1
|
Liang G, Lee YZ, Kow ASF, Lee QL, Cheng Lim LW, Yusof R, Tham CL, Ho YC, Lee MT. Neuroprotective effects of Gypenosides: A review on preclinical studies in neuropsychiatric disorders. Eur J Pharmacol 2024; 978:176766. [PMID: 38908668 DOI: 10.1016/j.ejphar.2024.176766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herb belonging to the Cucurbitaceae family that has a long history of usage in traditional oriental medicine. Gypenosides are the primary bioactive compounds in Gynostemma pentaphyllum. Because of the medicinal value of gypenosides, functional food and supplements containing gypenosides have been promoted and consumed with popularity, especially among Asian communities. This review presented the progress made in the research of pharmacological properties of gypenosides on diseases of the nervous system and their possible mechanism of action. To date, preclinical studies have demonstrated the therapeutic effects of gypenosides in alleviating neuropsychiatric disorders like depression, Parkinson's disease, Alzheimer's disease, secondary dementia, stroke, optic neuritis, etc. Pharmacological studies have discovered that gypenosides can modulate various major signaling pathways like NF-κB, Nrf2, AKT, ERK1/2, contributing to the neuroprotective properties. However, there is a dearth of clinical research on gypenosides, with current investigations on the compounds being mainly conducted in vitro and on animals. Future studies focusing on isolating and purifying novel gypenosides and investigations on exploring the potential molecular mechanism underlying their biological activities are warranted, which may serve as a foundation for further clinical trials for the betterment of human health.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Yu Zhao Lee
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | | | - Qi Long Lee
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Luis Wei Cheng Lim
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia; Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia.
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan.
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Centre of Research for Mental Health and Well-being, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
2
|
Xia X, Chen J, Ren H, Zhou C, Zhang Q, Cheng H, Wang X. Gypenoside Pretreatment Alleviates the Cerebral Ischemia Injury via Inhibiting the Microglia-Mediated Neuroinflammation. Mol Neurobiol 2024; 61:1140-1156. [PMID: 37688709 DOI: 10.1007/s12035-023-03624-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023]
Abstract
Neuroinflammation is closely related to prognosis in ischemic stroke. Microglia are the main immune cells in the nervous system. Under physiological conditions, microglia participate in clearance of dead cells, synapse pruning and regulation of neuronal circuits to maintain the overall health of the nervous system. Once ischemic stroke occurs, microglia function in the occurrence and progression of neuroinflammation. Therefore, the regulation of microglia-mediated neuroinflammation is a potential therapeutic strategy for ischemic stroke. The anti-inflammatory activity of gypenosides (GPs) has been confirmed to be related to the activity of microglia in other neurological diseases. However, the role of GPs in neuroinflammation after ischemic stroke has not been studied. In this study, we investigated whether GPs could reduce neuroinflammation by regulating microglia and the underlying mechanism through qRT-PCR and western blot. Results showed that GPs pretreatment mitigated blood-brain barrier (BBB) damage in the mice subjected to middle cerebral artery occlusion (MCAO) and improved motor function. According to the results of immunofluorescence staining, GPs pretreatment alleviated neuroinflammation in MCAO mice by reducing the number of microglia and promoting their phenotypic transformation from M1 to M2. Furthermore, GPs pretreatment reduced the number of astrocytes in the penumbra and inhibited their polarization into the A1 type. We applied oxygen and glucose deprivation (OGD) on BV2 cells to mimic ischemic conditions in vitro and found similar effect as that in vivo. At the molecular level, the STAT-3/HIF1-α and TLR-4/NF-κB/HIF1-α pathways were involved in the anti-inflammatory effects of GPs in vitro and in vivo. Overall, this research indicates that GPs are potential therapeutic agents for ischemic stroke and has important reference significance to further explore the possibility of GPs application in ischemic stroke.
Collapse
Affiliation(s)
- Xue Xia
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Chen
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiyuan Ren
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chang Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingli Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haoyang Cheng
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Alla N, Palatheeya S, Challa SR, Kakarla R. Tangeretin confers neuroprotection, cognitive and memory enhancement in global cerebral ischemia in rats. 3 Biotech 2024; 14:9. [PMID: 38074289 PMCID: PMC10709536 DOI: 10.1007/s13205-023-03854-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024] Open
Abstract
Global cerebral ischemia is commonly associated with neurological deficits, including cognitive and memory impairments. The present study aims to investigate the neuroprotective, cognitive, and memory enhancement effects of Tangeretin, a flavonoid against global cerebral ischemia in rats. Bilateral common carotid artery occlusion (BCCAO) and reperfusion injury method was used to induce global cerebral ischemia in rats. Motor, cognitive, and memory functions were evaluated using rotarod, grip strength, Y-maze, and Morris water maze. Further, acetylcholine esterase (AchE) enzyme activity, acetylcholine (Ach), oxidative stress markers (ROS, SOD, MDA, and CAT), inflammation (IL-6 and TNF-α), and apoptotic markers (cytochrome C, caspase 9, and caspase 3) in BCCAO rats were measured following Tangeretin (5,10, and 20 mg/kg, oral) treatment. Our findings show that Tangeretin treatment significantly improved cognition and memory by enhancing Ach levels through the amelioration of AchE enzyme activity in BCCAO rats. Moreover, Tangeretin exhibited neuroprotective effects through the mitigation of oxidative stress, inflammation, and apoptosis in the BCCAO rats. In summary, the current findings suggested that Tangeretin exhibited neuroprotection, cognitive and memory enhancement against global cerebral ischemia.
Collapse
Affiliation(s)
- Narayanarao Alla
- Department of Pharmacy, Krishna University, Machilipatnam, Andhra Pradesh India
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh India
| | - Sujatha Palatheeya
- Department of Pharmacy, Krishna University, Machilipatnam, Andhra Pradesh India
- Department of Pharmacy, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar, 509001 India
| | - Siva Reddy Challa
- Department of Pharmacy, Krishna University, Machilipatnam, Andhra Pradesh India
- Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh 520010 India
| | - Ramakrishna Kakarla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh India
| |
Collapse
|
4
|
Ning JW, Zang CX, Shang MY, Bao XQ, Zhang D. Natural products and their derivatives alleviating cerebral white matter lesions. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:146-153. [PMID: 38419338 DOI: 10.1080/10286020.2024.2301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
White matter lesions (WMLs), characterized by focal demyelination or myelination disorders, are commonly present in cerebral small vessel disease and various neurological diseases. Multiple etiologies lead to WMLs. However, there is no specific therapy or effective drugs for relieving WMLs. Natural products and their derivatives originate from bacterial, fungal, plant, and marine animal sources, many of which have multiple therapeutic targets. Compared to single target compounds, natural products and their derivatives are promising to be developed as better drugs to attenuate WMLs. Thus, this review attempts to summarize the status of natural products and their derivatives (2010-to date) alleviating cerebral white matter lesions for the discovery of new drugs.
Collapse
Affiliation(s)
- Jing-Wen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mei-Yu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Lei L, Luo Y, Kang D, Yang F, Meng D, Wang JZ, Liu R, Wang X, Li HL. Gypenoside IX restores Akt/GSK-3β pathway and alleviates Alzheimer's disease-like neuropathology and cognitive deficits. Aging (Albany NY) 2023; 15:14172-14191. [PMID: 38095632 PMCID: PMC10756109 DOI: 10.18632/aging.205295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
The main pathological changes of Alzheimer's disease (AD), a progressive neurodegenerative disorder, include senile plaque (deposited by amyloid beta), neurofibrillary tangle (formed by paired helical filaments composed of hyperphosphorylated tau), and massive loss of neurons. Currently there is a lack of ideal drugs to halt AD progression. Gypenosides (GPs), a kind of natural product, possesses potential therapeutic effects for neurodegenerative diseases, including AD. However, the specific role and mechanism of GPs for AD remain unclear. In the current study, we used staurosporine (STP), an inducer of apoptosis and causing tau hyperphosphorylation, to mimic AD models, and explored the role and mechanism of Gypenoside IX (one of the extracts of Gynostemma, GP for short name in our experiments) in STP treated primary hippocampal neurons and rats. We found STP not only increased apoptosis and tau hyperphosphorylation, but also significantly increased Aβ production, resulting in synaptic dysfunction and cognitive decline in mimic AD models by STP. GP was found to rescue apoptosis and cognitive impairments caused by STP treatment. Moreover, GP recovered the decreased synaptic proteins PSD95, Synaptophysin and GluR2, and blocked dendritic spine loss. Interestingly, GP decreased the STP induced tau hyperphosphorylation at different sites including S-199, S-202, T-205, T-231, S-262, S-396, and S-404, and at the same time decreased Aβ production through down-regulation of BACE1 and PS1. These effects in STP treated primary hippocampal neurons and rats were accompanied with a restoration of AKT/GSK-3β signaling axis with GP treatment, supporting that dysregulation of AKT/GSK-3β pathway might be involved in STP related AD pathogenesis. The results from our research proved that GP might be a potential candidate compound to reduce neuronal damage and prevent the cognitive decline in AD.
Collapse
Affiliation(s)
- Ling Lei
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yong Luo
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongkun Kang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fumin Yang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dongli Meng
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rong Liu
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Xiaochuan Wang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China
| | - Hong-Lian Li
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Zhang X, Zhao Y, Zhao X, Zhang J, Diao J, Jia S, Feng P, Yu P, Cheng G. Anti-inflammatory, cardioprotective effect of gypenoside against isoproterenol-induced cardiac remodeling in rats via alteration of inflammation and gut microbiota. Inflammopharmacology 2023; 31:2731-2750. [PMID: 37603159 DOI: 10.1007/s10787-023-01307-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Myocardial infarction (MI), commonly referred to as a heart attack, occurs when the blood flow to a portion of the heart is blocked, causing damage to the heart muscle. In this study, we scrutinized the cardioprotective effect of gypenoside against the isoproterenol (ISO)-induced myocardial injury (MI) in the rats. METHODS Wistar rats were divided into four groups as follow: normal, gypenoside (10 mg/kg), ISO control, and ISO control treated with the gypenoside (2.5, 5, and 10 mg/kg). Various parameters were estimated such as infract size, hemodynamic, inflammatory, antioxidant, cardiac, cytokines, and apoptotic markers. We also estimated the gut microbiota in the faces of the experimental rats. Finally, heart tissue histopathology performed. RESULT Dose-dependent treatment of gypenoside significantly (P < 0.001) reduced the infracted size along with suppression of the heart weight and heart ratio along with enhance the body weight. Gypenoside treatment considerably altered the level of cardiac parameters, cardiac membrane stabilizing enzyme, hemodynamic parameters, antioxidant, lipid parameters, hepatic parameters, renal parameters, inflammatory cytokines, and mediators. Gypenoside significantly (P < 0.001) suppressed the level of apoptotic markers such as caspase-3, caspase-6, and caspase-9. Gypenoside significantly (P < 0.001) altered the relative abundance of unclassified bacteria, Tenericutes, Candidatus_Saccharibacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, Firmicutes and suppressed the ratio of F/B. CONCLUSION Gypenoside acts as a protective phytoconstituents against the ISO-induced myocardial infraction in the rats via alteration of gut microbiota, inflammatory, and oxidative stress.
Collapse
Affiliation(s)
- Xuemei Zhang
- Ultrasonic Diagnosis Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ying Zhao
- Ultrasonic Diagnosis Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xin Zhao
- Ultrasonic Diagnosis Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ji Zhang
- Department of Emergency, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Jiayu Diao
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Shuo Jia
- Department of Emergency, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Panpan Feng
- Department of General Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Penghua Yu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Gong Cheng
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
7
|
Wang J, Shi J, Jia N, Sun Q. Network pharmacology analysis reveals neuroprotection of Gynostemma pentaphyllum (Thunb.) Makino in Alzheimer' disease. BMC Complement Med Ther 2022; 22:57. [PMID: 35255879 PMCID: PMC8902721 DOI: 10.1186/s12906-022-03534-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
Abstract
Background Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders in the world, but still lack of effective drug treatment. Gynostemma Pentaphyllum (Thunb.) Makino (GpM), a Chinese medicinal herb, plays important roles in anti-inflammation, anti-oxidative stress and anti-tumor, which has been reported to ameliorate cognitive impairment of AD. However, the neuroprotective mechanism of GpM remains unclear. This study aims to investigate the targets and possible signaling pathways of GpM in the treatment of AD. Methods Active compounds of GpM and their putative target proteins were selected from Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. AD-associated targets were identified from GeneCards, the Online Mendelian Inheritance in Man (OMIM) database and the Therapeutic Target Database (TTD). The intersecting targets of GpM and AD were identified and Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out to analyze the mechanism of them. Compound-target-pathway (CTP) network and protein–protein interaction (PPI) network were constructed and analyzed to elucidate the correlation between compounds, proteins and pathways. Molecular docking was performed to further demonstrate the possibility of GpM for AD. Results A total of 13 active compounds of GpM, 168 putative target proteins of compounds and 722 AD-associated targets were identified. Eighteen intersecting targets of GpM and AD were found and the epidermal growth factor receptor (EGFR), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), nitric oxide synthase in endothelial (NOS3) and serum paraoxonase/arylesterase 1 (PON1) were selected as the primary targets of GpM in the treatment of AD. The neuroprotective effect of GPM was related to a variety of pathways, including amoebiasis, HIF-1 signaling pathway, cytokine-cytokine receptor interaction and so on. Conclusions Our findings elucidate the active compounds, targets and pathways of GpM involved in effects of anti-AD. The novel mechanism of GpM against AD provides more treatment options for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03534-z.
Collapse
Affiliation(s)
- Jiahao Wang
- Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jiamiao Shi
- Xi'an Jiaotong University Health Science Center , Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ning Jia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, No. 76, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Qinru Sun
- Institute of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No. 76, West Yanta Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
8
|
Yang G, Zhang J, Wang S, Wang J, Wang J, Zhu Y, Wang J. Gypenoside Inhibits Bovine Viral Diarrhea Virus Replication by Interfering with Viral Attachment and Internalization and Activating Apoptosis of Infected Cells. Viruses 2021; 13:v13091810. [PMID: 34578391 PMCID: PMC8473207 DOI: 10.3390/v13091810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes a severe threat to the cattle industry due to ineffective control measures. Gypenoside is the primary component of Gynostemma pentaphyllum, which has potential medicinal value and has been widely applied as a food additive and herbal supplement. However, little is known about the antiviral effects of gypenoside. The present study aimed to explore the antiviral activities of gypenoside against BVDV infection. The inhibitory activity of gypenoside against BVDV was assessed by using virus titration and performing Western blotting, quantitative reverse transcription PCR (RT-qPCR), and immunofluorescence assays in MDBK cells. We found that gypenoside exhibited high anti-BVDV activity by interfering with the viral attachment to and internalization in cells. The study showed that BVDV infection inhibits apoptosis of infected cells from escaping the innate defense of host cells. Our data further demonstrated that gypenoside inhibited BVDV infection by electively activating the apoptosis of BVDV-infected cells for execution, as evidenced by the regulation of the expression of the apoptosis-related protein, promotion of caspase-3 activation, and display of positive TUNEL staining; no toxicity was observed in non-infected cells. Collectively, the data identified that gypenoside exerts an anti-BVDV-infection role by inhibiting viral attachment and internalization and selectively purging virally infected cells. Therefore, our study will contribute to the development of a novel prophylactic and therapeutic strategy against BVDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- Correspondence: ; Tel.: +86-010-6273-1094; Fax: +86-010-6273-1274
| |
Collapse
|
9
|
Nguyen NH, Ha TKQ, Yang JL, Pham HTT, Oh WK. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113574. [PMID: 33186700 DOI: 10.1016/j.jep.2020.113574] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/20/2020] [Accepted: 11/05/2020] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE G. pentaphyllum, also known as Jiao-Gu-Lan, has been used traditionally as folk remedies for many diseases, including diabetes mellitus, metabolic syndrome, aging, and neurodegenerative diseases in China and some countries in East and Southeast Asia. It is considered as an "immortality herb" in Guizhou Province, because it was consumed regularly by the elderly native inhabitants. Other species of the same genus Gynostemma such as G. longipes and G. laxum have been used as alternatives to G. pentaphyllum in ethno-medicine in Vietnam and other Asian countries. AIM OF THE REVIEW The review aims to summarize up-to-date study results on Gynostemma species, including traditional usage, phytochemical profile, pharmacological activities, and toxicological studies, in order to suggest future research orientation and therapeutic applications on acute and chronic diseases. MATERIALS AND METHODS The relevant literature on the genus Gynostemma was gathered from secondary databases (Web of Science and PubMed), books, and official websites. The latest literature cited in this review was published in February 2020. RESULTS The genus Gynostemma has been widely used in traditional medicine, mainly for treatment of diabetes, hypertension, obesity, and hepatosteatosis. To date, 328 dammarane-type saponins were isolated and structurally elucidated from Gynostemma species. Crude extracts, saponin-rich fractions (gypenosides), and pure compounds were reported to show a wide range of pharmacological activities in both in vitro and in vivo experiments. The most notable pharmacological effects were anti-cancer, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic, anti-obesity, and anti-inflammatory activities. Toxicological studies were conducted only on G. pentaphyllum, showing that the plant extracts were relatively safe in both acute and long-term toxicity experiments at the given dosage while no toxicological studies were reported for the other species. CONCLUSIONS The review summarizes current studies on traditional uses, phytochemistry, biological properties, and toxicology of medicinal Gynostemma species. Till now, the majority of publications still focused only on G. pentaphyllum. However, the promising preliminary data of other Gynostemma species indicated the research potential of this genus, both in phytochemical and pharmacological aspects. Furthermore, clinical data are required to evaluate the efficacy and undesired effects of crude extracts, standard saponin fractions, and pure compounds prepared from Gynostemma medicinal plants.
Collapse
Affiliation(s)
- Ngoc-Hieu Nguyen
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Viet Nam; PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No. 167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313, Viet Nam
| | - Thi Kim Quy Ha
- College of Natural Sciences, Cantho University, Campus II, Cantho City, Viet Nam
| | - Jun-Li Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, PR China
| | - Ha Thanh Tung Pham
- Department of Botany, Hanoi University of Pharmacy, Hanoi, 100000, Viet Nam
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Yuan S, Zhang T. Boeravinone B Protects Brain against Cerebral Ichemia Reperfusion Injury in Rats: Possible Role of Anti-inflammatory and Antioxidant. J Oleo Sci 2021; 70:927-936. [PMID: 34193669 DOI: 10.5650/jos.ess21037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well known that inflammatory reactions and oxidative stress play a key role in the pathogenesis of cerebral ischemia and secondary injury. Boeravinone B (BB) proofed their anti-inflammatory and antioxidant effect, but their neuroprotective effects still unknown. In this experimental study, we explore the neuro-protective effect of Boeravinone B on the ischemia/reperfusion and explore the possible mechanism. Male Wistar rats were used for the current experimental study. First induces natural I/R injury in rats and treated with BB and nifedipine, respectively. Rats were subjected to ischemia after 6 consecutive days by occlusion of the bilateral common carotid arteries (BCCAO). Neurological score, biochemical, antioxidant, pro-inflammatory cytokines and inflammatory parameters were estimated in the serum and brain tissue. BB treatment significantly (p < 0.001) suppressed neuronal injury, dose-dependently decreased the cerebral water content. BB treatment altered the pro-inflammatory cytokines, antioxidant and inflammatory mediators in the serum and brain tissue. BB regulated the expression of glycine (Gly), glutamic acid (Glu), taurine (Tau), aspartic acid (Asp) and γ-aminobutyric acid (GABA) and enhanced the activity of Na+, K+ ATPase and Ca2+ ATPase. BB significantly (p < 0.001) reduced antioxidant enzymes such as glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA), glutathione reductase (GR); inflammatory cytokines include interleukin-4 (IL-4), interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), interleukin-6 (IL-6) and interleukin-1β (IL-1β); inflammatory mediators include prostaglandin (PGE2), nuclear kappa factor B (NF-κB) and cyclooxygenase-2 (COX-2), respectively. In this study, we have found that Boeravinone B exhibited protection against cerebral I/R by reducing oxidative stress and inflammatory reaction.
Collapse
Affiliation(s)
- Shaojie Yuan
- Department of Neurology, Xingtai People's Hospital
| | - Tong Zhang
- Department of Neurology, Xingtai People's Hospital
| |
Collapse
|
11
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Hei Y, Zhang X, Chen R, Zhou Y, Gao D, Liu W. High-Mobility Group Box 1 Neutralization Prevents Chronic Cerebral Hypoperfusion-Induced Optic Tract Injuries in the White Matter Associated with Down-regulation of Inflammatory Responses. Cell Mol Neurobiol 2019; 39:1051-1060. [PMID: 31197745 PMCID: PMC11457824 DOI: 10.1007/s10571-019-00702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Chronic cerebral hypoperfusion (CCH)-induced white matter lesions (WMLs) are region-specific with the optic tract (OT) displaying the most severe damages and leading to visual-based behavioral impairment. Previously we have demonstrated that anti-high-mobility group box 1 (HMGB1) neutralizing antibody (Ab) prevents CCH-induced hippocampal damages via inhibition of neuroinflammation. Here we tested the protective role of the Ab on CCH-induced OT injuries. Rats were treated with permanent occlusion of common carotid arteries (2-VO) or a sham surgery, and then administered with PBS, anti-HMGB1 Ab, or paired control Ab. Pupillary light reflex examination, visual water maze, and tapered beam-walking were performed 28 days post-surgery to investigate the behavioral deficits. Meanwhile, WMLs were measured by Klüver-Barrera (KB) and H&E staining, and glial activation was further assessed to evaluate inflammatory responses in OT. Results revealed that anti-HMGB1 Ab ameliorated the morphological damages (grade scores, vacuoles, and thickness) in OT area and preserved visual abilities. Additionally, the increased levels of inflammatory responses and expressions of TLR4 and NF-κB p65 and phosphorylated NF-κB p65 (p-p65) in OT area were partly down-regulated after anti-HMGB1 treatment. Taken together, these findings suggested that HMGB1 neutralization could ease OT injuries and visual-guided behavioral deficits via suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
13
|
Keilhoff G, Esser T, Titze M, Ebmeyer U, Schild L. Gynostemma pentaphyllum is neuroprotective in a rat model of cardiopulmonary resuscitation. Exp Ther Med 2017; 14:6034-6046. [PMID: 29250141 PMCID: PMC5729372 DOI: 10.3892/etm.2017.5315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 10/02/2017] [Indexed: 01/11/2023] Open
Abstract
Asphyxial cardiac arrest (ACA)-induced ischemia results in acute and delayed neuronal cell death. The early reperfusion phase is critical for the outcome. Intervention strategies directed to this period are promising to reduce ACA/resuscitation-dependent impairments. This study focused on the evaluation of the protective potential of an extract from Gynostemma pentaphyllum (GP), a plant used in traditional medicine with antioxidative, glucose lowering and neuroprotective activities, in an ACA rat model. We tested the following parameters: i) Basic systemic parameters such as pCO2 and blood glucose value within the first 30 min post-ACA; ii) mitochondrial response by determining activities of citrate synthase, respiratory chain complexes I + III and II + III, and the composition of cardiolipin 6 and 24 h post-ACA; iii) neuronal vitality of the CA1 hippocampal region by immunohistochemistry 24 h and 7 days post-ACA; and iv) cognitive function by a novel object recognition test 7 days post-ACA. GP, administered after reaching spontaneous circulation, counteracted the following: i) ACA-mediated increases in arterial CO2 tension and blood glucose values; ii) transient increase in the activity of the respiratory chain complexes II + III; iii) elevation in cardiolipin content; iv) hippocampal CA1 neurodegeneration, and v) loss of normal novelty-object seeking. The protective effects of GP were accompanied by side effects of the vehicle DMSO, such as the stimulation of citrate synthase activity in control animals, inhibition of cardiolipin synthesis in ACA animals and complex II + III activity in both control and ACA animals. The results emphasize the importance of the early post-resuscitation phase for the neurological outcome after ACA/resuscitation, and demonstrated the power of GP substitution as neuroprotective intervention. Moreover, the results underline the need of a careful handling of the popular vehicle DMSO.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Torben Esser
- Department of Anesthesiology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Maximilian Titze
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Uwe Ebmeyer
- Department of Anesthesiology, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| | - Lorenz Schild
- Department of Pathological Biochemistry, Otto-von-Guericke University Magdeburg, Leipziger, D-39120 Magdeburg, Germany
| |
Collapse
|
14
|
Zhao TT, Kim KS, Shin KS, Park HJ, Kim HJ, Lee KE, Lee MK. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA. Altern Ther Health Med 2017; 17:449. [PMID: 28877690 PMCID: PMC5585899 DOI: 10.1186/s12906-017-1959-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/31/2017] [Indexed: 12/27/2022]
Abstract
Background Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson’s disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). Methods MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. Results MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). Conclusion GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant therapeutic agent for memory deficits in patients with PD receiving L-DOPA.
Collapse
|
15
|
Zhang T, Gu J, Wu L, Li N, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Neuroprotective and axonal outgrowth-promoting effects of tetramethylpyrazine nitrone in chronic cerebral hypoperfusion rats and primary hippocampal neurons exposed to hypoxia. Neuropharmacology 2017; 118:137-147. [DOI: 10.1016/j.neuropharm.2017.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 12/16/2022]
|
16
|
Wan ZH, Zhao Q. Gypenoside inhibits interleukin-1β-induced inflammatory response in human osteoarthritis chondrocytes. J Biochem Mol Toxicol 2017; 31. [PMID: 28422402 DOI: 10.1002/jbt.21926] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/12/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022]
Abstract
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti-inflammation, anti-oxidation, and anti-tumor. However, the effects of GP on IL-1β-stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of GP on IL-1β-stimulated human OA chondrocytes and explore the possible mechanism. Our results showed that GP dose-dependently inhibited IL-1β-induced NO and PGE2 production in human OA chondrocytes. In addition, treatment of GP inhibited the expression of MMP3 and MMP13, which was increased by IL-1β. Finally, we found that pretreatment of GP obviously suppressed NF-κB activation in IL-1β-stimulated human OA chondrocytes. Taken together, the results demonstrated that GP has chondro-protective effects, at least in part, through inhibiting the activation of NF-κB signaling pathway in human OA chondrocytes. Thus, these findings suggest that GP may be considered as an alternative therapeutic agent for the management of OA patients.
Collapse
Affiliation(s)
- Zhi-Hong Wan
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, People's Republic of China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, People's Republic of China
| |
Collapse
|
17
|
Guo S, Sui C, Ma Y. Development of a targeted method for quantification of gypenoside XLIX in rat plasma, using SPE and LC-MS/MS. Biomed Chromatogr 2016; 31. [PMID: 27859537 DOI: 10.1002/bmc.3898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/20/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023]
Abstract
A sensitive, selective and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the quantification of gypenoside XLIX, a naturally occurring gypenoside of Gynostemma pentaphyllum in rat plasma and then validated according to the US Food and Drug Administration's Guidance for Industry: Bioanalytical Method Validation. Plasma samples were prepared by a simple solid-phase extraction. Separation was performed on a Waters XBridgeTM BEH C18 chromatography column (4.6 × 50 mm, 2.5 μm) using a mobile phase of acetonitrile and water (62.5:37.5, v/v). Gypenoside XLIX and the internal standard gypenoside A were detected in the negative ion mode using selection reaction monitoring of the transitions at m/z 1045.6 → 913.5 and 897.5 → 765.4, respectively. The calibration curve was linear (R2 > 0.990) over a concentration range of 10-7500 ng/mL with the lower quantification limit of 10 ng/mL. Intra- and inter-day precision was within 8.6% and accuracy was ≤10.2%. Stability results proved that gypenoside XLIX and the IS remained stable throughout the analytical procedure. The validated LC-MS/MS method was then applied to analyze the pharmacokinetics of gypenoside XLIX after intravenous administration to rats (1.0, 2.0 and 4.0 mg/kg).
Collapse
Affiliation(s)
- Song Guo
- The Department of Anesthesiology, Zhongshan Hospital of Dalian University, Dalian, China
| | - Chengxu Sui
- The Department of Intervention, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ying Ma
- The Department of Ophtalmology, the Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Yu H, Shi L, Qi G, Zhao S, Gao Y, Li Y. Gypenoside Protects Cardiomyocytes against Ischemia-Reperfusion Injury via the Inhibition of Mitogen-Activated Protein Kinase Mediated Nuclear Factor Kappa B Pathway In Vitro and In Vivo. Front Pharmacol 2016; 7:148. [PMID: 27313532 PMCID: PMC4887463 DOI: 10.3389/fphar.2016.00148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 11/13/2022] Open
Abstract
Gypenoside (GP) is the major effective component of Gynostemma pentaphyllum and has been shown to encompass a variety of pharmacological activities. In this study, we investigated whether GP is able to protect cardiomyocytes against injury myocardial ischemia-reperfusion (I/R) injury by using in vitro oxygen-glucose deprivation-reoxygenation (OGD/R) H9c2 cell model and in vivo myocardial I/R rat model. We found that GP pre-treatment alleviated the impairments on the cardiac structure and function in I/R injured rats. Moreover, pre-treatment with GP significantly inhibited IκB-α phosphorylation and nuclear factor (NF)-κB p65 subunit translocation into nuclei. GP and the MAPK pathway inhibitors also reduced the phosphorylation of ERK, JNK, and p38 in vitro. Specific inhibition of ERK, JNK, and p38 increased the cell viability of OGD/R injured cells. Taken together, our data demonstrated that GP protects cardiomyocytes against I/R injury by inhibiting NF-κB p65 activation via the MAPK signaling pathway both in vitro and in vivo. These findings suggest that GP may be a promising agent for the prevention or treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Haijie Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Liye Shi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Guoxian Qi
- Department of Geriatrics, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Shijie Zhao
- Department of Geriatrics, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Yuan Gao
- Department of Cardiology, The First Affiliated Hospital of China Medical University Shenyang, China
| | - Yuzhe Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University Shenyang, China
| |
Collapse
|
19
|
Moallem SA, Mohamadpour AH, Abnous K, Sankian M, Sadeghnia HR, Tsatsakis A, Shahsavand S. Erythropoietin in the treatment of carbon monoxide neurotoxicity in rat. Food Chem Toxicol 2015; 86:56-64. [DOI: 10.1016/j.fct.2015.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/05/2015] [Accepted: 09/23/2015] [Indexed: 01/25/2023]
|
20
|
Tang H, Tang Y, Li NG, Lin H, Li W, Shi Q, Zhang W, Zhang P, Dong Z, Shen M, Gu T, Duan JA. Comparative Metabolomic Analysis of the Neuroprotective Effects of Scutellarin and Scutellarein against Ischemic Insult. PLoS One 2015; 10:e0131569. [PMID: 26147971 PMCID: PMC4493097 DOI: 10.1371/journal.pone.0131569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/03/2015] [Indexed: 12/14/2022] Open
Abstract
For more than thirty years, scutellarin (Scu) has been used in China to clinically treat acute cerebral infarction and paralysis. Scutellarein (Scue), the major Scu metabolite in vivo, exhibits heightened neuroprotective effects when compared to Scu. To explore the neuroprotective role of these compounds, we performed ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF/MS) coupled with a pattern recognition approach to investigate metabolomic differences in a rat model of ischemia after treatment with each compound. We examined metabolites in urine, hippocampal tissue, and plasma, and we tentatively identified 23 endogenous metabolites whose levels differed significantly between sham-operated and model groups. Upon pathway analysis, we found an additional 11 metabolic pathways in urine, 14 metabolic pathways in the hippocampal tissue, and 3 metabolic pathways in plasma. These endogenous metabolites were mainly involved in sphingolipid metabolism, lysine biosynthesis, and alanine, aspartate, and glutamate metabolism. We found that metabolic changes after ischemic injury returned to near-normal levels after Scue intervention, unlike Scu treatment, further validating the heightened protective effects exerted by Scue compared to Scu. These results demonstrate that Scue is a potential drug for treatment of ischemic insult.
Collapse
Affiliation(s)
- Hao Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- * E-mail: (YT); (NGL); (JAD)
| | - Nian-Guang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- * E-mail: (YT); (NGL); (JAD)
| | - Hang Lin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Weixia Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Qianping Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wei Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Pengxuan Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zexi Dong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Minzhe Shen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ting Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- * E-mail: (YT); (NGL); (JAD)
| |
Collapse
|
21
|
Studies on the Protective Effects of Scutellarein against Neuronal Injury by Ischemia through the Analysis of Endogenous Amino Acids and Ca 2+Concentration Together with Ca 2+-ATPase Activity. J CHEM-NY 2015. [DOI: 10.1155/2015/497842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Scutellarin, which is extracted from the dried plant ofErigeron breviscapus, has been reported to protect the neural injury against excitotoxicity induced by ischemia. However, there are a few studies on the protective effects of scutellarein, which is the main metabolite of scutellarin in vivo. Thus, this study investigated the neuroprotective effects of scutellarein on cerebral ischemia/reperfusion in rats by bilateral common carotid artery occlusion (BCCAO) model, through the analysis of endogenous amino acids using HILIC-MS/MS, and evaluation of Ca2+concentration together with Ca2+-ATPase activity. The results showed that scutellarein having good protective effects on cerebral ischemia/reperfusion might by decreasing the excitatory amino acids, increasing the inhibitory amino acids, lowing intracellular Ca2+level, and improving Ca2+-ATPase activity, which suggested that scutellarein might be a promising potent agent for the therapy of ischemic cerebrovascular disease.
Collapse
|
22
|
Dong L, Yang KQ, Fu WY, Shang ZH, Zhang QY, Jing FM, Li LL, Xin H, Wang XJ. Gypenosides protected the neural stem cells in the subventricular zone of neonatal rats that were prenatally exposed to ethanol. Int J Mol Sci 2014; 15:21967-79. [PMID: 25464383 PMCID: PMC4284688 DOI: 10.3390/ijms151221967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/30/2014] [Accepted: 11/17/2014] [Indexed: 11/16/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) can cause severe mental retardation in children who are prenatally exposed to ethanol. The effects of prenatal and early postnatal ethanol exposure on adult hippocampal neurogenesis have been investigated; however, the effects of prenatal ethanol exposure on the subventricular zone (SVZ) have not. Gypenosides (GPs) have been reported to have neuroprotective effects in addition to other bioactivities. The effects of GPs on neural stem cells (NSCs) in the FASD model are unknown. Here, we test the effect of prenatal ethanol exposure on the neonatal SVZ, and the protection potential of GPs on NSCs in FASD rats. Our results show that prenatal ethanol exposure can suppress the cell proliferation and differentiation of neural stem cells in the neonatal SVZ and that GPs (400 mg/kg/day) can significantly increase the cell proliferation and differentiation of neural stem cells inhibited by ethanol. Our data indicate that GPs have neuroprotective effects on the NSCs and can enhance the neurogenesis inhibited by ethanol within the SVZ of neonatal rats. These findings provide new evidence for a potential therapy involving GPs for the treatment of FASD.
Collapse
Affiliation(s)
- Lun Dong
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Kun-Qi Yang
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Wen-Yan Fu
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Zhen-Hua Shang
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Qing-Yu Zhang
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Fang-Miao Jing
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Lin-Lin Li
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Hua Xin
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| | - Xiao-Jing Wang
- Department of Cell Biology, School of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
23
|
Zhao W, Luo C, Wang J, Gong J, Li B, Gong Y, Wang J, Wang H. 3-N-butylphthalide improves neuronal morphology after chronic cerebral ischemia. Neural Regen Res 2014; 9:719-26. [PMID: 25206879 PMCID: PMC4146270 DOI: 10.4103/1673-5374.131576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
3-N-butylphthalide is an effective drug for acute ischemic stroke. However, its effects on chronic cerebral ischemia-induced neuronal injury remain poorly understood. Therefore, this study ligated bilateral carotid arteries in 15-month-old rats to simulate chronic cerebral ischemia in aged humans. Aged rats were then intragastrically administered 3-n-butylphthalide. 3-N-butylphthalide administration improved the neuronal morphology in the cerebral cortex and hippocampus of rats with chronic cerebral ischemia, increased choline acetyltransferase activity, and decreased malondialdehyde and amyloid beta levels, and greatly improved cognitive function. These findings suggest that 3-n-butylphthalide alleviates oxidative stress caused by chronic cerebral ischemia, improves cholinergic function, and inhibits amyloid beta accumulation, thereby improving cerebral neuronal injury and cognitive deficits.
Collapse
Affiliation(s)
- Wanhong Zhao
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Chao Luo
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jue Wang
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jian Gong
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Bin Li
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yingxia Gong
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Jun Wang
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Hanqin Wang
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
24
|
Lipoxin A4 methyl ester ameliorates cognitive deficits induced by chronic cerebral hypoperfusion through activating ERK/Nrf2 signaling pathway in rats. Pharmacol Biochem Behav 2014; 124:145-52. [DOI: 10.1016/j.pbb.2014.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/24/2014] [Accepted: 05/31/2014] [Indexed: 01/05/2023]
|
25
|
Zhao J, Ming Y, Wan Q, Ye S, Xie S, Zhu Y, Wang Y, Zhong Z, Li L, Ye Q. Gypenoside attenuates hepatic ischemia/reperfusion injury in mice via anti-oxidative and anti-apoptotic bioactivities. Exp Ther Med 2014; 7:1388-1392. [PMID: 24940444 PMCID: PMC3991488 DOI: 10.3892/etm.2014.1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
Gynostemma pentaphyllum is a traditional Chinese medicine that has previously been used for the treatment of chronic inflammation, hyperlipidemia and liver disease. Gypenoside (GP), the predominant component of Gynostemma pentaphyllum, exhibits a therapeutic effect on chronic hepatic injury, fibrosis and fatty liver disease via its anti-inflammatory and anti-oxidant activity. However, the effect of GP on ischemia/reperfusion (I/R)-induced hepatic injury has, to the best of our knowledge, not previously been investigated. In the present study, a hepatic I/R-injury model was successfully established using C57BL/6 mice. In the treatment group, 50 mg/kg GP was administered orally 1 h prior to ischemia. Following hepatic I/R, the levels of hepatic lipid peroxidation and serum alanine aminotransferase increased, while the ratio of hepatic glutathione (GSH):oxidized GSH was reduced, which was effectively attenuated by pretreatment with GP. Furthermore, an increased protein expression of heme oxygenase-1 in the liver tissues of the I/R mice was attenuated by the administration of GP. In addition, the present study indicated that treatment with GP suppressed the I/R-induced increase in the pro-apoptotic protein levels of Bax and cytochrome c and the activity of caspase-3/8, as well as the I/R-induced decrease in the levels of anti-apoptotic protein Bcl-2. In conclusion, the present study indicated that GP effectively protected against I/R-induced hepatic injury via its anti-oxidative and anti-apoptotic bioactivity.
Collapse
Affiliation(s)
- Jie Zhao
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yingzi Ming
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiquan Wan
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaojun Ye
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Song Xie
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhu
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yanfeng Wang
- Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zibiao Zhong
- Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ling Li
- Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qifa Ye
- Center of Transplant Medicine Engineering and Technology of the Ministry of Health of The People's Republic of China, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China ; Institute of Hepatobiliary Disease, Transplant Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
26
|
Tang H, Tang Y, Li N, Shi Q, Guo J, Shang E, Duan JA. Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacol Biochem Behav 2014; 118:51-9. [PMID: 24423938 DOI: 10.1016/j.pbb.2014.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/29/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Scutellarin had protective effects against neuronal injury, however, there are few studies on the protective effect of scutellarein, which is the main metabolite of scutellarin in vivo. This study investigated whether the neural injury by ischemia/reperfusion would be influenced by different doses of scutellarin and scutellarein. Male Wistar rats were orally administered with scutellarin and scutellarein at the doses of 0.09, 0.17, 0.35, 0.70, 1.40 mmol/kg, respectively; then after six consecutive days, they were subjected to global ischemia by occlusion of the bilateral common carotid arteries (BCCAO). After reperfusion for about 21 h, neurological and histological examinations were performed. The present results showed that scutellarein attenuated neuronal cell damage, reduced cerebral water content, regulated the expression of glutamic acid (Glu), aspartic acid (Asp), glycine (Gly), γ-aminobutyric acid (GABA) and taurine (Tau), and improved the Ca(2+)-ATPase and Na(+),K(+)-ATPase activity. Meanwhile, significant difference was found among various doses of scutellarin and scutellarein. Our studies indicated that scutellarin and scutellarein could improve neuronal injury, and scutellarein had better protective effect than scutellarin in rat cerebral ischemia.
Collapse
Affiliation(s)
- Hao Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Qianping Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
27
|
Abstract
Vascular cognitive impairment defines alterations in cognition, ranging from subtle deficits to full-blown dementia, attributable to cerebrovascular causes. Often coexisting with Alzheimer's disease, mixed vascular and neurodegenerative dementia has emerged as the leading cause of age-related cognitive impairment. Central to the disease mechanism is the crucial role that cerebral blood vessels play in brain health, not only for the delivery of oxygen and nutrients, but also for the trophic signaling that inextricably links the well-being of neurons and glia to that of cerebrovascular cells. This review will examine how vascular damage disrupts these vital homeostatic interactions, focusing on the hemispheric white matter, a region at heightened risk for vascular damage, and on the interplay between vascular factors and Alzheimer's disease. Finally, preventative and therapeutic prospects will be examined, highlighting the importance of midlife vascular risk factor control in the prevention of late-life dementia.
Collapse
Affiliation(s)
- Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
28
|
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99:128-48. [PMID: 22980037 PMCID: PMC3479314 DOI: 10.1016/j.pneurobio.2012.08.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- Cancer Institute of New Jersey, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| |
Collapse
|
29
|
Maiese K, Chong ZZ, Wang S, Shang YC. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012. [PMID: 23203037 PMCID: PMC3509553 DOI: 10.3390/ijms131113830] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress impacts multiple systems of the body and can lead to some of the most devastating consequences in the nervous system especially during aging. Both acute and chronic neurodegenerative disorders such as diabetes mellitus, cerebral ischemia, trauma, Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and tuberous sclerosis through programmed cell death pathways of apoptosis and autophagy can be the result of oxidant stress. Novel therapeutic avenues that focus upon the phosphoinositide 3-kinase (PI 3-K), Akt (protein kinase B), and the mammalian target of rapamycin (mTOR) cascade and related pathways offer exciting prospects to address the onset and potential reversal of neurodegenerative disorders. Effective clinical translation of these pathways into robust therapeutic strategies requires intimate knowledge of the complexity of these pathways and the ability of this cascade to influence biological outcome that can vary among disorders of the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
- Author to whom correspondence should be addressed: E-Mail:
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (S.W.); (Y.C.S.)
- New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA
| |
Collapse
|
30
|
Chong ZZ, Shang YC, Wang S, Maiese K. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 2012; 7:e45456. [PMID: 23029019 PMCID: PMC3445503 DOI: 10.1371/journal.pone.0045456] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/21/2012] [Indexed: 12/13/2022] Open
Abstract
Emerging strategies that center upon the mammalian target of rapamycin (mTOR) signaling for neurodegenerative disorders may bring effective treatment for a number of difficult disease entities. Here we show that erythropoietin (EPO), a novel agent for nervous system disorders, prevents apoptotic SH-SY5Y cell injury in an oxidative stress model of oxygen-glucose deprivation through phosphatidylinositol-3-kinase (PI 3-K)/protein kinase B (Akt) dependent activation of mTOR signaling and phosphorylation of the downstream pathways of p70 ribosomal S6 kinase (p70S6K), eukaryotic initiation factor 4E-binding protein 1 (4EBP1), and proline rich Akt substrate 40 kDa (PRAS40). PRAS40 is an important regulatory component either alone or in conjunction with EPO signal transduction that can determine cell survival through apoptotic caspase 3 activation. EPO and the PI 3-K/Akt pathways control cell survival and mTOR activity through the inhibitory post-translational phosphorylation of PRAS40 that leads to subcellular binding of PRAS40 to the cytoplasmic docking protein 14-3-3. However, modulation and phosphorylation of PRAS40 is independent of other protective pathways of EPO that involve extracellular signal related kinase (ERK 1/2) and signal transducer and activator of transcription (STAT5). Our studies highlight EPO and PRAS40 signaling in the mTOR pathway as potential therapeutic strategies for development against degenerative disorders that lead to cell demise.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Newark, New Jersey, United States of America
- Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- New Jersey Health Sciences University, Newark, New Jersey, United States of America
| |
Collapse
|
31
|
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: new directions for the nervous system. Int J Mol Sci 2012; 13:11102-11129. [PMID: 23109841 PMCID: PMC3472733 DOI: 10.3390/ijms130911102] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/14/2022] Open
Abstract
New treatment strategies with erythropoietin (EPO) offer exciting opportunities to prevent the onset and progression of neurodegenerative disorders that currently lack effective therapy and can progress to devastating disability in patients. EPO and its receptor are present in multiple systems of the body and can impact disease progression in the nervous, vascular, and immune systems that ultimately affect disorders such as Alzheimer's disease, Parkinson's disease, retinal injury, stroke, and demyelinating disease. EPO relies upon wingless signaling with Wnt1 and an intimate relationship with the pathways of phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR). Modulation of these pathways by EPO can govern the apoptotic cascade to control β-catenin, glycogen synthase kinase-3β, mitochondrial permeability, cytochrome c release, and caspase activation. Yet, EPO and each of these downstream pathways require precise biological modulation to avert complications associated with the vascular system, tumorigenesis, and progression of nervous system disorders. Further understanding of the intimate and complex relationship of EPO and the signaling pathways of Wnt, PI 3-K, Akt, and mTOR are critical for the effective clinical translation of these cell pathways into robust treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, Cancer Center, F 1220, New Jersey Health Sciences University, 205 South Orange Avenue, Newark, NJ 07101, USA; E-Mails: (Z.Z.C.); (Y.C.S.); (S.W.)
- New Jersey Health Sciences University, Newark, New Jersey 07101, USA
| |
Collapse
|