1
|
Vilca S, Wahlestedt C, Izenwasser S, Gainetdinov RR, Pardo M. Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure. Biomolecules 2023; 13:1107. [PMID: 37509143 PMCID: PMC10377455 DOI: 10.3390/biom13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Samara Vilca
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.V.); (C.W.); (S.I.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia;
| | - Marta Pardo
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Pardo M, Martin M, Gainetdinov RR, Mash DC, Izenwasser S. Heterozygote Dopamine Transporter Knockout Rats Display Enhanced Cocaine Locomotion in Adolescent Females. Int J Mol Sci 2022; 23:ijms232315414. [PMID: 36499749 PMCID: PMC9736933 DOI: 10.3390/ijms232315414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine's reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence.
Collapse
Affiliation(s)
- Marta Pardo
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-786-230-7181
| | - Michele Martin
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7-9, 199034 St. Petersburg, Russia
| | - Deborah C Mash
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sari Izenwasser
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
3
|
Li X, Xiong J, Zhang B, Zhangsun D, Luo S. α-Conotoxin TxIB Inhibits Development of Morphine-Induced Conditioned Place Preference in Mice via Blocking α6β2* Nicotinic Acetylcholine Receptors. Front Pharmacol 2021; 12:772990. [PMID: 34925031 PMCID: PMC8681874 DOI: 10.3389/fphar.2021.772990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Morphine, the main component of opium, is a commonly used analgesic in clinical practice, but its abuse potential limits its clinical application. Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic circuitry play an important role in the rewarding effects of abused drugs. Previous studies have showed that α6β2* (* designated other subunits) nAChRs are mainly distributed in dopaminergic neurons in the midbrain area, which regulates the release of dopamine. So α6β2* nAChRs are regarded as a new target to treat drug abuse. α-Conotoxin TxIB was discovered in our lab, which is the most selective ligand to inhibit α6β2* nAChRs only. Antagonists of α6β2* nAChRs decreased nicotine, cocaine, and ethanol rewarding effects previously. However, their role in morphine addiction has not been reported so far. Thus, it is worth evaluating the effect of α-conotoxin TxIB on the morphine-induced conditioned place preference (CPP) and its behavioral changes in mice. Our results showed that TxIB inhibited expression and acquisition of morphine-induced CPP and did not produce a rewarding effect by itself. Moreover, repeated injections of TxIB have no effect on learning, memory, locomotor activity, and anxiety-like behavior. Therefore, blocking α6/α3β2β3 nAChRs inhibits the development of morphine-induced CPP. α-Conotoxin TxIB may be a potentially useful compound to mitigate the acquisition and/or retention of drug-context associations.
Collapse
Affiliation(s)
- Xiaodan Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jian Xiong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Baojian Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.,Medical School, Guangxi University, Nanning, China
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China.,Medical School, Guangxi University, Nanning, China
| |
Collapse
|
4
|
α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice. Mar Drugs 2020; 18:md18120646. [PMID: 33339145 PMCID: PMC7765617 DOI: 10.3390/md18120646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/14/2023] Open
Abstract
Tobacco smoking has become a prominent health problem faced around the world. The α3β4 nicotinic acetylcholine receptor (nAChR) is strongly associated with nicotine reward and withdrawal symptom. α-Conotoxin TxID, cloned from Conus textile, is a strong α3β4 nAChR antagonist, which has weak inhibition activity of α6/α3β4 nAChR. Meanwhile, its analogue [S9K]TxID only inhibits α3β4 nAChR (IC50 = 6.9 nM), and has no inhibitory activity to other nAChRs. The present experiment investigates the effect of α3β4 nAChR antagonists (TxID and [S9K]TxID) on the expression and reinstatement of nicotine-induced conditioned place preference (CPP) and explores the behaviors of acute nicotine in mice. The animal experimental results showed that TxID and [S9K] TxID could inhibit the expression and reinstatement of CPP, respectively. Moreover, both had no effect in acute nicotine experiment and the locomotor activity in mice. Therefore, these findings reveal that the α3β4 nAChR may be a potential target for anti-nicotine addiction treatment. [S9K]TxID, α3β4 nAChR antagonist, exhibit a superior effect for anti-nicotine addiction, which is promising to develop a novel smoking cessation drug.
Collapse
|
5
|
Barbosa-Méndez S, Osorio-Santiago KL, Salazar-Juárez A. Mirtazapine reduces the expression of cocaine-induced locomotor sensitization in male and female Wistar rats. Horm Behav 2020; 125:104817. [PMID: 32682854 DOI: 10.1016/j.yhbeh.2020.104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Epidemiological studies have described that women are more vulnerable to the reinforcing effects of cocaine. In animals, the findings are similar: female rats show higher levels of cocaine self-administration and increased cocaine-induced locomotor activity. In contrast, women with depression respond better to treatment with antidepressants, however their therapeutic response to tetracyclic antidepressants is lower. Several studies have shown that mirtazapine-a tetracyclic antidepressant-decreases the behavioral effects of cocaine in male rats. The objective of this study was to evaluate the efficacy of daily dosing of mirtazapine on cocaine-induced locomotor activity and sensitization in naive female rats compared to male rats. METHODS Male and female Wistar rats were daily dosed with 10 mg/kg of cocaine. During extinction, cocaine was withdrawn and the groups received daily mirtazapine (30 mg/kg, i.p.) or saline. Tamoxifen was administered during the antagonism phase. After each administration, locomotor activity for each animal was recorded for 30 min in transparent Plexiglass activity chambers. RESULTS In this study, a higher cocaine locomotor response was found in females than in males and the mirtazapine was equally effective in decreasing cocaine-induced locomotor activity and the expression of locomotor sensitization in male and female rats. In addition, co-administration of mirtazapine and tamoxifen enhanced the efficacy of mirtazapine in female rats. CONCLUSION The results suggest that mirtazapine may be considered an effective therapeutic option for the treatment of cocaine use disorder in men and women.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370. Mexico
| | - Katya Lorena Osorio-Santiago
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370. Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370. Mexico.
| |
Collapse
|
6
|
Yamamoto DJ, Nelson AM, Mandt BH, Larson GA, Rorabaugh JM, Ng CMC, Barcomb KM, Richards TL, Allen RM, Zahniser NR. Rats classified as low or high cocaine locomotor responders: a unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors. Neurosci Biobehav Rev 2013; 37:1738-53. [PMID: 23850581 PMCID: PMC3810384 DOI: 10.1016/j.neubiorev.2013.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 11/24/2022]
Abstract
Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine's discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors.
Collapse
Affiliation(s)
- Dorothy J Yamamoto
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohishi T, Wang L, Akane H, Shiraki A, Sato A, Uematsu M, Suzuki K, Mitsumori K, Shibutani M. Adolescent hyperactivity of offspring after maternal protein restriction during the second half of gestation and lactation periods in rats. J Toxicol Sci 2012; 37:345-52. [PMID: 22467025 DOI: 10.2131/jts.37.345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To clarify the effect of systemic growth retardation on behavior, pregnant rats were fed a synthetic diet with either a normal (20% casein) or low (10% casein) protein concentration from gestational day 10 to postnatal day (PND) 21 at weaning. Offspring were examined for sensory and reflex functions, detailed clinical observations, manipulative test, grip strength, motor activity and water-filled multiple T-maze test. Lowering trend in the air righting reflex index during lactation period and a decrease in grip strength on PND 72 were observed in the low protein diet group showing suppression of systemic growth. However, they were simply the reflection of delayed systemic growth, because parameters on impaired reflex function, disturbance of motor function and paralysis were unaffected. On the other hand, low protein diet resulted in increased motor activity in female offspring. Thus, malnutrition due to maternal protein restriction may cause adolescent hyperactivity.
Collapse
Affiliation(s)
- Takumi Ohishi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wiley JL, Evans RL, Grainger DB, Nicholson KL. Locomotor activity changes in female adolescent and adult rats during repeated treatment with a cannabinoid or club drug. Pharmacol Rep 2012; 63:1085-92. [PMID: 22180350 DOI: 10.1016/s1734-1140(11)70627-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/21/2011] [Indexed: 01/21/2023]
Abstract
Adolescents and young adults of both sexes are the primary consumers of "club" drugs; yet, most of the mechanistic preclinical research in this area has been performed in adult male rodents. The purpose of this study was to evaluate the acute and repeated effects of drugs that are commonly abused by adolescents in female adolescent and adult rats in a rodent model of behavioral sensitization. During two five-day periods separated by a two-day break, rats were injected daily with saline or with one of the following drugs: cocaine (7 or 15 mg/kg), ketamine (3 or 10 mg/kg), 3,4-methylenedioxymethamphetamine (MDMA) (3, 10, or 30 mg/kg), or Δ(9)-tetrahydrocannabinol (THC) (0.03, 0.1, 0.3 or 1 mg/kg) and their locomotor activity was measured. Cocaine increased activity across days in both age groups. Whereas ketamine produced progressive increases in activity with repeated administration in rats of both ages, MDMA increased, and then decreased, activity in the chronic dosing regimen in female adolescents only. Tolerance to the initial stimulatory effects of low doses of THC was observed at both ages. The results with THC are similar to those obtained for male rats tested under identical conditions in a previous study; however, in contrast with the present results in females, male adolescent rats in the previous study failed to develop behavioral sensitization to ketamine. Together, these results suggest that age and sex strongly influence the progressive adaptive changes that occur with repeated administration of some, but not all, of these commonly abused substances.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, USA.
| | | | | | | |
Collapse
|
9
|
Mandt BH, Gomez E, Johnston NL, Zahniser NR, Allen RM. Cocaine dose and self-administration history, but not initial cocaine locomotor responsiveness, affects sensitization to the motivational effects of cocaine in rats. J Pharmacol Exp Ther 2012; 342:214-21. [PMID: 22518023 DOI: 10.1124/jpet.112.194092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine addiction is a significant and complex disease. Part of this complexity is caused by the variability of the drug experience early in drug use (initial responsiveness, amount of use, etc.). In rats, individual differences in initial cocaine responsiveness and cocaine self-administration history both predict the development of cocaine sensitization, a putative mechanism contributing to the development of cocaine addiction. Here, we sought to determine the role of these factors and cocaine dose on the development of sensitization to cocaine's motivational effects during the earliest stages of self-administration. Rats were classified as either low or high cocaine responders (LCRs or HCRs, respectively) based on acute cocaine-induced locomotor activity (10 mg/kg i.p.) before learning to self-administer cocaine (0.6 mg/kg/infusion i.v.) under a fixed ratio 1 (FR1) schedule of reinforcement. After acquisition, rats self-administered cocaine (0.6 or 1.2 mg/kg/infusion) under a progressive ratio (PR) schedule of reinforcement either immediately or after an additional five FR1 sessions (0.6 or 1.2 mg/kg/infusion). No LCR/HCR differences in sensitization were observed. However, regardless of LCR/HCR classification, exposure to the higher dose of cocaine produced sensitization to cocaine's motivational effects on the PR schedule (i.e., increased break points) and an escalation of consumption on the FR schedule. Thus, our results reveal a novel model for studying escalation and sensitization very early after acquisition and suggest that sensitization may be important in the earliest stages of the cocaine addiction process.
Collapse
Affiliation(s)
- Bruce H Mandt
- Department of Psychology, University of Colorado Denver, P.O. Box 173364, Campus Box 173, Denver, CO 80217, USA.
| | | | | | | | | |
Collapse
|
10
|
Walker QD, Johnson ML, Van Swearingen AED, Arrant AE, Caster JM, Kuhn CM. Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy. Neuropharmacology 2012; 62:2267-77. [PMID: 22342988 DOI: 10.1016/j.neuropharm.2012.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
Abstract
Ovarian hormones modulate the pharmacological effects of psychostimulants and may enhance vulnerability to drug addiction. Female rats have more midbrain dopamine neurons than males and greater dopamine uptake and release rates. Cocaine stimulates motor behavior and dopamine efflux more in female than male rats, but the mediating mechanisms are unknown. This study investigated individual differences in anatomic, neurochemical, and behavioral measures in female rats to understand how ovarian hormones affect the relatedness of these endpoints. Ovarian hormone effects were assessed by comparing individual responses in ovariectomized (OVX) and sham adult female rats. Locomotion was determined before and following 10mg/kg cocaine. Electrically-stimulated dopamine efflux was assessed using fast cyclic voltammetry in vivo. Dopamine neuron number and density in substantia nigra (SN) and ventral tegmental area (VTA) were determined in the same animals using tyrosine-hydroxylase immunohistochemistry and unbiased stereology. Locomotor behavior and dopamine efflux did not differ at baseline but were greater in sham than OVX following cocaine. Cocaine increased dopamine release rates in both groups but uptake inhibition (K(m)) was greater in sham than OVX. Dopamine neuron number and density in SN and VTA were greater in shams. Sham females with the largest uterine weights exhibited the highest density of dopamine neurons in the SN, and the most cocaine-stimulated behavior and dopamine efflux. Ovariectomy eliminated these relationships. We postulate that SN density could link ovarian hormones and high-psychostimulant responses in females. Similar mechanisms may be involved in individual differences in the addiction vulnerability of women.
Collapse
Affiliation(s)
- Q David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Measuring the incentive value of escalating doses of heroin in heroin-dependent Fischer rats during acute spontaneous withdrawal. Psychopharmacology (Berl) 2012; 219:59-72. [PMID: 21748254 PMCID: PMC3249530 DOI: 10.1007/s00213-011-2380-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/07/2011] [Indexed: 01/26/2023]
Abstract
RATIONALE/OBJECTIVES Although continued heroin use and relapse are thought to be motivated, in part, by the positive incentive-motivational value attributed to heroin, little is understood about heroin's incentive value during the relapse-prone state of withdrawal. This study uses place preference to measure the incentive value attributed to escalating-dose heroin in the context of heroin dependence. METHODS Male Fischer rats were exposed chronically to escalating doses of heroin in the homecage and during place preference conditioning sessions. Conditioned preference for the context paired with escalating-dose heroin was tested after homecage exposure was discontinued and rats entered acute spontaneous withdrawal. Individuals' behavioral and locomotor responses to heroin and somatic withdrawal signs were recorded. RESULTS Conditioned preference for the heroin-paired context was strong in rats that received chronic homecage exposure to escalating-dose heroin and were tested in acute withdrawal. Behavioral responses to heroin (e.g., stereotypy) varied widely across individuals, with rats that expressed stronger heroin preference also expressing stronger behavioral activation in response to heroin. Individual differences in preference were also related to locomotor responses to heroin but not to overt somatic withdrawal signs. CONCLUSIONS Escalating doses of heroin evoked place preference in rats, suggesting that positive incentive-motivational value is attributed to this clinically relevant pattern of drug exposure. This study offers an improved preclinical model for studying dependence and withdrawal and provides insight into individual vulnerabilities to addiction-like behavior.
Collapse
|
12
|
|
13
|
Romanova EV, Lee JE, Kelleher NL, Sweedler JV, Gulley JM. Mass spectrometry screening reveals peptides modulated differentially in the medial prefrontal cortex of rats with disparate initial sensitivity to cocaine. AAPS JOURNAL 2010; 12:443-54. [PMID: 20490734 DOI: 10.1208/s12248-010-9204-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 05/03/2010] [Indexed: 01/06/2023]
Abstract
To better understand why certain individuals are more vulnerable to cocaine abuse and addiction, we identify peptide markers associated with individual variation in sensitivity to the behavioral effects of cocaine. Previous studies in rats show that low, compared to high, cocaine responders are more sensitive to cocaine-induced behavioral plasticity (sensitization), exhibit enhanced conditioning to cocaine's rewarding effects, and are more motivated to self administer cocaine. In the current study, we combine matrix-assisted laser desorption/ionization mass spectrometry with multivariate statistical methods to analyze tissue extracts from rat dorsal striatum, nucleus accumbens, and medial prefrontal cortex (mPFC) to examine trends in peptide changes that coincide with behavioral phenotype. Peptide profiles of these three regions from individual animals were characterized via mass spectrometry. Resulting mass peaks that were statistically different between these groups were identified using principal component analysis. The mass peaks were then identified in pooled samples via multistage liquid chromatography mass spectrometry. A total of 74 peptides from 28 proteins were sequenced from defined brain regions. Statistically significant changes in peak intensities for seven peptides were found in the mPFC of rats given a single injection of 10 mg/kg cocaine, with low cocaine responders showing approximately 2-fold increase in peak intensities for the acetylated N terminus peptides of stathmin and Hint 1, as well as truncated ATP synthase. These results suggest that distinct peptide profiles in the mPFC are associated with individuals that exhibit reduced sensitivity to the behavioral effects of cocaine.
Collapse
Affiliation(s)
- Elena V Romanova
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
14
|
Harro J. Inter-individual differences in neurobiology as vulnerability factors for affective disorders: implications for psychopharmacology. Pharmacol Ther 2009; 125:402-22. [PMID: 20005252 DOI: 10.1016/j.pharmthera.2009.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Susceptibility to affective disorders is individually different, and determined both by genetic variance and life events that cause significant differences in the CNS structure and function between individual subjects. Therefore it is plausible that search for the inter-individual differences in endophenotypes that mediate the effects of causal factors, both genetic and environmental, will reveal the substrates for vulnerability, help to clarify pathogenetic mechanisms, and possibly aid in developing strategies to discover better, more personalized treatments. This review first examines comparatively a number of animal models of human affect and affect-related disorders that rely on persistent inter-individual differences, and then highlights some of the neurobiological findings in these models that are compatible with much of research in human behavioural and personality traits. Many behaviours occur in specific combinations in several models, but often remarkable dissociations are observed, providing a variety of constellations of traits. It is concluded that more systematic comparative experimentation on behaviour and neurobiology in different models is warranted to reveal possible "building blocks" of affect-related personality common in animals and humans. Looking into the perspectives in psychopharmacology the focus is placed on probable associations of inter-individual differences with brain structure and function, personality and coping strategies, and psychiatric vulnerability, highlighting some unexpected interactions between vulnerability endophenotypes, adverse life events, and behavioural traits. It is argued that further studies on inter-individual differences in affect and underlying neurobiology should include formal modeling of their epistatic, hierarchical and dynamic nature.
Collapse
Affiliation(s)
- Jaanus Harro
- Department of Psychology, University of Tartu, Estonian Centre of Behavioural and Health Sciences, Tiigi 78, 50410 Tartu, Estonia.
| |
Collapse
|
15
|
Mandt BH, Zahniser NR. Low and high cocaine locomotor responding male Sprague-Dawley rats differ in rapid cocaine-induced regulation of striatal dopamine transporter function. Neuropharmacology 2009; 58:605-12. [PMID: 19951714 DOI: 10.1016/j.neuropharm.2009.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Adult outbred Sprague-Dawley rats can be classified as either low or high cocaine responders (LCRs or HCRs, respectively). Importantly, LCRs and HCRs are distinguished by their differential responsiveness to acute cocaine-induced (but not baseline) locomotor activity, inhibition of the dopamine transporter (DAT) and resulting extracellular DA (HCR > LCR), as well as by repeated cocaine-induced locomotor sensitization and measures of cocaine's rewarding and reinforcing effects (LCR > HCR). Curiously, 30 min after acute cocaine HCRs exhibit greater DAT-mediated [(3)H]DA uptake into striatal synaptosomes than LCRs. To investigate this finding further, we measured locomotor activity, striatal [(3)H]DA uptake kinetics and DAT cell surface expression in LCRs and HCRs over an extended period (25-180 min) after a single relatively low-dose of cocaine (10 mg/kg, i.p.). HCRs exhibited the "predicted" locomotor response: a marked initial activation that returned to baseline by 120 min post-injection. While LCRs exhibited a >50% lower maximal locomotor response, this increase was sustained, lasting approximately 33% longer than in HCRs. At 25 min post-cocaine, maximal velocity (V(max)) of [(3)H]DA uptake was significantly higher by 25% in HCRs than LCRs, with no difference in affinity (K(m)). Despite the DAT V(max) difference, however, DAT surface expression did not differ between LCRs and HCRs. There was a similar trend (HCR > LCR) for DAT V(max) at 40 min, but not at 150 or 180 min. These findings suggest that, compared to LCRs, HCRs have an enhanced ability to rapidly up-regulate DAT function in response to acute cocaine, which may contribute to their more "normal" cocaine-induced locomotor activation.
Collapse
Affiliation(s)
- Bruce H Mandt
- University of Colorado Denver, Department of Pharmacology, Aurora, CO 80217, USA.
| | | |
Collapse
|