenez R, Hay JL, Tehim A, Kumar R, de Kam ML, Groeneveld GJ. No evidence of potentiation of buprenorphine by milnacipran in healthy subjects using a nociceptive test battery. Eur J Pain 2016; 21:494-506. [PMID: 27651026 DOI: 10.1002/ejp.943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Serotonin-norepinephrine reuptake inhibitors inhibit the reuptake of serotonin and noradrenalin and are used in the treatment of neuropathic pain. Animal studies suggest that milnacipran co-administered with opioids may potentiate the analgesic effect of μ-opioid receptor agonists. This study hypothesized that co-administration of milnacipran and buprenorphine would have a synergistic effect in evoked pain models in healthy subjects. METHODS This was a randomized double-blinded, placebo-controlled, four-way cross-over, multiple dose clinical trial to investigate the analgesic effects of buprenorphine (placebo, 0.5, 1 and 3 μg/kg) in combination with milnacipran (placebo, 25 and 50 mg) in healthy subjects. RESULTS 11 healthy men were enrolled in the study. Buprenorphine alone showed a dose-response relationship indicative of anti-nociception in the pain tests. Following milnacipran administration, no changes were seen in the pharmacodynamic measurements for pain, psychomotor function, body stability or eye movements. For the electrical tests, cold pressor test and pressure pain test, buprenorphine alone was superior when compared with buprenorphine plus milnacipran. No differences in pharmacodynamic variables, besides an increase in pupil/iris ratio, were observed after repeated administration of milnacipran 50 mg. Single and multiple doses of 25 or 50 mg milnacipran did not further potentiate the anti-nociceptive effects of buprenorphine. CONCLUSIONS Buprenorphine showed dose-dependent effects consistent with its pharmacological profile. Milnacipran alone did not affect any of the pain variables. The combination of both buprenorphine and milnacipran did not potentiate or show a synergistic effect on the pain models used in this study. SIGNIFICANCE Buprenorphine is known to be a potent opioid agonist. Animal studies suggest that milnacipran co-administered with opioids may potentiate the analgesic effect of μ-opioid receptor agonists. Here, we found that buprenorphine showed a dose-dependent analgesic effect, but that no potentiation or synergy on a battery of evoked pain tasks could be observed after co-administration of both milnacipran and buprenorphine.
Collapse
Affiliation(s)
- P Okkerse
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | | | - J L Hay
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - A Tehim
- Dr. Reddy's Laboratories, Hyderabad, India
| | - R Kumar
- Dr. Reddy's Laboratories, Hyderabad, India
| | - M L de Kam
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| | - G J Groeneveld
- Centre for Human Drug Research (CHDR), Leiden, The Netherlands
| |
Collapse
|
6
|
Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016; 338:183-206. [PMID: 27401055 DOI: 10.1016/j.neuroscience.2016.06.057] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023]
Abstract
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system. It is generally chronic and challenging to treat. The recommended pharmacotherapy for neuropathic pain includes the use of some antidepressants, such as tricyclic antidepressants (TCAs) (amitriptyline…) or serotonin and noradrenaline re-uptake inhibitors (duloxetine…), and/or anticonvulsants such as the gabapentinoids gabapentin or pregabalin. Antidepressant drugs are not acute analgesics but require a chronic treatment to relieve neuropathic pain, which suggests the recruitment of secondary downstream mechanisms as well as long-term molecular and neuronal plasticity. Noradrenaline is a major actor for the action of antidepressant drugs in a neuropathic pain context. Mechanistic hypotheses have implied the recruitment of noradrenergic descending pathways as well as the peripheral recruitment of noradrenaline from sympathetic fibers sprouting into dorsal root ganglia; and importance of both α2 and β2 adrenoceptors have been reported. These monoamine re-uptake inhibitors may also indirectly act as anti-proinflammatory cytokine drugs; and their therapeutic action requires the opioid system, particularly the mu (MOP) and/or delta (DOP) opioid receptors. Gabapentinoids, which target the voltage-dependent calcium channels α2δ-1 subunit, inhibit calcium currents, thus decreasing the excitatory transmitter release and spinal sensitization. Gabapentinoids also activate the descending noradrenergic pain inhibitory system coupled to spinal α2 adrenoceptors. Gabapentinoid treatment may also indirectly impact on neuroimmune actors, like proinflammatory cytokines. These drugs are effective against neuropathic pain both with acute administration at high dose and with repeated administration. This review focuses on mechanistic knowledge concerning chronic antidepressant treatment and gabapentinoid treatment in a neuropathic pain context.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France.
| |
Collapse
|
7
|
Abstract
OBJECTIVES The paradoxical development of chronic abdominal pain is an underrecognized side effect of opioid use. Narcotic bowel syndrome (NBS), occurring in a small proportion of chronic opioid users, consists of chronic or intermittent abdominal pain, which often increases in severity despite continued or escalating dosages of opioids prescribed to relieve pain. METHODS A PubMed search was conducted using terms such as "narcotic bowel syndrome" and "opioid hyperalgesia" through January 2014. RESULTS Abdominal pain is the defining symptom of NBS and is thought to be mediated by central nervous system dysfunction; it should be distinguished from the peripheral side effects of opioids, such as nausea, bloating, intermittent vomiting, abdominal distension, and constipation. This latter cluster of symptoms is called opioid bowel dysfunction, although it may co-occur with NBS. Hypothesized mechanisms of the central effects of opioids on nociception in NBS include spinal cord inflammation and dysfunction in opioid receptor activity and related neuroanatomical substrates. With continued use, ∼6% of patients taking narcotics chronically will develop NBS, with profound consequences in terms of daily function. The primary management paradigm for NBS is a structured opioid withdrawal program accompanied by centrally acting adjunctive therapy comprising antidepressants, benzodiazepines, and clonidine to target pain, anxiety, and depression, and prevent withdrawal effects, in addition to peripherally acting agents such as laxatives (e.g., osmotic laxatives and chloride channel activators) to control transient constipation. Such structured withdrawal programs have been prospectively evaluated in small clinical trials and have met with considerable success in the short term. CONCLUSIONS Because rates of NBS are likely to rise, integrated intensive pharmacotherapy and psychosocial interventions are needed to help patients with NBS go off and stay off opioids. These programs will likely also reduce comorbid psychopathology and lead to adequate pain control and improved quality of life.
Collapse
|
8
|
Üçel Uİ, Can ÖD, Demir Özkay Ü, Öztürk Y. Antihyperalgesic and antiallodynic effects of mianserin on diabetic neuropathic pain: a study on mechanism of action. Eur J Pharmacol 2015; 756:92-106. [PMID: 25771454 DOI: 10.1016/j.ejphar.2015.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 12/14/2022]
Abstract
This study used various experimental pain methods to investigate the effects of subacute mianserin administration on diabetes-induced neuropathic pain in rats. The effect of mianserin on hyperalgesia occurring in connection with peripheral diabetic neuropathy was examined using the Randall-Selitto (mechanical nociceptive stimulus), Hargreaves (thermal nociceptive stimulus), and cold-plate (4°C, thermal nociceptive stimulus) tests. The dynamic plantar aesthesiometer, which measures the threshold values for mechanical stimuli, was used for allodynia studies. Thermal allodynia was evaluated with the warm-plate (38°C) test. At 30 and 45 mg/kg, mianserin effectively improved mechanical and thermal hyperalgesia occurring in connection with diabetic neuropathy. Subacute administration of mianserin also reduced diabetes-associated mechanical and thermal allodynia. The ability of mianserin to reduce diabetic neuropathic pain was comparable to that of pregabalin (10mg/kg). The antihyperalgesic and antiallodynic effects of mianserin were reversed with α-methyl-para-tyrosine methyl ester (AMPT, an inhibitor of catecholamine synthesis), phentolamine (a non-selective α-adrenoceptor antagonist), propranolol (a non-selective β-adrenoceptor antagonist), and naloxone (a non-selective opioid receptor antagonist) administrations. The same effects were not reversed, however, by para-chlorophenylalanine methyl ester (PCPA; an inhibitor of serotonin synthesis). These results suggest that the beneficial effect of mianserin on diabetic neuropathic pain is mediated through an increase in catecholamine levels in the synaptic cleft as well as through interactions with both subtypes of adrenoceptors and opioid receptors. Considering that mianserin exhibits simultaneous antidepressant and antinociceptive effects, this drug could provide a good alternative for treating the pain associated with diabetic neuropathy and the mood disorders caused directly by diabetes.
Collapse
Affiliation(s)
- Umut İrfan Üçel
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| | - Özgür Devrim Can
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey.
| | - Ümide Demir Özkay
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| | - Yusuf Öztürk
- Anadolu University, Faculty of Pharmacy, Department of Pharmacology, 26470 Eskişehir, Turkey
| |
Collapse
|
9
|
The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. Eur J Pharmacol 2015; 749:115-23. [DOI: 10.1016/j.ejphar.2014.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 01/18/2023]
|
10
|
Szigethy E, Schwartz M, Drossman D. Narcotic bowel syndrome and opioid-induced constipation. Curr Gastroenterol Rep 2014; 16:410. [PMID: 25183577 DOI: 10.1007/s11894-014-0410-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Prescription opioid use for chronic non-cancer pain has reached epidemic levels in the USA. With this increased use is the recognition of serious opioid-related gastrointestinal complications such as narcotic bowel syndrome (NBS) and opioid-induced constipation (OIC). NBS consists of a paradoxical worsening of abdominal pain with escalating doses of opioids and is likely mediated by the central nervous system. Therapy requires an intensive multidisciplinary approach to detoxification. OIC is the most common gastrointestinal side effect of opioids. Several novel therapeutics are available to treat OIC that fails to respond to laxative therapy. This review will summarize recent findings on the pathophysiology and treatment approaches to NBS and OIC with a focus on controversies about diagnosis and intervention.
Collapse
Affiliation(s)
- Eva Szigethy
- Department of Psychiatry, University of Pittsburgh, Medical Arts Building, 3708 Fifth Ave, Pittsburgh, PA, 15213, USA,
| | | | | |
Collapse
|
11
|
The role of spinal serotonin receptor and alpha adrenoceptor on the antiallodynic effects induced by intrathecal milnacipran in chronic constriction injury rats. Eur J Pharmacol 2014; 738:57-65. [DOI: 10.1016/j.ejphar.2014.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/04/2014] [Accepted: 05/10/2014] [Indexed: 11/17/2022]
|
12
|
Face-to-face comparison of the predictive validity of two models of neuropathic pain in the rat: analgesic activity of pregabalin, tramadol and duloxetine. Eur J Pharmacol 2014; 735:17-25. [PMID: 24726848 DOI: 10.1016/j.ejphar.2014.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/24/2022]
Abstract
We compared the preclinical analgesic activity of three marketed drugs with different pharmacological properties, pregabalin, tramadol and duloxetine, described as effective against neuropathic pain in the clinic. These drugs were tested against evoked pain in two different neuropathic models in the rat, the Bennett (CCI) and the Chung (SNL) models. The selected endpoints were tactile allodynia, tactile hyperalgesia, heat hyperalgesia and cold allodynia. Although all three drugs displayed analgesic activity, the effects observed varied according to the behavioral evaluation. Pregabalin showed clear analgesic effects against cold allodynia and tactile hyperalgesia in both the CCI and Chung models. Tramadol was active against all four endpoints in the Chung model with similar effects in the CCI model, apart from tactile allodynia. Duloxetine inhibited tactile allodynia and heat hyperalgesia in both neuropathic pain models. It also displayed efficacy against tactile hyperalgesia in the CCI model and against cold allodynia in the Chung model. These data confirm that the CCI and the Chung models of neuropathic pain do not detect the activity of analgesics with the same sensitivity. Furthermore, the mode of stimulation (tactile or thermal) and the type of endpoint (allodynia or hyperalgesia) can further influence the observed efficacy of gold standards as well as novel compounds developed for treating neuropathic pain symptoms.
Collapse
|
13
|
Katsuyama S, Aso H, Otowa A, Yagi T, Kishikawa Y, Komatsu T, Sakurada T, Nakamura H. Antinociceptive Effects of the Serotonin and Noradrenaline Reuptake Inhibitors Milnacipran and Duloxetine on Vincristine-Induced Neuropathic Pain Model in Mice. ISRN PAIN 2014; 2014:915464. [PMID: 27335884 PMCID: PMC4893398 DOI: 10.1155/2014/915464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/14/2014] [Indexed: 01/31/2023]
Abstract
Vincristine is an anticancer drug used to treat a variety of cancer types, but it frequently causes peripheral neuropathy. Neuropathic pain is often associated with the appearance of abnormal sensory signs, such as allodynia. Milnacipran and duloxetine, serotonin/noradrenaline reuptake inhibitors, have shown efficacy against several chronic pain syndromes. In this study, we investigated the attenuation of vincristine-induced mechanical allodynia in mice by milnacipran and duloxetine. To induce peripheral neuropathy, vincristine was administered once per day (0.1 mg/kg, intraperitoneally (i.p.)) for 7 days. Mechanical allodynia was evaluated by measuring the withdrawal response to stimulation with a von Frey filament. In vincristine-treated mice, mechanical allodynia was observed on days 3-28 of vincristine administration. A single administration of milnacipran (40 mg/kg, i.p.) or duloxetine (20 mg/kg, i.p.) had no effect on vincristine-induced mechanical allodynia. However, repeated administration of milnacipran (20 or 40 mg/kg, once per day, i.p.) or duloxetine (5, 10, or 20 mg/kg, once per day, i.p.) for 7 days significantly reduced vincristine-induced mechanical allodynia. These results suggest that chronic vincristine administration induces mechanical allodynia, and that repeated milnacipran and duloxetine administration may be an effective approach for the treatment of neuropathic pain caused by vincristine treatment for cancer.
Collapse
Affiliation(s)
- Soh Katsuyama
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hiromu Aso
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Akira Otowa
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Tomomi Yagi
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Yukinaga Kishikawa
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Takaaki Komatsu
- Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Tsukasa Sakurada
- Department of Pharmacology, Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hitoshi Nakamura
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
14
|
Zhang J, Wu D, Xie C, Wang H, Wang W, Zhang H, Liu R, Xu LX, Mei XP. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain. PLoS One 2013; 8:e72943. [PMID: 24009718 PMCID: PMC3756942 DOI: 10.1371/journal.pone.0072943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/16/2013] [Indexed: 01/22/2023] Open
Abstract
Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Dan Wu
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Cheng Xie
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Huan Wang
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wei Wang
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hui Zhang
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rui Liu
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China
- * E-mail: (RL); (LXX); (XPM)
| | - Li-Xian Xu
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China
- * E-mail: (RL); (LXX); (XPM)
| | - Xiao-Peng Mei
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China
- * E-mail: (RL); (LXX); (XPM)
| |
Collapse
|
15
|
Cegielska-Perun K, Bujalska-Zadrożny M, Makulska-Nowak HE. Modification of morphine analgesia by venlafaxine in diabetic neuropathic pain model. Pharmacol Rep 2013; 64:1267-75. [PMID: 23238483 DOI: 10.1016/s1734-1140(12)70923-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 05/30/2012] [Indexed: 10/25/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the influence of single or chronic (21 days) administration of the serotonin and noradrenaline reuptake inhibitor, venlafaxine, on the antinociceptive action of the opioid receptor agonist, morphine, in streptozotocin (STZ)-induced hyperalgesia. METHODS The studies were performed on male Wistar rats. Changes in nociceptive thresholds were determined using mechanical stimuli. Diabetes was induced by a single administration of STZ (40 mg/kg, im). RESULTS Venlafaxine was shown to modulate analgesic activity of morphine in STZ-induced hyperalgesia. However, whereas acute co-administration of venlafaxine increased the analgesic activity of morphine, chronic treatment with venlafaxine attenuated opioid efficacy. CONCLUSION Depending on the mode of administration (single or long-term), venlafaxine modulates analgesic activity of morphine. Further investigations are necessary to clarify the mechanisms of these interactions, which may be clinically relevant.
Collapse
Affiliation(s)
- Krystyna Cegielska-Perun
- Department of Pharmacodynamics, Medical University of Warsaw, Krakowskie Przedmieście 26/28, PL 00-927 P.O. Box 3, Warszawa 64, Poland.
| | | | | |
Collapse
|
16
|
Bernstein CD, Albrecht KL, Marcus DA. Milnacipran for fibromyalgia: a useful addition to the treatment armamentarium. Expert Opin Pharmacother 2013; 14:905-16. [PMID: 23506481 DOI: 10.1517/14656566.2013.779670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Antidepressants are used to treat a variety of chronic pain conditions including peripheral neuropathy, headache, and more recently, fibromyalgia. The antidepressant milnacipran blocks the reuptake of norepinephrine and serotonin and is used for the management of fibromyalgia. AREAS COVERED The article contains data primarily obtained from the MEDLINE database using a PubMed search of the keywords including milnacipran, fibromyalgia and depression. Of the available serotonin norepinephrine reuptake inhibitors, milnacipran has greater potency in inhibiting reuptake of norepinephrine relative to serotonin and is proposed to work by attenuating pain signals. Milnacipran is well tolerated and effective for fibromyalgia pain when given in divided doses of 100 - 200 mg daily. Studies show that milnacipran may be effective for fibromyalgia-associated symptoms including depression and fatigue. EXPERT OPINION Milnacipran provides modest fibromyalgia pain relief and is best used as part of a multidisciplinary treatment approach. While milnacipran was not studied in fibromyalgia patients with major depression, it may be a wise choice for fibromyalgia patients with depressive symptoms and patients for whom sedation, dizziness, edema or weight gain with gabapentin and pregabalin is a problem. Milnacipran has been found to be beneficial for treating some troublesome fibromyalgia-associated symptoms, including fatigue and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Bernstein
- University of Pittsburgh, Department of Anesthesiology, Suite 400, Pain Medicine, Centre Commons Building, 5750 Centre Avenue, Pittsburgh, PA 15206, USA.
| | | | | |
Collapse
|
17
|
Burnham LJ, Dickenson AH. The antinociceptive effect of milnacipran in the monosodium iodoacetate model of osteoarthritis pain and its relation to changes in descending inhibition. J Pharmacol Exp Ther 2013; 344:696-707. [PMID: 23297162 DOI: 10.1124/jpet.112.199489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disorder whose principal symptom is chronic pain. Current analgesics are inadequate and the mechanisms contributing to this pain are poorly understood but likely to include both local joint changes and central consequences. These studies used monoamine receptor agents combined with behavioral studies and single-unit dorsal horn recordings to examine whether descending noradrenergic and serotonergic inhibitions are altered in the monosodium iodoacetate model of OA pain, and whether increasing these inhibitions with the serotonin/noradrenaline reuptake inhibitor milnacipran can attenuate the attendant hypersensitivity. Early and late in the course of this model, milnacipran (s.c.) reduced behavioral hypersensitivity, and inhibited evoked responses from sensitized dorsal horn neurons. In naïve animals and the early, but not late, phase of the model, spinal administration of the α(2)-adrenoceptor antagonist atipamezole fully reversed this neuronal inhibition, whereas atipamezole administered alone revealed that endogenous noradrenergic inhibition was reduced in the late phase. Blocking spinal 5-hydroxytryptamine-7 receptors with (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride suggested that the effects of milnacipran in the late phase were partly mediated by these receptors, and that descending serotonergic inhibition was increased in this phase. An opioidergic mechanism behind the effects of milnacipran was indicated by a partial reversal of these effects with naloxone. These studies demonstrate antinociceptive effects for milnacipran in a model of OA pain, whose effects come via descending serotonergic and noradrenergic, as well as opioidergic, pathways. Variations in the activity of these pathways over the course of this model may contribute to the presence of behavioral hypersensitivity and determine through which endogenous systems milnacipran exerts its effects.
Collapse
Affiliation(s)
- Liam J Burnham
- Department of Neuroscience, Physiology, and Pharmacology, Medical Sciences Building, University College London, Gower Street, Room G35, London, WC1E 6BT, UK.
| | | |
Collapse
|
18
|
Thibault K, Calvino B, Pezetl S. Characterisation of sensory abnormalities observed in an animal model of multiple sclerosis: A behavioural and pharmacological study. Eur J Pain 2012; 15:231.e1-16. [DOI: 10.1016/j.ejpain.2010.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/17/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
|
19
|
Depoortère R, Meleine M, Bardin L, Aliaga M, Muller E, Ardid D, Newman-Tancredi A. Milnacipran is active in models of irritable bowel syndrome and abdominal visceral pain in rodents. Eur J Pharmacol 2011; 672:83-7. [DOI: 10.1016/j.ejphar.2011.09.182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/20/2011] [Accepted: 09/24/2011] [Indexed: 12/28/2022]
|
20
|
Wattiez AS, Libert F, Privat AM, Loiodice S, Fialip J, Eschalier A, Courteix C. Evidence for a differential opioidergic involvement in the analgesic effect of antidepressants: prediction for efficacy in animal models of neuropathic pain? Br J Pharmacol 2011; 163:792-803. [PMID: 21371007 DOI: 10.1111/j.1476-5381.2011.01297.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Antidepressants are one of the recommended treatments for neuropathic pain. However, their analgesic action remains unpredictable, and there are no selection criteria for clinical use. Better knowledge of their mechanism of action could help highlight differences underlying their unequal efficacy. EXPERIMENTAL APPROACH We compared the activity of a tricyclic antidepressant (clomipramine) with selective 5-HT and noradrenaline reuptake inhibitors (milnacipran and duloxetine) in streptozocin-induced diabetic and chronic constriction nerve injury-induced neuropathic rats, after repeated injections. We looked for an opioidergic mechanism in their action. KEY RESULTS Abolition of mechanical hyperalgesia was observed in mononeuropathic rats after five injections of clomipramine (5 mg·kg(-1) , s.c.) and milnacipran (10 or 20 mg·kg(-1) , i.p.) and in diabetic rats after clomipramine. An additional antinociceptive effect was obtained with five injections of duloxetine (3 mg·kg(-1) , i.p.) in both models and milnacipran (10 mg·kg(-1) , i.p.) in diabetic rats. These effects were observed with plasma antidepressant concentrations similar to those found in patients treated for neuropathic pain. Naloxone (1 mg·kg(-1) , i.v.) only suppressed the anti-hyperalgesic effects of clomipramine in both models of pain and of milnacipran in the traumatic model. CONCLUSIONS AND IMPLICATIONS The opioid system appears to be involved in the mechanism of action of antidepressants that only have an anti-hyperalgesic effect but not in those that have a stronger (i.e. antinociceptive) effect. These differences between the antidepressants occurred whatever the aetiology of the neuropathy and, if confirmed in clinical trials, could be used to decide which antidepressant is administered to a patient with neuropathic pain.
Collapse
Affiliation(s)
- A-S Wattiez
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Berrocoso E, Mico JA, Vitton O, Ladure P, Newman-Tancredi A, Depoortère R, Bardin L. Evaluation of milnacipran, in comparison with amitriptyline, on cold and mechanical allodynia in a rat model of neuropathic pain. Eur J Pharmacol 2011; 655:46-51. [DOI: 10.1016/j.ejphar.2011.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/10/2010] [Accepted: 01/12/2011] [Indexed: 11/29/2022]
|
22
|
Hache G, Coudore F, Gardier AM, Guiard BP. Monoaminergic Antidepressants in the Relief of Pain: Potential Therapeutic Utility of Triple Reuptake Inhibitors (TRIs). Pharmaceuticals (Basel) 2011. [PMCID: PMC4053958 DOI: 10.3390/ph4020285] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Over 75% of depressed patients suffer from painful symptoms predicting a greater severity and a less favorable outcome of depression. Imaging, anatomical and functional studies have demonstrated the existence of common brain structures, neuronal pathways and neurotransmitters in depression and pain. In particular, the ascending serotonergic and noradrenergic pathways originating from the raphe nuclei and the locus coeruleus; respectively, send projections to the limbic system. Such pathways control many of the psychological functions that are disturbed in depression and in the perception of pain. On the other hand, the descending pathways, from monoaminergic nuclei to the spinal cord, are specifically implicated in the inhibition of nociception providing rationale for the use of serotonin (5-HT) and/or norepinephrine (NE) reuptake inhibitors (SSRIs, NRIs, SNRIs), in the relief of pain. Compelling evidence suggests that dopamine (DA) is also involved in the pathophysiology and treatment of depression. Indeed, recent insights have demonstrated a central role for DA in analgesia through an action at both the spinal and suprasinal levels including brain regions such as the periaqueductal grey (PAG), the thalamus, the basal ganglia and the limbic system. In this context, dopaminergic antidepressants (i.e., containing dopaminergic activity), such as bupropion, nomifensine and more recently triple reuptake inhibitors (TRIs), might represent new promising therapeutic tools in the treatment of painful symptoms with depression. Nevertheless, whether the addition of the dopaminergic component produces more robust effects than single- or dual-acting agents, has yet to be demonstrated. This article reviews the main pathways regulating pain transmission in relation with the monoaminergic systems. It then focuses on the current knowledge regarding the in vivo pharmacological properties and mechanism of action of monoaminergic antidepressants including SSRIs, NRIs, SNRIs and TRIs. Finally, a synthesis of the preclinical studies supporting the efficacy of these antidepressants in analgesia is also addressed in order to highlight the relative contribution of 5-HT, NE and DA to nociception.
Collapse
Affiliation(s)
- Guillaume Hache
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 011-331-46-83-53-61
| | | | | | | |
Collapse
|
23
|
Abstract
Milnacipran is a serotonin and norepinephrine reuptake inhibitor (SNRI) with negligible effects on any presynaptic or postsynaptic receptors. Milnacipran has unique pharmacokinetic and pharmacodynamic characteristics that distinguish it from the other marketed serotonin and norepinephrine reuptake inhibitors, venlafaxine, desvenlafaxine, and duloxetine such as equipotent serotonin and norepinephrine reuptake inhibition and a linear dose-concentration trend at therapeutic doses. The half-life of milnacipran is approximately 8 hours. In addition, milnacipran does not inhibit the cytochrome P 450 system, indicating minimal propensity for drug-drug interactions. The antidepressant efficacy of milnacipran has been clearly established in a number of randomized, double-blind, placebo-controlled clinical trials, and it has been widely used for treating major depressive disorder. Moreover, evidence suggests that milnacipran is effective and tolerable in the treatment of fibromyalgia and may have usefulness for fatigue and anxiety symptoms. The current paper reviews researches conducted to date that is relevant to the efficacy, tolerability, and mechanism of action of milnacipran in the treatment of depression, fibromyalgia, and other psychiatric syndromes. Future directions of research are also identified.
Collapse
|
24
|
Önal A, Kayalıoğlu G, Parlar A, Keser A, Ülker S. Effect of prolonged administration of bovine lactoferrin in neuropathic pain: Involvement of opioid receptors, nitric oxide and TNF-α. Life Sci 2010; 86:251-9. [DOI: 10.1016/j.lfs.2009.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/26/2009] [Accepted: 12/06/2009] [Indexed: 01/30/2023]
|
25
|
Marks DM, Shah MJ, Patkar AA, Masand PS, Park GY, Pae CU. Serotonin-norepinephrine reuptake inhibitors for pain control: premise and promise. Curr Neuropharmacol 2009; 7:331-6. [PMID: 20514212 PMCID: PMC2811866 DOI: 10.2174/157015909790031201] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022] Open
Abstract
The precise mechanisms of pain perception and transmission in the central nervous system have not been fully elucidated. However, extensive data support a role for the monoamine neurotransmitters, serotonin and norepinephrine, in the modulation of pain. Experiments with animal models of pain indicate that noradrenergic interventions, and to a lesser extent serotonergic interventions, reduce pain-related behavior. This is supported by data from clinical trials in humans in which antidepressants have been shown to reduce pain and functional impairment in central and neuropathic pain conditions. These effects are particularly well-studied in trials with serotonin-norepinephrine reuptake inhibitors (SNRIs), which have provided a useful tool in the clinician's arsenal, particularly considering the limitations of other classes of pain medications such as opioids, anti-inflammatories, and anticonvulsants (i.e., limited efficacy, safety and tolerability issues). Moreover, painful physical symptoms are frequently comorbid with major psychiatric disorders such as major depressive disorder and anxiety disorders. This paper reviewed and summarized the rationale and potential role of SNRIs for the control of pain including clinical and preclinical background. Currently evidence does not definitely support a role of the SNRIs, while limited data propose a putative promise of SNRIs in the treatment of pain related disorders including fibromyalgia and depressed patients with multiple somatic complaints. More researches are warranted to generalize currently available preliminary evidences.
Collapse
Affiliation(s)
- David M Marks
- Department of Psychiatry and Behavioral Science, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|