1
|
Terao T, Hirakawa H, Muronaga M, Izumi T, Kohno K. Trace Lithium for Suicide Prevention and Dementia Prevention: A Qualitative Review. Pharmaceuticals (Basel) 2024; 17:1486. [PMID: 39598397 PMCID: PMC11597136 DOI: 10.3390/ph17111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Anti-manic effects of lithium and the nature of trace element in lithium were first observed in 1949. In this review, we explore the potential effects of trace lithium in the prevention of suicide and dementia. Methods: This is a qualitative and non-systematic review. Results: While most studies to date have been cross-sectional, limiting the establishment of causal relationships, the potential benefits of trace lithium for suicide prevention and dementia prevention are notable, especially in the absence of radical treatments for suicide and dementia. Furthermore, trace lithium appears to lack many of the adverse effects associated with so-called therapeutic lithium levels. Conclusions: The present findings suggest that trace lithium may be associated with lower suicide rates and reduced dementia rates. Probably, trace lithium may inhibit testosterone and thereby mitigate aggression and impulsivity and decrease suicide. Also, trace lithium may inhibit GSK-3β and thereby lower amyloid β and tau hyperphosphorylation and inhibit pro-inflammatory cytokines such as IL 6 and IL 8 and thereby mitigate inflammation, whereas trace lithium may promote BDNF and neurogenesis in the general population.
Collapse
Affiliation(s)
- Takeshi Terao
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Daigaoka 1-1, Hasama-machi, Yufu 879-5593, Oita, Japan; (H.H.); (M.M.); (T.I.); (K.K.)
| | | | | | | | | |
Collapse
|
2
|
Comaposada-Baró R, Benito-Martínez A, Escribano-Saiz JJ, Franco ML, Ceccarelli L, Calatayud-Baselga I, Mira H, Vilar M. Cholinergic neurodegeneration and cholesterol metabolism dysregulation by constitutive p75 NTR signaling in the p75 exonIII-KO mice. Front Mol Neurosci 2023; 16:1237458. [PMID: 37900943 PMCID: PMC10611523 DOI: 10.3389/fnmol.2023.1237458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) is a hallmark of Alzheimer's disease (AD). However, few mouse models of AD recapitulate the neurodegeneration of the cholinergic system. The p75 neurotrophin receptor, p75NTR, has been associated with the degeneration of BFCNs in AD. The senescence-accelerated mouse prone number 8 (SAMP8) is a well-accepted model of accelerated and pathological aging. To gain a better understanding of the role of p75NTR in the basal forebrain during aging, we generated a new mouse line, the SAMP8-p75exonIII-/-. Deletion of p75NTR in the SAMP8 background induces an increase in the number of BFCNs at birth, followed by a rapid decline during aging compared to the C57/BL6 background. This decrease in the number of BFCNs correlates with a worsening in the Y-maze memory test at 6 months in the SAMP8-p75exonIII-/-. We found that SAMP8-p75exonIII-/- and C57/BL6-p75exonIII-/- mice expressed constitutively a short isoform of p75NTR that correlates with an upregulation of the protein levels of SREBP2 and its targets, HMGCR and LDLR, in the BF of both SAMP8-p75exonIII-/- and C57/BL6-p75exonIII-/- mice. As the neurodegeneration of the cholinergic system and the dysregulation of cholesterol metabolism are implicated in AD, we postulate that the generated SAMP8-p75exonIII-/- mouse strain might constitute a good model to study long-term cholinergic neurodegeneration in the CNS. In addition, our results support the role of p75NTR signaling in cholesterol biosynthesis regulation.
Collapse
Affiliation(s)
- Raquel Comaposada-Baró
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Andrea Benito-Martínez
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Juan Julian Escribano-Saiz
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - María Luisa Franco
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Lorenzo Ceccarelli
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | | | - Helena Mira
- Stem Cells and Aging Units of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| | - Marçal Vilar
- Molecular Basis of Neurodegeneration Unit of the Instituto de Biomedicina de Valencia CSIC, Valencia, Spain
| |
Collapse
|
3
|
Gorlova A, Svirin E, Pavlov D, Cespuglio R, Proshin A, Schroeter CA, Lesch KP, Strekalova T. Understanding the Role of Oxidative Stress, Neuroinflammation and Abnormal Myelination in Excessive Aggression Associated with Depression: Recent Input from Mechanistic Studies. Int J Mol Sci 2023; 24:915. [PMID: 36674429 PMCID: PMC9861430 DOI: 10.3390/ijms24020915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aggression and deficient cognitive control problems are widespread in psychiatric disorders, including major depressive disorder (MDD). These abnormalities are known to contribute significantly to the accompanying functional impairment and the global burden of disease. Progress in the development of targeted treatments of excessive aggression and accompanying symptoms has been limited, and there exists a major unmet need to develop more efficacious treatments for depressed patients. Due to the complex nature and the clinical heterogeneity of MDD and the lack of precise knowledge regarding its pathophysiology, effective management is challenging. Nonetheless, the aetiology and pathophysiology of MDD has been the subject of extensive research and there is a vast body of the latest literature that points to new mechanisms for this disorder. Here, we overview the key mechanisms, which include neuroinflammation, oxidative stress, insulin receptor signalling and abnormal myelination. We discuss the hypotheses that have been proposed to unify these processes, as many of these pathways are integrated for the neurobiology of MDD. We also describe the current translational approaches in modelling depression, including the recent advances in stress models of MDD, and emerging novel therapies, including novel approaches to management of excessive aggression, such as anti-diabetic drugs, antioxidant treatment and herbal compositions.
Collapse
Affiliation(s)
- Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Evgeniy Svirin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Neuroplast BV, 6222 NK Maastricht, The Netherlands
| | - Dmitrii Pavlov
- Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Centre de Recherche en Neurosciences de Lyon (CRNL), 69500 Bron, France
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia
| | - Careen A. Schroeter
- Preventive and Environmental Medicine, Kastanienhof Clinic, 50858 Köln-Junkersdorf, Germany
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Sarver DC, Xu C, Cheng Y, Terrillion CE, Wong GW. CTRP4 ablation impairs associative learning and memory. FASEB J 2021; 35:e21910. [PMID: 34610176 DOI: 10.1096/fj.202100733rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
C1q/TNF-related protein (CTRP) family comprises fifteen highly conserved secretory proteins with diverse central and peripheral functions. In zebrafish, mouse, and human, CTRP4 is most highly expressed in the brain. We previously showed that CTRP4 is a metabolically responsive regulator of food intake and energy balance, and mice lacking CTRP4 exhibit sexually dimorphic changes in ingestive behaviors and systemic metabolism. Recent single-cell RNA sequencing also revealed Ctrp4/C1qtnf4 expression in diverse neuronal cell types across distinct anatomical brain regions, hinting at additional roles in the central nervous system not previously characterized. To uncover additional central functions of CTRP4, we subjected Ctrp4 knockout (KO) mice to a battery of behavioral tests. Relative to wild-type (WT) littermates, loss of CTRP4 does not alter exploratory, anxiety-, or depressive-like behaviors, motor function and balance, sensorimotor gating, novel object recognition, and spatial memory. While pain-sensing mechanisms in response to thermal stress and mild shock are intact, both male and female Ctrp4 KO mice have increased sensitivity to pain induced by higher-level shock, suggesting altered nociceptive function. Importantly, CTRP4 deficiency impairs hippocampal-dependent associative learning and memory as assessed by trace fear conditioning paradigm. This deficit is sex-dependent, affects only female mice, and is associated with altered expression of learning and memory genes (Arc, c-fos, and Pde4d) in the hippocampus and cortex. Altogether, our behavioral and gene expression analyses have uncovered novel aspects of the CTRP4 function and provided a physiological context to further investigate its mechanism of action in the central and peripheral nervous system.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Muratspahić E, Tomašević N, Koehbach J, Duerrauer L, Hadžić S, Castro J, Schober G, Sideromenos S, Clark RJ, Brierley SM, Craik DJ, Gruber CW. Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. J Med Chem 2021; 64:9042-9055. [PMID: 34162205 PMCID: PMC8273886 DOI: 10.1021/acs.jmedchem.1c00158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 02/01/2023]
Abstract
The rising opioid crisis has become a worldwide societal and public health burden, resulting from the abuse of prescription opioids. Targeting the κ-opioid receptor (KOR) in the periphery has emerged as a powerful approach to develop novel pain medications without central side effects. Inspired by the traditional use of sunflower (Helianthus annuus) preparations for analgesic purposes, we developed novel stabilized KOR ligands (termed as helianorphins) by incorporating different dynorphin A sequence fragments into a cyclic sunflower peptide scaffold. As a result, helianorphin-19 selectively bound to and fully activated the KOR with nanomolar potency. Importantly, helianorphin-19 exhibited strong KOR-specific peripheral analgesic activity in a mouse model of chronic visceral pain, without inducing unwanted central effects on motor coordination/sedation. Our study provides a proof of principle that cyclic peptides from plants may be used as templates to develop potent and stable peptide analgesics applicable via enteric administration by targeting the peripheral KOR for the treatment of chronic abdominal pain.
Collapse
MESH Headings
- Abdominal Pain/drug therapy
- Analgesics/chemical synthesis
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Cells, Cultured
- Chronic Disease
- Dose-Response Relationship, Drug
- Drug Design
- HEK293 Cells
- Helianthus/chemistry
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Plant Extracts/chemical synthesis
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Seeds/chemistry
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Edin Muratspahić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Tomašević
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Koehbach
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Leopold Duerrauer
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Seid Hadžić
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Joel Castro
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Gudrun Schober
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Spyridon Sideromenos
- Center for
Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard J. Clark
- School
of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart M. Brierley
- Visceral
Pain Research Group, College of Medicine and Public Health, Flinders
Health and Medical Research Institute (FHMRI), Flinders University, Bedford
Park, South Australia 5042, Australia
- Hopwood
Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
- Discipline
of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia 5000, Australia
| | - David J. Craik
- Institute
for Molecular Bioscience, Australian Research Council Centre of Excellence
for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian W. Gruber
- Center
for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
6
|
de Almeida Silva LC, de Oliveira AC, Cavalcante-Silva V, Franco MDC, D'Almeida V. Hyperlipidic diet affects body composition and induces anxiety-like behaviour in intrauterine growth-restricted adult mice. Exp Physiol 2020; 105:2061-2072. [PMID: 33098335 DOI: 10.1113/ep088859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the effect in male and female offspring of a protein-deficient diet producing intrauterine growth restriction (IUGR) in maternal mice on morphometric, metabolic and behavioural parameters before and after a challenge with a fat diet? What is the main finding and its importance? Male and female mice presented different growth trajectories after birth. IUGR favoured increased adiposity in male mice, and high-fat diet-induced anxiety-like behaviour in female mice. ABSTRACT As there is sexual dimorphism in the response to maternal manipulations, we aimed to analyse the effects of intrauterine growth restriction (IUGR) in both sexes on morphometric, metabolic and behavioural parameters throughout postnatal development, and after challenge with a hyperlipidic diet. Female Swiss mice (n = 59) were distributed into two groups (SD: standard diet, n = 26; and PDD: isocaloric protein-deficient diet, n = 33), 2 weeks before mating and during the gestational period. After birth, offspring from SD and PDD dams were cross-fostered and nurtured by SD dams until postnatal day (PND) 28. At PND 60 all animals were challenged with a hypercaloric diet for 4 weeks. Offspring birth weight was significantly reduced in the PDD group compared to the SD group (P = 0.0001), but only male offspring presented a rapid catch-up during the first 21 days of development. Although no differences in body weight were observed between groups after the challenge with the hyperlipidic diet, an increase in the relative perigonadal white adipose tissue (P = 0.009) and a decrease in gross gastrocnemius muscle weight (P = 0.010) were observed in the PDD males. In relation to behavioural tests, there was an increase in locomotion in both sexes (P = 0.0001), and a decrease in female grooming (P = 0.006) in the PDD group. Additionally, females from the PDD group showed increased hyperlipidic food intake. In conclusion, IUGR affected both sexes, with females showing prominent behavioural modifications and males presenting altered body composition elicited by a hyperlipidic diet.
Collapse
Affiliation(s)
| | | | | | | | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Current Agents in Development for Treating Behavioral and Psychological Symptoms Associated with Dementia. Drugs Aging 2019; 36:589-605. [PMID: 30957198 DOI: 10.1007/s40266-019-00668-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Behavioral and psychological symptoms associated with dementia are highly prevalent and are associated with an increased risk of institutionalization and mortality. Current pharmacological treatments for these symptoms include cholinesterase inhibitors, antipsychotics, and selective serotonin reuptake inhibitors. When used for treating behavioral and psychological symptoms associated with dementia, they are associated with limited efficacy and/or serious adverse events. As such, there has been extensive research into novel agents with varying mechanisms of action targeting behavioral and psychological symptoms associated with dementia. In this article, we present the results of a comprehensive literature search and review that evaluates current agents that have completed or are currently in clinical trials for treating behavioral and psychological symptoms associated with dementia as a primary outcome. We highlight novel agents from miscellaneous drug classes, such as dextromethorphan/quinidine, bupropion/dextromethorphan, lumateperone, deudextromethorphan/quinidine, methylphenidate and scyllo-inositol, and drugs from various therapeutic classes (including atypical antipsychotics, selective serotonin reuptake inhibitors, and cannabinoids) that have demonstrated promising results and were generally well tolerated. Future research with large appropriately powered studies using validated outcome measures for behavioral and psychological symptoms associated with dementia should be conducted to further establish the clinical utility of these agents.
Collapse
|
8
|
Georgiou P, Zanos P, Jenne CE, Gould TD. Sex-Specific Involvement of Estrogen Receptors in Behavioral Responses to Stress and Psychomotor Activation. Front Psychiatry 2019; 10:81. [PMID: 30863326 PMCID: PMC6399411 DOI: 10.3389/fpsyt.2019.00081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/06/2019] [Indexed: 12/25/2022] Open
Abstract
Fluctuating hormone levels, such as estradiol might underlie the difference in the prevalence of psychiatric disorders observed in women vs. men. Estradiol exert its effects primarily through binding on the two classical estrogen receptor subtypes, alpha (ERα) and beta (ERβ). Both receptors have been suggested to a have role in the development of psychiatric disorders, however, most of the current literature is limited to their role in females. We investigated the role of estrogen receptors on cognition (novel-object recognition), anxiety (open-field test, elevated-plus maze, and light/dark box), stress-responsive behaviors (forced-swim test, learned helplessness following inescapable shock, and sucrose preference), pre-pulse inhibition (PPI) and amphetamine-induced hyperlocomotion in both male and female mice either lacking the ERα or ERβ receptor. We found that female Esr1 -/- mice have attenuated pre-pulse inhibition, whereas female Esr2 -/- mice manifested enhanced pre-pulse inhibition. No pre-pulse inhibition difference was observed in male Esr1 -/- and Esr2 -/- mice. Moreover, amphetamine-induced hyperlocomotion was decreased in male Esr1 -/-, but not Esr2 -/- mice, while female Esr1 -/- and Esr2 -/- mice showed an enhanced response. Genetic absence of ERα did not alter the escape capability or sucrose preference following inescapable shock in both male and female mice. In contrast, female, but not male Esr2 -/- mice, manifested decreased escape failures compared with controls. Lack of Esr2 gene in male mice was associated with decreased sucrose preference following inescapable shock, suggesting susceptibility for development of anhedonia following stress. No sucrose preference differences were found in female Esr2 -/- mice following inescapable shock stress. Lastly, we demonstrated that lack of Esr1 or Esr2 genes had no effect on memory and anxiety-like behaviors in both male and female mice. Our findings indicate a differential sex-specific involvement of estrogen receptors in the development of stress-mediated maladaptive behaviors as well as psychomotor activation responses suggesting that these receptors might act as potential treatment targets in a sex-specific manner.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Department of Anatomy & Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, United States.,Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
9
|
Gould TD, Georgiou P, Brenner LA, Brundin L, Can A, Courtet P, Donaldson ZR, Dwivedi Y, Guillaume S, Gottesman II, Kanekar S, Lowry CA, Renshaw PF, Rujescu D, Smith EG, Turecki G, Zanos P, Zarate CA, Zunszain PA, Postolache TT. Animal models to improve our understanding and treatment of suicidal behavior. Transl Psychiatry 2017; 7:e1092. [PMID: 28398339 PMCID: PMC5416692 DOI: 10.1038/tp.2017.50] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/16/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio.
Collapse
Affiliation(s)
- T D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - P Georgiou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L A Brenner
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - L Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - A Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychology, Notre Dame of Maryland University, Baltimore, MD, USA
| | - P Courtet
- Department of Emergency Psychiatry and Post Acute Care, CHU Montpellier, Montpellier, France
- Université Montpellier, Inserm U1061, Montpellier, France
| | - Z R Donaldson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology, University of Colorado, Boulder, Boulder, CO, USA
- Department of Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Y Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Guillaume
- Department of Emergency Psychiatry and Post Acute Care, CHU Montpellier, Montpellier, France
- Université Montpellier, Inserm U1061, Montpellier, France
| | - I I Gottesman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - S Kanekar
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - C A Lowry
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - P F Renshaw
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - D Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - E G Smith
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, USA
| | - G Turecki
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - P Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - C A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - P A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - T T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center, Denver, CO, USA
- Military and Veteran Microbiome Consortium for Research and Education, U.S. Department of Veterans Affairs, Washington, DC, USA
- VISN 5 Mental Illness Research Education and Clinical Center, Baltimore MD, USA
| |
Collapse
|
10
|
Amiri S, Haj-Mirzaian A, Amini-Khoei H, Shirzadian A, Rahimi-Balaei M, Razmi A, Bergen H, Rastegar M, Kordjazy N, Haj-Mirzaian A, Ejtemai-Mehr S, Dehpour AR. Lithium attenuates the proconvulsant effect of adolescent social isolation stress via involvement of the nitrergic system. Epilepsy Behav 2016; 61:6-13. [PMID: 27232376 DOI: 10.1016/j.yebeh.2016.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
Abstract
In this study, we tested whether acute administration of lithium mitigates the deleterious effect of adolescent social isolation stress (SIS) on seizure susceptibility. In comparison with socially conditioned (SC) mice, isolated conditioned (IC) mice exhibited an increase in seizure susceptibility to pentylenetetrazole. Acute administration of lithium (10mg/kg) reversed the proconvulsant effect of SIS in IC mice, but this effect was not observed in SC mice. Coadministration of subthreshold doses of lithium (3mg/kg) with nitric oxide synthase (NOS) inhibitors reversed the effect of SIS on seizure susceptibility and decreased hippocampal nitrite levels in IC animals. In addition, a subthreshold dose of a nitric oxide precursor reduced the protective effect of lithium on seizure susceptibility and increased nitrite levels in the hippocampus of IC mice. These results suggest that lithium exerts a protective influence against the proconvulsant effect of adolescent SIS via a nitrergic system that includes activation of neuronal NOS in the hippocampus.
Collapse
Affiliation(s)
- Shayan Amiri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arya Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Shirzadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ali Razmi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nastaran Kordjazy
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arvin Haj-Mirzaian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemai-Mehr
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Brzózka MM, Havemann-Reinecke U, Wichert SP, Falkai P, Rossner MJ. Molecular Signatures of Psychosocial Stress and Cognition Are Modulated by Chronic Lithium Treatment. Schizophr Bull 2016; 42 Suppl 1:S22-33. [PMID: 26714764 PMCID: PMC4960433 DOI: 10.1093/schbul/sbv194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic psychosocial stress is an important environmental risk factor of psychiatric diseases such as schizophrenia. Social defeat in rodents has been shown to be associated with maladaptive cellular and behavioral consequences including cognitive impairments. Although gene expression changes upon psychosocial stress have been described, a comprehensive transcriptome profiling study at the global level in precisely defined hippocampal subregions which are associated with learning has been lacking. In this study, we exposed adult C57Bl/6N mice for 3 weeks to "resident-intruder" paradigm and combined laser capture microdissection with microarray analyses to identify transcriptomic signatures of chronic psychosocial stress in dentate gyrus and CA3 subregion of the dorsal hippocampus. At the individual transcript level, we detected subregion specific stress responses whereas gene set enrichment analyses (GSEA) identified several common pathways upregulated upon chronic psychosocial stress related to proteasomal function and energy supply. Behavioral profiling revealed stress-associated impairments most prominent in fear memory formation which was prevented by chronic lithium treatment. Thus, we again microdissected the CA3 region and performed global transcriptome analysis to search for molecular signatures altered by lithium treatment in stressed animals. By combining GSEA with unsupervised clustering, we detected pathways that are regulated by stress and lithium in the CA3 region of the hippocampus including proteasomal components, oxidative phosphorylation, and anti-oxidative mechanisms. Our study thus provides insight into hidden molecular phenotypes of chronic psychosocial stress and lithium treatment and proves a beneficial role for lithium treatment as an agent attenuating negative effects of psychosocial stress on cognition.
Collapse
Affiliation(s)
- Magdalena M. Brzózka
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany;,*To whom correspondence should be addressed; Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwigs-Maximilians-University, Nussbaumstr. 7, D-80336 Munich, Germany; tel: +49-89-4400-52743, fax: +49-89-4400-54741, e-mail:
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and CNMPB-DFG Research Center, Georg-August-University, Goettingen, Germany
| | - Sven P. Wichert
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany
| | - Peter Falkai
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany
| | - Moritz J. Rossner
- Molecular and Behavioral Neurobiology, Department of Psychiatry, Ludwig-Maximillians-University, Munich, Germany;,Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Goettingen, Germany
| |
Collapse
|
12
|
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WHJ. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 2016; 171:603-40. [PMID: 26284957 DOI: 10.1002/ajmg.b.32358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
Aggression is an adaptive behavioral trait that is important for the establishment of social hierarchies and competition for mating partners, food, and territories. While a certain level of aggression can be beneficial for the survival of an individual or species, abnormal aggression levels can be detrimental. Abnormal aggression is commonly found in human patients with psychiatric disorders. The predisposition to aggression is influenced by a combination of environmental and genetic factors and a large number of genes have been associated with aggression in both human and animal studies. In this review, we compare and contrast aggression studies in zebrafish and mouse. We present gene ontology and pathway analyses of genes linked to aggression and discuss the molecular pathways that underpin agonistic behavior in these species. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | - Antonia M Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Haj-Mirzaian A, Amiri S, Kordjazy N, Momeny M, Razmi A, Rahimi-Balaei M, Amini-Khoei H, Haj-Mirzaian A, Marzban H, Mehr S, Ghaffari S, Dehpour A. Lithium attenuated the depressant and anxiogenic effect of juvenile social stress through mitigating the negative impact of interlukin-1β and nitric oxide on hypothalamic–pituitary–adrenal axis function. Neuroscience 2016; 315:271-85. [DOI: 10.1016/j.neuroscience.2015.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/29/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
14
|
Logan RW, McClung CA. Animal models of bipolar mania: The past, present and future. Neuroscience 2015; 321:163-188. [PMID: 26314632 DOI: 10.1016/j.neuroscience.2015.08.041] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is the sixth leading cause of disability in the world according to the World Health Organization and affects nearly six million (∼2.5% of the population) adults in the United State alone each year. BD is primarily characterized by mood cycling of depressive (e.g., helplessness, reduced energy and activity, and anhedonia) and manic (e.g., increased energy and hyperactivity, reduced need for sleep, impulsivity, reduced anxiety and depression), episodes. The following review describes several animal models of bipolar mania with a focus on more recent findings using genetically modified mice, including several with the potential of investigating the mechanisms underlying 'mood' cycling (or behavioral switching in rodents). We discuss whether each of these models satisfy criteria of validity (i.e., face, predictive, and construct), while highlighting their strengths and limitations. Animal models are helping to address critical questions related to pathophysiology of bipolar mania, in an effort to more clearly define necessary targets of first-line medications, lithium and valproic acid, and to discover novel mechanisms with the hope of developing more effective therapeutics. Future studies will leverage new technologies and strategies for integrating animal and human data to reveal important insights into the etiology, pathophysiology, and treatment of BD.
Collapse
Affiliation(s)
- R W Logan
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States
| | - C A McClung
- University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
15
|
Pezzato FA, Can A, Hoshino K, Horta JDAC, Mijares MG, Gould TD. Effect of lithium on behavioral disinhibition induced by electrolytic lesion of the median raphe nucleus. Psychopharmacology (Berl) 2015; 232:1441-50. [PMID: 25345734 PMCID: PMC4388762 DOI: 10.1007/s00213-014-3775-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/13/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE Alterations in brainstem circuits have been proposed as a possible mechanism underlying the etiology of mood disorders. Projections from the median raphe nucleus (MnR) modulate dopaminergic activity in the forebrain and are also part of a behavioral disinhibition/inhibition system that produces phenotypes resembling behavioral variations manifested during manic and depressive phases of bipolar disorder. OBJECTIVE The aim of this study is to assess the effect of chronic lithium treatment on behavioral disinhibition induced by MnR lesions. METHODS MnR electrolytic lesions were performed in C57BL/6J mice, with sham-operated and intact animals as control groups. Following recovery, mice were chronically treated with lithium (LiCl, added in chow) followed by behavioral testing. RESULTS MnR lesion induced manic-like behavioral alterations including hyperactivity in the open field (OF), stereotyped circling, anxiolytic/risk taking in the elevated plus maze (EPM) and light/dark box (LDB) tests, and increased basal body temperature. Lithium was specifically effective in reducing OF hyperactivity and stereotypy but did not reverse (EPM) or had a nonspecific effect (LDB) on anxiety/risk-taking measures. Additionally, lithium decreased saccharin preference and prevented weight loss during single housing. CONCLUSIONS Our data support electrolytic lesions of the MnR as an experimental model of a hyper-excitable/disinhibited phenotype consistent with some aspects of mania that are attenuated by the mood stabilizer lithium. Given lithium's relatively specific efficacy in treating mania, these data support the hypothesis that manic symptoms derive not only from the stimulation of excitatory systems but also from inactivation or decreased activity of inhibitory mechanisms.
Collapse
|
16
|
Beurel E, Jope RS. Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits. Transl Psychiatry 2014; 4:e488. [PMID: 25514751 PMCID: PMC4270310 DOI: 10.1038/tp.2014.129] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/21/2014] [Accepted: 10/26/2014] [Indexed: 12/15/2022] Open
Abstract
Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3.
Collapse
Affiliation(s)
- E Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - R S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA,Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building Room 416, Miami, FL 33136, USA. E-mail:
| |
Collapse
|
17
|
Chachua T, Goletiani C, Maglakelidze G, Sidyelyeva G, Daniel M, Morris E, Miller J, Shang E, Wolgemuth DJ, Greenberg DA, Velíšková J, Velíšek L. Sex-specific behavioral traits in the Brd2 mouse model of juvenile myoclonic epilepsy. GENES BRAIN AND BEHAVIOR 2014; 13:702-12. [PMID: 25130458 DOI: 10.1111/gbb.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
Idiopathic generalized epilepsy represents about 30-35% of all epilepsies in humans. The bromodomain BRD2 gene has been repeatedly associated with the subsyndrome of juvenile myoclonic epilepsy (JME). Our previous work determined that mice haploinsufficient in Brd2 (Brd2+/-) have increased susceptibility to provoked seizures, develop spontaneous seizures and have significantly decreased gamma-aminobutyric acid (GABA) markers in the direct basal ganglia pathway as well as in the neocortex and superior colliculus. Here, we tested male and female Brd2+/- and wild-type littermate mice in a battery of behavioral tests (open field, tube dominance test, elevated plus maze, Morris water maze and Barnes maze) to identify whether Brd2 haploinsufficiency is associated with the human behavioral patterns, the so-called JME personality. Brd2+/- females but not males consistently displayed decreased anxiety. Furthermore, we found a highly significant dominance trait (aggression) in the Brd2+/- mice compared with the wild type, more pronounced in females. Brd2+/- mice of either sex did not differ from wild-type mice in spatial learning and memory tests. Compared with wild-type littermates, we found decreased numbers of GABA neurons in the basolateral amygdala, which is consistent with the increase in aggressive behavior. Our results indicate that Brd2+/- haploinsufficient mice show no cognitive impairment but have behavioral traits similar to those found in patients with JME (recklessness, aggression). This suggests that either the BRD2 gene is directly responsible for influencing many traits of JME or it controls upstream regulators of individual phenotypes.
Collapse
Affiliation(s)
- T Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sade Y, Kara NZ, Toker L, Bersudsky Y, Einat H, Agam G. Beware of your mouse strain; differential effects of lithium on behavioral and neurochemical phenotypes in Harlan ICR mice bred in Israel or the USA. Pharmacol Biochem Behav 2014; 124:36-9. [PMID: 24844703 DOI: 10.1016/j.pbb.2014.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/03/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
Animal models are crucial components in the search for better understanding of the biological basis of psychiatric disorders and for the development of novel drugs. Research, in general, and research with animal models, in particular, relies on the consistency of effects of investigated drugs or manipulations across experiments. In that context, it had been noted that behavioral responses to lithium in ICR (CD-1) mice from Harlan Israel have changed across the last years. To examine this change, the present study compared the effect of lithium treatment in ICR mice from Harlan Israel with the ICR mice from Harlan USA. The mice were treated with chronic oral lithium. Their lithium serum levels were measured and their behavior in the forced swim test (FST) was evaluated. The mice were also treated with [(3)H]-inositol ICV and lithium injection and their frontal cortex [(3)H]-phosphoinositols accumulation was measured. Results show that lithium serum levels in Israeli mice were significantly lower compared with the USA mice, that lithium had no behavioral effect in the Israeli mice but significantly reduced FST immobility time of the USA mice, and that phosphoinositols accumulation was much more strongly affected by lithium in the USA mice compared with the Israeli mice. These results suggest that the Israeli Harlan colony of ICR mice changed significantly from the original ICR colony in Harlan USA and that the differences might be related to absorption or secretion of lithium.
Collapse
Affiliation(s)
- Yeala Sade
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nirit Z Kara
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; (d)School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Lilach Toker
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuly Bersudsky
- Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Haim Einat
- (d)School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Galila Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Psychiatry Research Unit, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel; Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
19
|
Abstract
OBJECTIVE The underlying biology of bipolar disorder and the mechanisms by which effective medications induce their therapeutic effects are not clear. Appropriate use of animal models are essential to further understand biological mechanisms of disease and treatment, and further understanding the therapeutic mechanism of mood stabilisers requires that clinically relevant administration will be effective in animal models. The clinical regimens for mood-stabilising drugs include chronic oral administration; however, much of the work with animal models includes acute administration via injection. An effective chronic and oral administration of the prototypic mood stabiliser lithium was already established and the present study was designed to do the same for the mood stabiliser carbamazepine. METHODS Mice were treated for 3 weeks with carbamazepine in food. ICR mice were treated with 0.25%, 0.5% and 0.75%, and C57bl/6 mice with 0.5% and 0.75%, carbamazepine in food (w/w, namely, 2.5, 5.0 or 7.5 g/kg food). Mice were then tested for spontaneous activity, forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperactivity. RESULTS Oral carbamazepine administration resulted in dose-dependent blood levels reaching 3.65 μg/ml at the highest dose. In ICR mice, carbamazepine at the 0.5% dose had no effect on spontaneous activity, but significantly reduced immobility in the TST by 27% and amphetamine-induced hyperactivity by 28%. In C57bl/6 mice, carbamazepine at the 0.75% dose reduced immobility time in the FST by 26%. CONCLUSIONS These results demonstrate a behaviourally effective oral and chronic regimen for carbamazepine with mood stabilising-like activity in a standard model for mania-like behaviour and two standard models for depression-like behaviour.
Collapse
|
20
|
Niculescu AB. Convergent functional genomics of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:587-94. [PMID: 23728881 DOI: 10.1002/ajmg.b.32163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/19/2013] [Indexed: 12/27/2022]
Abstract
Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes.
Collapse
Affiliation(s)
- Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana; Indianapolis VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
21
|
Halcomb ME, Gould TD, Grahame NJ. Lithium, but not valproate, reduces impulsive choice in the delay-discounting task in mice. Neuropsychopharmacology 2013; 38:1937-44. [PMID: 23584261 PMCID: PMC3746699 DOI: 10.1038/npp.2013.89] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022]
Abstract
Both lithium and valproate are well-established treatments for bipolar disorder. Studies have also found that lithium is effective at reducing suicidal behaviors in patients with mood disorders. Impulsivity is a validated endophenotype of both bipolar disorder and suicidal behavior. We assessed effects of treatment with lithium or valproate on cognitive impulsivity in selectively bred mice previously shown to manifest relatively high levels of cognitive impulsivity. Mice were trained in the delay-discounting paradigm, a measure of cognitive impulsivity reflecting a behavioral bias towards immediacy, and then treated with lithium, valproate, or control chow. After 3 weeks of drug treatment, mice were tested at various delays to a large, delayed reward. Drug treatment continued during this time. Lithium reduced impulsivity, whereas valproate had no effect on choice behavior. Both drugs increased the number of choice trials and reinforcer intake, but effects on choice behavior did not depend on these motivational changes. To our knowledge, this is the first study demonstrating lithium's effects to reduce cognitive impulsivity. Future studies may focus on the ability of putative pharmacotherapies for patients at risk for bipolar disorder or suicide to modify the impulsive choice dimension of this diseases.
Collapse
Affiliation(s)
- Meredith E Halcomb
- Department of Psychology, Indiana University Purdue University, Indianapolis, IN, USA
| | - Todd D Gould
- Departments of Psychiatry, Pharmacology, Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas J Grahame
- Department of Psychology, Indiana University Purdue University, Indianapolis, IN, USA,Department of Psychology, Indiana University Purdue University, 402 N. Blackford St, LD120F, Indianapolis, IN 46205, USA, Tel: +1 317 274 0194, Fax: +1 317 274 6756, E-mail:
| |
Collapse
|
22
|
Differential antidepressant-like response to lithium treatment between mouse strains: effects of sex, maternal care, and mixed genetic background. Psychopharmacology (Berl) 2013; 228:411-8. [PMID: 23503701 PMCID: PMC3707960 DOI: 10.1007/s00213-013-3045-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/23/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Lithium is a mood stabilizer with both antidepressant and antimanic properties, however its mechanism of action is unclear. Identifying the genetic factors that influence lithium's therapeutic actions will be an important step to assist in identifying such mechanisms. We previously reported that lithium treatment of male mice has antidepressant-like effects in the C57BL/6J strain but that such effects were absent in the BALB/cJ strain. OBJECTIVES This study aimed to assess the roles of both genetic and non-genetic factors such as sex and non-shared environmental conditions that may mediate differential behavioral responses to lithium. METHODS Mice were treated with lithium for 10 days and then tested in the forced swim test followed by lithium discontinuation and retesting to assess effects of lithium withdrawal. We also assessed effects of sex and cross-fostering on lithium response between the C57BL/6J and BALB/cJ strains, and antidepressant-like effects of lithium in the hybrid CB6F1/J strain that is derived from C57BL/6J and BALB/cJ parental strains. RESULTS Neither sex nor maternal care significantly influenced the differential antidepressant-like response to lithium. Withdrawal from lithium treatment reversed antidepressant-like effects in the C57BL/6J strain but had no effects in BALB/cJ mice. Lithium treatment did not result in antidepressant-like effects in the CB6F1/J strain. CONCLUSIONS Genetic factors are likely primarily responsible for differential antidepressant-like effects of lithium in the C57BL/6J and BALB/cJ strains. Future studies identifying such genetic factors may help to elucidate the neurobiological mechanisms of lithium's therapeutic actions.
Collapse
|
23
|
Gómez-Sintes R, Hernández F, Lucas JJ, Avila J. GSK-3 Mouse Models to Study Neuronal Apoptosis and Neurodegeneration. Front Mol Neurosci 2011; 4:45. [PMID: 22110426 PMCID: PMC3217194 DOI: 10.3389/fnmol.2011.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/31/2011] [Indexed: 11/19/2022] Open
Abstract
Increased GSK-3 activity is believed to contribute to the etiology of chronic disorders like Alzheimer’s disease (AD), schizophrenia, diabetes, and some types of cancer, thus supporting therapeutic potential of GSK-3 inhibitors. Numerous mouse models with modified GSK-3 have been generated in order to study the physiology of GSK-3, its implication in diverse pathologies and the potential effect of GSK-3 inhibitors. In this review we have focused on the relevance of these mouse models for the study of the role of GSK-3 in apoptosis. GSK-3 is involved in two apoptotic pathways, intrinsic and extrinsic pathways, and plays opposite roles depending on the apoptotic signaling process that is activated. It promotes cell death when acting through intrinsic pathway and plays an anti-apoptotic role if the extrinsic pathway is occurring. It is important to dissect this duality since, among the diseases in which GSK-3 is involved, excessive cell death is crucial in some illnesses like neurodegenerative diseases, while a deficient apoptosis is occurring in others such as cancer or autoimmune diseases. The clinical application of a classical GSK-3 inhibitor, lithium, is limited by its toxic consequences, including motor side effects. Recently, the mechanism leading to activation of apoptosis following chronic lithium administration has been described. Understanding this mechanism could help to minimize side effects and to improve application of GSK-3 inhibitors to the treatment of AD and to extend the application to other diseases.
Collapse
Affiliation(s)
- Raquel Gómez-Sintes
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Courtet P, Gottesman II, Jollant F, Gould TD. The neuroscience of suicidal behaviors: what can we expect from endophenotype strategies? Transl Psychiatry 2011; 1. [PMID: 21761009 PMCID: PMC3134241 DOI: 10.1038/tp.2011.6] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vulnerability to suicidal behavior (SB) is likely mediated by an underlying genetic predisposition interacting with environmental and probable epigenetic factors throughout the lifespan to modify the function of neuronal circuits, thus rendering an individual more likely to engage in a suicidal act. Improving our understanding of the neuroscience underlying SBs, both attempts and completions, at all developmental stages is crucial for more effective preventive treatments and for better identification of vulnerable individuals. Recent studies have characterized SB using an endophenotype strategy, which aims to identify quantitative measures that reflect genetically influenced stable changes in brain function. In addition to aiding in the functional characterization of susceptibility genes, endophenotypic research strategies may have a wider impact in determining vulnerability to SB, as well as the translation of human findings to animal models, and vice versa. Endophenotypes associated with vulnerability to SB include impulsive/aggressive personality traits and disadvantageous decision making. Deficits in realistic risk evaluation represent key processes in vulnerability to SB. Serotonin dysfunction, indicated by neuroendocrine responses and neuroimaging, is also strongly implicated as a potential endophenotype and is linked with impulsive aggression and disadvantageous decision making. Specific endophenotypes may represent heritable markers for the identification of vulnerable patients and may be relevant targets for successful suicide prevention and treatments.
Collapse
Affiliation(s)
- P Courtet
- Department of Emergency Psychiatry, CHRU Montpellier, Inserm U1061, University of Montpellier I, Montpellier, France
| | - I I Gottesman
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA,Department Psychology, University of Minnesota, Minneapolis, MN, USA
| | - F Jollant
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, McGill University, Montreal, Quebec, Canada
| | - T D Gould
- Departments of Psychiatry, and Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, and Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Room 934D MSTF, 685 West Baltimore Street, Baltimore, MD 21201, USA. E-mail:
| |
Collapse
|
25
|
Flaisher-Grinberg S, Einat H. Strain-specific battery of tests for domains of mania: effects of valproate, lithium and imipramine. Front Psychiatry 2010; 1:10. [PMID: 21423422 PMCID: PMC3059633 DOI: 10.3389/fpsyt.2010.00010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/29/2010] [Indexed: 01/11/2023] Open
Abstract
The lack of efficient animal models for bipolar disorder (BPD), especially for the manic pole, is a major factor hindering the research of its pathophysiology and the development of improved drug treatments. The present study was designed to identify an appropriate mouse strain for modeling some behavioral domains of mania and to evaluate the effects of drugs using this strain. The study compared the behavior of four strains: Black Swiss, C57Bl/6, CBA/J and A/J mice in a battery of tests that included spontaneous activity; sweet solution preference; light/dark box; resident-intruder; forced-swim and amphetamine-induced hyperactivity. Based on the 'manic-like' behavior demonstrated by the Black Swiss strain, the study evaluated the effects of the mood stabilizers valproate and lithium and of the antidepressant imipramine in the same tests using this strain. Results indicated that lithium and valproate attenuate the 'manic-like' behavior of Black Swiss mice whereas imipramine had no effects. These findings suggest that Black Swiss mice might be a good choice for modeling several domains of mania and distinguishing the effects of drugs on these specific domains. However, the relevance of the behavioral phenotype of Black Swiss mice to the biology of BPD is unknown at this time and future studies will investigate molecular differences between Black Swiss mice and other strains and asess the interaction between strain and mood stabilizing treatment.
Collapse
|