1
|
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, Wacker D. Structural insights into the unexpected agonism of tetracyclic antidepressants at serotonin receptors 5-HT 1eR and 5-HT 1FR. SCIENCE ADVANCES 2024; 10:eadk4855. [PMID: 38630816 PMCID: PMC11023502 DOI: 10.1126/sciadv.adk4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1eR/5-HT1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed antimigraine properties. Using cryo-EM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.
Collapse
Affiliation(s)
- Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexandra K. Parpounas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Audrey L. Warren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Wacker
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
2
|
Aguiar DD, Petrocchi JA, da Silva GC, Lemos VS, Castor MGME, Perez ADC, Duarte IDG, Romero TRL. Participation of the cannabinoid system and the NO/cGMP/K ATP pathway in serotonin-induced peripheral antinociception. Neurosci Lett 2024; 818:137536. [PMID: 37898181 DOI: 10.1016/j.neulet.2023.137536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 μg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 μg) and AM630 (25, 50 and 100 μg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 μg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 μg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 μg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 μg) and by the selective inhibitor for the neuronal isoform LNPA (24 μg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 μg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 μg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.
Collapse
Affiliation(s)
- Danielle Diniz Aguiar
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Júlia Alvarenga Petrocchi
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Grazielle Caroline da Silva
- Department of Physiology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Marina Gomes Miranda E Castor
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil.
| | - Andrea de Castro Perez
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Igor Dimitri Gama Duarte
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| | - Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, 31.270-100 Belo Horizonte, Brazil
| |
Collapse
|
3
|
Zilberg G, Parpounas AK, Warren AL, Fiorillo B, Provasi D, Filizola M, Wacker D. Structural Insights into the Unexpected Agonism of Tetracyclic Antidepressants at Serotonin Receptors 5-HT1eR and 5-HT1FR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561100. [PMID: 37986777 PMCID: PMC10659432 DOI: 10.1101/2023.10.05.561100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) acts via 13 different receptors in humans. Of these receptor subtypes, all but 5-HT1eR have confirmed roles in native tissue and are validated drug targets. Despite 5-HT1eR's therapeutic potential and plausible druggability, the mechanisms of its activation remain elusive. To illuminate 5-HT1eR's pharmacology in relation to the highly homologous 5-HT1FR, we screened a library of aminergic receptor ligands at both receptors and observe 5-HT1e/1FR agonism by multicyclic drugs described as pan-antagonists at 5-HT receptors. Potent agonism by tetracyclic antidepressants mianserin, setiptiline, and mirtazapine suggests a mechanism for their clinically observed anti-migraine properties. Using cryoEM and mutagenesis studies, we uncover and characterize unique agonist-like binding poses of mianserin and setiptiline at 5-HT1eR distinct from similar drug scaffolds in inactive-state 5-HTR structures. Together with computational studies, our data suggest that these binding poses alongside receptor-specific allosteric coupling in 5-HT1eR and 5-HT1FR contribute to the agonist activity of these antidepressants.
Collapse
Affiliation(s)
- Gregory Zilberg
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Alexandra K. Parpounas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Audrey L. Warren
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Bianca Fiorillo
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| | - Daniel Wacker
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; New York, New York 10029
| |
Collapse
|
4
|
Aguiar DD, da Costa Oliveira C, Fonseca FCS, de Almeida DL, Campos Pereira WV, Guimarães FS, Perez AC, Duarte IDG, Romero TRL. Peripherally injected canabidiol reduces neuropathic pain in mice: Role of the 5-HT 1A and TRPV1 receptors. Biochem Biophys Res Commun 2023; 660:58-64. [PMID: 37068389 DOI: 10.1016/j.bbrc.2023.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component found in plants of the genus Cannabis. Its analgesic effect for the treatment of neuropathy has been widely studied. However, little is known about its effects in the acute treatment when Cannabidiol is administered peripherally. Because of that, this research was aimed to evaluate the antinociceptive effects of the CBD when administered peripherally for the treatment of acute neuropathic pain and check the involvement of the 5-HT1A and the TRPV1 receptors in this event. Neuropathic pain was induced with the constriction of the sciatic nerve while the nociceptive threshold was measured using the pressure test of the mouse paw. The technique used proved to be efficient to induce neuropathy, and the CBD (5, 10 and 30 μg/paw) induced the antinociception in a dosage-dependent manner. The dosage used that induced a more potent effect (30 μg/paw), did not induce a systemic response, as demonstrated by both the motor coordination assessment test (RotaRod) and the antinociceptive effect restricted to the paw treated with CBD. The administration of NAN-190 (10 μg/paw), a selective 5-HT1A receptor antagonist, and SB-366791 (16 μg/paw), a selective TRPV1 antagonist, partially reversed the CBD-induced antinociception. The results of the research suggest that the CBD produces the peripheral antinociception during the acute treatment of the neuropathic pain and it partially involved the participation of the 5-HT1A and TRPV1 receptors.
Collapse
Affiliation(s)
- Danielle Diniz Aguiar
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | - Andrea Castro Perez
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
5
|
Serotonin (5-HT) 2A Receptor Involvement in Melanin Synthesis and Transfer via Activating the PKA/CREB Signaling Pathway. Int J Mol Sci 2022; 23:ijms23116111. [PMID: 35682806 PMCID: PMC9245606 DOI: 10.3390/ijms23116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The 5-HT2A serotonin receptor (HTR2A) has been reported to be involved in the serotonin- or serotonin receptor 2A agonist-induced melanogenesis in human melanoma cells. However, the molecular mechanisms underlying HTR2A in regulating melanogenesis remain poorly understood. In this research, cultured mouse melanoma cell line B16F10, human skin, and zebrafish embryos were used to elucidate the downstream signaling of HTR2A in regulating melanogenesis and to verify the potential application of HTR2A in the treatment of pigment-associated cutaneous diseases. We demonstrated that HTR2A antagonists (AT1015 and ketanserin) attenuated the melanogenesis induction of serotonin in both mouse melanoma cells and zebrafish embryos. The agonists of HTR2A (DOI and TCB-2) increased melanin synthesis and transfer in B16F10 cells, human skin tissue, and zebrafish embryos. Furthermore, the HTR2A agonists increased the expression of proteins related to melanosome organization and melanocyte dendrites to facilitate the melanocyte migration and melanosome transport. HTR2A antagonists and genetic knockout of zebrafish htr2aa (the homologue of mammalian HTR2A gene) were also used to clarify that HTR2A mediates serotonin and DOI in regulating melanogenesis. Finally, through small scale screening of the candidate downstream pathway, we demonstrated that HTR2A mediates the melanogenesis induction of its ligands by activating the PKA/CREB signaling pathway. In this research, we further confirmed that HTR2A is a crucial protein to mediate melanocyte function. Meanwhile, this research supports that HTR2A could be designed as a drug target for the development of chemicals to treat cutaneous diseases with melanocytes or melanogenesis abnormality.
Collapse
|
6
|
Retamal JS, Grace MS, Dill LK, Ramirez-Garcia P, Peng S, Gondin AB, Bennetts F, Alvi S, Rajasekhar P, Almazi JG, Carbone SE, Bunnett NW, Davis TP, Veldhuis NA, Poole DP, McIntyre P. Serotonin-induced vascular permeability is mediated by transient receptor potential vanilloid 4 in the airways and upper gastrointestinal tract of mice. J Transl Med 2021; 101:851-864. [PMID: 33859334 PMCID: PMC8047529 DOI: 10.1038/s41374-021-00593-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023] Open
Abstract
Endothelial and epithelial cells form physical barriers that modulate the exchange of fluid and molecules. The integrity of these barriers can be influenced by signaling through G protein-coupled receptors (GPCRs) and ion channels. Serotonin (5-HT) is an important vasoactive mediator of tissue edema and inflammation. However, the mechanisms that drive 5-HT-induced plasma extravasation are poorly defined. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an established enhancer of signaling by GPCRs that promote inflammation and endothelial barrier disruption. Here, we investigated the role of TRPV4 in 5-HT-induced plasma extravasation using pharmacological and genetic approaches. Activation of either TRPV4 or 5-HT receptors promoted significant plasma extravasation in the airway and upper gastrointestinal tract of mice. 5-HT-mediated extravasation was significantly reduced by pharmacological inhibition of the 5-HT2A receptor subtype, or with antagonism or deletion of TRPV4, consistent with functional interaction between 5-HT receptors and TRPV4. Inhibition of receptors for the neuropeptides substance P (SP) or calcitonin gene-related peptide (CGRP) diminished 5-HT-induced plasma extravasation. Supporting studies assessing treatment of HUVEC with 5-HT, CGRP, or SP was associated with ERK phosphorylation. Exposure to the TRPV4 activator GSK1016790A, but not 5-HT, increased intracellular Ca2+ in these cells. However, 5-HT pre-treatment enhanced GSK1016790A-mediated Ca2+ signaling, consistent with sensitization of TRPV4. The functional interaction was further characterized in HEK293 cells expressing 5-HT2A to reveal that TRPV4 enhances the duration of 5-HT-evoked Ca2+ signaling through a PLA2 and PKC-dependent mechanism. In summary, this study demonstrates that TRPV4 contributes to 5-HT2A-induced plasma extravasation in the airways and upper GI tract, with evidence supporting a mechanism of action involving SP and CGRP release.
Collapse
Affiliation(s)
- Jeffri S Retamal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Megan S Grace
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- Department of Physiology, School of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Larissa K Dill
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paulina Ramirez-Garcia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Scott Peng
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Felix Bennetts
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sadia Alvi
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Pradeep Rajasekhar
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Juhura G Almazi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | - Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia.
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia.
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
7
|
Nascimento EB, Romero TRL, Dutra MMGB, Fiebich BL, Duarte IDG, Coelho MM. Role of peripheral 5-HT 1D, 5-HT 3 and 5-HT 7 receptors in the mechanical allodynia induced by serotonin in mice. Biomed Pharmacother 2021; 135:111210. [PMID: 33453675 DOI: 10.1016/j.biopha.2020.111210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Serotonin (5-HT) acts as a neurotransmitter in the central nervous system (CNS) and as a mediator released by enterochromaffin cells to regulate intestinal motility. However, this amine also plays an important role as an inflammatory mediator and induces phenotypic changes of nociceptors. Despite the wide knowledge of the role of 5-HT in nociception, most studies have focused on its role in the CNS, while a clear information about its role in peripheral tissues is still lacking. In the present study, we investigated the role of peripheral 5-HT receptors in the nociceptive response induced by 5-HT or carrageenan in mice by using antagonists that target different 5-HT receptors. Mechanical nociceptive threshold was measured with an analgesimeter and evaluated after intraplantar (i.pl.) injection of 5-HT or carrageenan. 5-HT antagonists were injected via the i.pl. route. 5-HT (10, 20, 40 or 80 μg/paw) or carrageenan (100 μg/paw) induced mechanical allodynia. Pretreatment with isamoltane (5 μg; 5-HT1B antagonist) or ketanserine (1 μg; 5-HT2A antagonist) did not affect the mechanical allodynia induced by 5-HT. This response was inhibited by BRL 15572 (10 μg; 5-HT1D antagonist) or SB 269970 (25 μg; 5-HT7 antagonist). On the other hand, mechanical allodynia induced by 5-HT or carrageenan was exacerbated by ondansetron (10, 20 or 40 μg; 5-HT3 antagonist). The results indicate that activation of 5-HT1D and 5-HT7 receptors plays a role in the mechanical allodynia induced by 5-HT in mice. This study also demonstrates the inhibitory role of peripheral 5-HT3 receptors in the nociceptive response induced by 5-HT or carrageenan.
Collapse
Affiliation(s)
- Elias B Nascimento
- School of Medicine, Federal University of Delta do Parnaíba, Parnaíba, Brazil; Department of Pharmaceutical Products, School of Pharmacy, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil.
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Marcela M G B Dutra
- Department of Pharmaceutical Products, School of Pharmacy, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Igor D G Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Márcio M Coelho
- Department of Pharmaceutical Products, School of Pharmacy, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Diniz DA, Petrocchi JA, Navarro LC, Souza TC, Castor MGME, Duarte IDG, Romero TRL. Serotonin induces peripheral antinociception via the opioidergic system. Biomed Pharmacother 2018; 97:1434-1437. [DOI: 10.1016/j.biopha.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022] Open
|
9
|
Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391. Toxins (Basel) 2017; 10:toxins10010012. [PMID: 29280949 PMCID: PMC5793099 DOI: 10.3390/toxins10010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 12/27/2022] Open
Abstract
Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum, increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive effect of BDS 391 demonstrating that, in rats: (a) the compound inhibits (1.2–12 ng/paw) overt pain, in the formalin test, and mechanical hyperalgesia (0.6–6.0 ng/paw) detected in a model of neuropathic pain; (b) intraplantar administration of ondansetron, a selective 5-HT3 receptor antagonist, blocks the effect of BDS 391, whereas ketanserin, a 5-HT2 receptor antagonist, partially reversed this effect, indicating the involvement of peripheral 5-HT2 and 5-HT3 receptors in BDS 391 antinociception; and (c) in binding assay studies, BDS 391 was not able to displace the selective 5-HT receptor antagonists, suggesting that this compound does not directly bind to these receptors. The effect of biguanide, a selective 5-HT3 receptor agonist, was also evaluated. The agonist inhibited the formalin’s nociceptive response, supporting an antinociceptive role for 5-HT3 receptors. Our study is the first one to show that a non-peptidic low molecular weight compound obtained from a sea anemone is able to induce antinociception and that activation of peripheral 5-HT3 receptors contributes to this effect.
Collapse
|
10
|
Ovalle-Magallanes B, Déciga-Campos M, Mata R. Antihyperalgesic activity of a mexicanolide isolated from Swietenia humilis extract in nicotinamide-streptozotocin hyperglycemic mice. Biomed Pharmacother 2017; 92:324-330. [DOI: 10.1016/j.biopha.2017.05.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022] Open
|
11
|
Krasaelap A, Madani S. Cyproheptadine: A Potentially Effective Treatment for Functional Gastrointestinal Disorders in Children. Pediatr Ann 2017; 46:e120-e125. [PMID: 28287686 DOI: 10.3928/19382359-20170213-01] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional gastrointestinal disorders (FGIDs) negatively affect children's quality of life and health care costs. It has been proposed that alteration of gut serotonin leads to gastrointestinal dysmotility, visceral hypersensitivity, altered gastrointestinal secretions, and brain-gut dysfunction. Cyproheptadine, a serotonin antagonist, has been shown to be a potentially effective and safe treatment option in children who meet the clinical criteria for FGIDs. Well-designed multicenter trials with long-term follow-up are needed to further investigate its efficacy. [Pediatr Ann. 2017;46(3):e120-e125.].
Collapse
|
12
|
Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K, Olsen ASB, Wong JF, Stucky CL, Brem RB, Bautista DM. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron 2015; 87:124-38. [PMID: 26074006 DOI: 10.1016/j.neuron.2015.05.044] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch. Activation of HTR7 promoted opening of the ion channel TRPA1, which in turn triggered itch behaviors. In addition, acute itch triggered by serotonin or a selective serotonin reuptake inhibitor required both HTR7 and TRPA1. Aberrant serotonin signaling has long been linked to a variety of human chronic itch conditions, including atopic dermatitis. In a mouse model of atopic dermatitis, mice lacking HTR7 or TRPA1 displayed reduced scratching and skin lesion severity. These data highlight a role for HTR7 in acute and chronic itch and suggest that HTR7 antagonists may be useful for treating a variety of pathological itch conditions.
Collapse
Affiliation(s)
- Takeshi Morita
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannan P McClain
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Lyn M Batia
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Maurizio Pellegrino
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Sarah R Wilson
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael A Kienzler
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kyle Lyman
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Justin F Wong
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Cheryl L Stucky
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Diana M Bautista
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Lin OA, Karim ZA, Vemana HP, Espinosa EVP, Khasawneh FT. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function. PLoS One 2014; 9:e87026. [PMID: 24466319 PMCID: PMC3900701 DOI: 10.1371/journal.pone.0087026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/16/2013] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR) expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS) exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and EMD 281014, their use may interfere with normal hemostasis.
Collapse
Affiliation(s)
- Olivia A. Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Zubair A. Karim
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Enma V. P. Espinosa
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
| | - Fadi T. Khasawneh
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ishigami T, Yoshioka K, Karicheti V, Marson L. A Role for Peripheral 5-HT2 Receptors in Serotonin-Induced Facilitation of the Expulsion Phase of Ejaculation in Male Rats. J Sex Med 2013; 10:2688-702. [DOI: 10.1111/jsm.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Xu J, Chu KL, Zhu CZ, Niforatos W, Swensen A, Searle X, Lee L, Jarvis MF, McGaraughty S. A mixed Ca2+ channel blocker, A-1264087, utilizes peripheral and spinal mechanisms to inhibit spinal nociceptive transmission in a rat model of neuropathic pain. J Neurophysiol 2013; 111:394-404. [PMID: 24155005 DOI: 10.1152/jn.00463.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.6 μM) rat dorsal root ganglia N-type Ca(2+) in a state-dependent fashion. A-1264087 (1, 3 and 10 mg/kg po) dose-dependently reduced mechanical allodynia in rats with a spinal nerve ligation (SNL) injury. A-1264087 (4 mg/kg iv) inhibited both spontaneous and mechanically evoked activity of spinal wide dynamic range (WDR) neurons in SNL rats but had no effect in uninjured rats. The inhibitory effect on WDR neurons remained in spinally transected SNL rats. Injection of A-1264087 (10 nmol/0.5 μl) into the spinal cord reduced both spontaneous and evoked WDR activity in SNL rats. Application of A-1264087 (300 nmol/20 μl) into the receptive field on the hindpaw attenuated evoked but not spontaneous firing of WDR neurons. Using electrical stimulation, A-1264087 (4 mg/kg iv) inhibited Aδ- and C-fiber evoked responses and after-discharge of WDR neurons in SNL rats. These effects by A-1264087 were not present in uninjured rats. A-1264087 moderately attenuated WDR neuron windup in both uninjured and SNL rats. In summary, these results indicate that A-1264087 selectively inhibited spinal nociceptive transmission in sensitized states through both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Jun Xu
- Neuroscience Research, AbbVie, North Chicago, Illinos
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Local injections of serotonin type-3 receptor antagonists as a therapeutic option in rheumatology. Future Med Chem 2012; 4:705-7. [PMID: 22530634 DOI: 10.4155/fmc.12.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|