1
|
You L, Yang B, Lu X, Yang A, Zhang Y, Bi X, Zhou S. Similarities and differences between Chronic Primary Pain and Depression in brain activities: Evidence from Resting-State Microstates and auditory Oddball Task. Behav Brain Res 2024:115319. [PMID: 39486484 DOI: 10.1016/j.bbr.2024.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND In 2019, the International Association for the Study of Pain introduced the concept of 'chronic primary pain (CPP)', characterized by persistent non-organic pain with emotional and functional abnormalities. Underdiagnosed and linked to depression, CPP has poorly understood neural characteristics. Electroencephalogram (EEG) microstates enable detailed examination of brain network dynamics at the millisecond level. Incorporating task-related EEG features offers a comprehensive neurophysiological signature of brain dysfunction, facilitating exploration of potential neural mechanisms. METHODS This study employed resting-state and task-related auditory Oddball EEG paradigm to evaluate 20 healthy controls, 20 patients with depression, and 20 patients with CPP. An 8-minute recording of resting-state EEG was conducted to identify four typical microstates (A-D). Additionally, power spectral density (PSD) features were examined during an auditory Oddball paradigm. RESULTS Both CPP and Major Depressive Disorder (MDD) patients exhibited reduced occurrence rate and transition probabilities of other microstates to microstate C during resting-state EEG. Furthermore, more pronounced increase in Gamma PSD was observed in the occipital region of CPP during the Oddball task. In CPP, both resting-state microstate C and task-related Gamma PSD correlated with pain and emotional indicators. Notably, microstate C occurrence positively correlated with occipital Gamma PSD in MDD. CONCLUSION Conclusively, both CPP and MDD display dynamic abnormalities within the salient network, closely associated with pain and depressive symptoms in CPP. Unlike MDD, CPPs' dynamic network changes appear unrelated to perceptual integration function, indicating differing microstate functional impacts. Combining resting-state microstates and Oddball tasks may offer a promising avenue for identifying potential biomarkers in objectively assessing chronic primary pain.
Collapse
Affiliation(s)
- Lele You
- Medical School, Shanghai University, 99 Shangda Road, Shanghai, 200444, Shanghai, China.
| | - Banghua Yang
- Medical School, Shanghai University, 99 Shangda Road, Shanghai, 200444, Shanghai, China; School of Mechatronic Engineering and Automation, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, Shanghai, China.
| | - Xi Lu
- Department of Neurology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, Shanghai, China.
| | - Aolei Yang
- School of Mechatronic Engineering and Automation, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, Shanghai, China.
| | - Yonghuai Zhang
- Shanghai Shaonao Sensing Technology Ltd, No. 1919, Fengxiang Road, Shanghai, 200444, Shanghai, China.
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, Shanghai, China.
| | - Shu Zhou
- Department of Neurology, Shanghai Changhai Hospital, 168 Changhai Road, Shanghai, 200433, Shanghai, China.
| |
Collapse
|
2
|
Zhao W, Liu SL, Lin SS, Zhang Y, Yu C. Astrocytic P2X7 receptor in retrosplenial cortex drives electroacupuncture analgesia. Purinergic Signal 2024:10.1007/s11302-024-10043-w. [PMID: 39222236 DOI: 10.1007/s11302-024-10043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
P2X7 receptor (P2X7R) has been found to contribute to the peripheral mechanism of acupuncture analgesia (AA). However, whether it plays an important role in central mechanism remains unknown. In this study, we aimed to reveal the role of astrocytic P2X7R in retrosplenial cortex (RSC) in AA and provide new evidence for underlying the central mechanism of AA. We applied the chemogenetic receptors hM3Dq to stimulate or hM4Di to inhibit astrocytes ligand clozapine-N-oxide (CNO) following injection of adeno-associated virus (AAV) into the bilateral RSC, or pharmacologically intervened in the activity of the purinergic receptor P2X7R. Current data indicated that chemogenetic inhibition of astrocytes or injection of P2X7R agonist Bz-ATP in the bilateral RSC significantly reverses the analgesic effect of electroacupuncture (EA) in formalin tests while the bilateral injection of the P2X7R antagonist A438079 alleviated formalin-induced nociceptive behavior. Additionally, chemogenetic suppression of astrocytic P2X7R by injection of AAV in the bilateral RSC decreased hind paw flinches induced by formalin in the mice. These findings indicate the participation of both astrocytes and P2X7R in the RSC in EA analgesic. Moreover, P2X7R on astrocytes in the RSC appears to play a critical role in the ability of EA to attenuate formalin-induced pain responses in mice.
Collapse
Affiliation(s)
- Wei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Le Liu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Si-Si Lin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chang Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Wang JH, Wu C, Lian YN, Cao XW, Wang ZY, Dong JJ, Wu Q, Liu L, Sun L, Chen W, Chen WJ, Zhang Z, Zhuo M, Li XY. Single-cell RNA sequencing uncovers the cell type-dependent transcriptomic changes in the retrosplenial cortex after peripheral nerve injury. Cell Rep 2023; 42:113551. [PMID: 38048224 DOI: 10.1016/j.celrep.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is a vital area for storing remote memory and has recently been found to undergo broad changes after peripheral nerve injury. However, little is known about the role of RSC in pain regulation. Here, we examine the involvement of RSC in the pain of mice with nerve injury. Notably, reducing the activities of calcium-/calmodulin-dependent protein kinase type II-positive splenial neurons chemogenetically increases paw withdrawal threshold and extends thermal withdrawal latency in mice with nerve injury. The single-cell or single-nucleus RNA-sequencing results predict enhanced excitatory synaptic transmissions in RSC induced by nerve injury. Local infusion of 1-naphthyl acetyl spermine into RSC to decrease the excitatory synaptic transmissions relieves pain and induces conditioned place preference. Our data indicate that RSC is critical for regulating physiological and neuropathic pain. The cell type-dependent transcriptomic information would help understand the molecular basis of neuropathic pain.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cheng Wu
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Yan-Na Lian
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zi-Yue Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Jun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Wen-Juan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhi Zhang
- Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang-Yao Li
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK.
| |
Collapse
|
4
|
Trask S, Mogil JS, Helmstetter FJ, Stucky CL, Sadler KE. Contextual control of conditioned pain tolerance and endogenous analgesic systems. eLife 2022; 11:75283. [PMID: 35275062 PMCID: PMC8937231 DOI: 10.7554/elife.75283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying the transition from acute to chronic pain are unclear but may involve the persistence or strengthening of pain memories acquired in part through associative learning. Contextual cues, which comprise the environment in which events occur, were recently described as a critical regulator of pain memory; both male rodents and humans exhibit increased pain sensitivity in environments recently associated with a single painful experience. It is unknown, however, how repeated exposure to an acute painful unconditioned stimulus in a distinct context modifies pain sensitivity or the expectation of pain in that environment. To answer this question, we conditioned mice to associate distinct contexts with either repeated administration of a mild visceral pain stimulus (intraperitoneal injection of acetic acid) or vehicle injection over the course of 3 days. On the final day of experiments, animals received either an acid injection or vehicle injection prior to being placed into both contexts. In this way, contextual control of pain sensitivity and pain expectation could be tested respectively. When re-exposed to the noxious stimulus in a familiar environment, both male and female mice exhibited context-dependent conditioned analgesia, a phenomenon mediated by endogenous opioid signaling. However, when expecting the presentation of a painful stimulus in a given context, males exhibited conditioned hypersensitivity whereas females exhibited endogenous opioid-mediated conditioned analgesia. These results are evidence that pain perception and engagement of endogenous opioid systems can be modified through their psychological association with environmental cues. Successful determination of the brain circuits involved in this sexually dimorphic anticipatory response may allow for the manipulation of pain memories, which may contribute to the development of chronic pain states.
Collapse
Affiliation(s)
- Sydney Trask
- Department of Psychological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Jeffrey S Mogil
- Department of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill UniversityMontrealCanada
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-MilwaukeeMilwaukeeUnited States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
5
|
Brain networks and endogenous pain inhibition are modulated by age and sex in healthy rats. Pain 2021; 161:1371-1380. [PMID: 31977940 DOI: 10.1097/j.pain.0000000000001810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endogenous pain inhibition is less efficient in chronic pain patients. Diffuse noxious inhibitory control (DNIC), a form of endogenous pain inhibition, is compromised in women and older people, making them more vulnerable to chronic pain. However, the underlying mechanisms remain unclear. Here, we used a capsaicin-induced DNIC test and resting-state functional MRI to investigate the impact of aging and sex on endogenous pain inhibition and associated brain circuitries in healthy rats. We found that DNIC was less efficient in young females compared with young males. Diffuse noxious inhibitory control response was lost in old rats of both sexes, but the brain networks engaged during DNIC differed in a sex-dependent manner. Young males had the most efficient analgesia with the strongest connectivity between anterior cingulate cortex (ACC) and periaqueductal gray (PAG). The reduced efficiency of DNIC in young females seemed to be driven by widespread brain connectivity. Old males showed increased connectivity between PAG, raphe nuclei, pontine reticular nucleus, and hippocampus, which may not be dependent on connections to ACC, whereas old females showed increased connectivity between ACC, PAG, and more limbic regions. These findings suggest that distinct brain circuitries including the limbic system may contribute to higher susceptibility to pain modulatory deficits in the elderly population, and sex may be a risk factor for developing age-related chronic pain.
Collapse
|
6
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Abstract
Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions. In this article, we conducted a longitudinal and multimodal study to assess how chronic pain affects the brain. Using the spared nerve injury model which promotes both long-lasting mechanical and thermal allodynia/hyperalgesia but also pain-associated comorbidities, we showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 1 and 2 months after injury. We found that both functional metrics and connectivity of the part A of the retrosplenial granular cortex (RSgA) were significantly correlated with the development of neuropathic pain behaviours. In addition, we found that the functional RSgA connectivity to the subiculum and the prelimbic system are significantly increased in spared nerve injury animals and correlated with peripheral pain thresholds. These brain regions were previously linked to the development of comorbidities associated with neuropathic pain. Using a voxel-based morphometry approach, we showed that neuropathic pain induced a significant increase of the gray matter concentration within the RSgA, associated with a significant activation of both astrocytes and microglial cells. Together, functional and morphological imaging metrics of the RSgA could be used as a predictive biomarker of neuropathic pain.
Collapse
|
8
|
Nahman‐Averbuch H, Schneider VJ, Chamberlin LA, Kroon Van Diest AM, Peugh JL, Lee GR, Radhakrishnan R, Hershey AD, King CD, Coghill RC, Powers SW. Alterations in Brain Function After Cognitive Behavioral Therapy for Migraine in Children and Adolescents. Headache 2020; 60:1165-1182. [DOI: 10.1111/head.13814] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hadas Nahman‐Averbuch
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Victor J. Schneider
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Leigh Ann Chamberlin
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | | | - James L. Peugh
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| | - Gregory R. Lee
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
- Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Pediatric NeuroImaging Research Consortium Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences Indiana University School of Medicine Riley Hospital for Children at Indiana University Health Indianapolis IN USA
| | - Andrew D. Hershey
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
- Division of Neurology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Christopher D. King
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| | - Robert C. Coghill
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
- Pediatric NeuroImaging Research Consortium Cincinnati Children's Hospital Medical Center Cincinnati OH USA
| | - Scott W. Powers
- Division of Behavioral Medicine and Clinical Psychology Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Center for Understanding Pediatric Pain Cincinnati Children's Hospital Medical Center Cincinnati OH USA
- Department of Pediatrics University of Cincinnati College of Medicine Cincinnati OH USA
| |
Collapse
|
9
|
Yang X, Yu H, Zhang T, Luo X, Ding L, Chen B, Li D, Huang X, Guo X, Jia J. The effects of Jin's three-needle acupuncture therapy on EEG alpha rhythm of stroke patients. Top Stroke Rehabil 2019; 25:1-5. [PMID: 30599806 DOI: 10.1080/10749357.2018.1484680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/30/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND In China, Jin's three-needle acupuncture therapy has been widely used for stroke treatment. However, its mechanism remains unclear. The aim of this study was to investigate the effects of Jin's three-needle acupuncture therapy on stroke patients using multi-channel EEGs. MATERIALS AND METHODS Fifty stroke patients participated and their EEG signals were recorded before, during, and after acupuncture. RESULTS Comparing with baseline before acupuncture, the alpha rhythm was significantly increased during the acupuncture needle retention stage and became stronger after removing the needles. The increase of alpha rhythm occurred when inserting and removing the needles, with its high amplitude remaining during retention and after removal of the needles. As the alpha rhythm was significantly correlated with patients' movement and daily-living abilities, the alteration of alpha rhythm during and after acupuncture suggests a possible electrophysiological mechanism of the curative effect of acupuncture for stroke rehabilitation. CONCLUSION From the electrophysiological study, Jin's three-needle acupuncture therapy is efficient in stroke patients.
Collapse
Affiliation(s)
- Xuejie Yang
- a Department of Rehabilitation , Huashan Hospital, Fudan University , Shanghai , China
- b Acupuncture and Tui-Na Clinic Medical School , Guangxi University of Chinese Medicine , Nanning , China
- c Shenzhen Clinic Medical School , Guangzhou University of Chinese Medicine , Shenzhen , China
| | - Haibo Yu
- c Shenzhen Clinic Medical School , Guangzhou University of Chinese Medicine , Shenzhen , China
| | - Tao Zhang
- d Institute of Psychology , Chinese Academy of Sciences , Beijing , China
| | - Xiaozhou Luo
- c Shenzhen Clinic Medical School , Guangzhou University of Chinese Medicine , Shenzhen , China
| | - Li Ding
- a Department of Rehabilitation , Huashan Hospital, Fudan University , Shanghai , China
| | - Bing Chen
- e Institutes of Psychological Sciences , Hangzhou Normal University , Hangzhou , China
- f Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou , China
- g Center for Cognition and Brain Disorders , Hangzhou Normal University , Hangzhou , China
| | - Da Li
- e Institutes of Psychological Sciences , Hangzhou Normal University , Hangzhou , China
- f Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou , China
- g Center for Cognition and Brain Disorders , Hangzhou Normal University , Hangzhou , China
| | - Xingxian Huang
- c Shenzhen Clinic Medical School , Guangzhou University of Chinese Medicine , Shenzhen , China
| | - Xiaoli Guo
- a Department of Rehabilitation , Huashan Hospital, Fudan University , Shanghai , China
| | - Jie Jia
- a Department of Rehabilitation , Huashan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
10
|
Li J, Huang X, Sang K, Bodner M, Ma K, Dong XW. Modulation of prefrontal connectivity in postherpetic neuralgia patients with chronic pain: a resting-state functional magnetic resonance-imaging study. J Pain Res 2018; 11:2131-2144. [PMID: 30323648 PMCID: PMC6174681 DOI: 10.2147/jpr.s166571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Although the interaction between pain and cognition has been recognized for decades, the neural substrates underlying their association remain unclear. The prefrontal cortex (PFC) is known as a critical brain area for higher cognitive functions, as well as for pain perception and modulation. The objective of the present study was to explore the role of the PFC in the interaction between chronic pain and cognitive functions by examining the relationship between spontaneous activity in the frontal lobe and pain intensity reported by postherpetic neuralgia (PHN) patients. Methods Resting-state functional magnetic resonance imaging data from 16 PHN patients were collected, and regional homogeneity and related functional connectivity were analyzed. Results The results showed negative correlations between patients’ pain scores and regional homogeneity values in several prefrontal areas, including the left lateral PFC, left medial PFC, and right lateral orbitofrontal cortex (P<0.05, AlphaSim-corrected). Further analysis revealed that the functional connectivity of some of these prefrontal areas with other cortical regions was also modulated by pain intensity. Therefore, functional connections of the left lateral PFC with both the left parietal cortex and the left occipital cortex were correlated with patients’ pain ratings (P<0.05, AlphaSim-corrected). Similarly, functional connectivity between the right lateral orbitofrontal cortex and bilateral postcentral/precentral gyri was also correlated with pain intensity in the patients (P<0.05, AlphaSim-corrected). Conclusion Our findings indicate that activity in the PFC is modulated by chronic pain in PHN patients. The pain-related modulation of prefrontal activity may serve as the neural basis for interactions between chronic pain and cognitive functions, which may link to cognitive impairments observed in chronic pain patients.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Shanghai Changning ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,
| | - Xuehua Huang
- Department of Pain Management, Xin Hua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Kangning Sang
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Shanghai Changning ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China,
| | | | - Ke Ma
- Department of Pain Management, Xin Hua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | - Xiao-Wei Dong
- Key Laboratory of Brain Functional Genomics (MOE and STCSM), Shanghai Changning ECNU Mental Health Center, Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China, .,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China,
| |
Collapse
|
11
|
Grice-Jackson T, Critchley HD, Banissy MJ, Ward J. Consciously Feeling the Pain of Others Reflects Atypical Functional Connectivity between the Pain Matrix and Frontal-Parietal Regions. Front Hum Neurosci 2017; 11:507. [PMID: 29104537 PMCID: PMC5655021 DOI: 10.3389/fnhum.2017.00507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023] Open
Abstract
Around a quarter of the population report “mirror pain” experiences in which bodily sensations of pain are elicited in response to viewing another person in pain. We have shown that this population of responders further fractionates into two distinct subsets (Sensory/localized and Affective/General), which presents an important opportunity to investigate the neural underpinnings of individual differences in empathic responses. Our study uses fMRI to determine how regions involved in the perception of pain interact with regions implicated in empathic regulation in these two groups, relative to controls. When observing pain in others (minor injuries to the hands and feet), the two responder groups show activation in both the sensory/discriminative and affective/motivational components of the pain matrix. The control group only showed activation in the latter. The two responder groups showed clear differences in functional connectivity. Notably, Sensory/Localized responders manifest significant coupling between the right temporo-parietal junction (rTPJ) and bilateral anterior insula. We conclude that conscious experiences of vicarious pain is supported by specific patterns of functional connectivity between pain-related and regulatory regions, and not merely increased activity within the pain matrix itself.
Collapse
Affiliation(s)
- Thomas Grice-Jackson
- School of Psychology, University of Sussex, Falmer, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Falmer, United Kingdom
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, United Kingdom.,Brighton and Sussex Medical School, University of Sussex, Falmer, United Kingdom
| | - Michael J Banissy
- Department of Psychology, Goldsmith's College, University of London, London, United Kingdom
| | - Jamie Ward
- School of Psychology, University of Sussex, Falmer, United Kingdom.,Sackler Centre for Consciousness Science, University of Sussex, Falmer, United Kingdom
| |
Collapse
|
12
|
Unravelling cortico-hypothalamic pathways regulating unconditioned fear-induced antinociception and defensive behaviours. Neuropharmacology 2016; 113:367-385. [PMID: 27717879 DOI: 10.1016/j.neuropharm.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 12/30/2022]
Abstract
The medial prefrontal cortex can influence unconditioned fear-induced defensive mechanisms organised by diencephalic neurons that are under tonic GABAergic inhibition. The posterior hypothalamus (PH) is involved with anxiety- and panic attack-like responses. To understand this cortical mediation, our study characterised anterior cingulate cortex (ACC)-PH pathways and investigated the effect of ACC local inactivation with lidocaine. We also investigated the involvement of PH ionotropic glutamate receptors in the defensive behaviours and fear-induced antinociception by microinjecting NBQX (an AMPA/kainate receptor antagonist) and LY235959 (a NMDA receptor antagonist) into the PH. ACC pretreatment with lidocaine decreased the proaversive effect and antinociception evoked by GABAA receptor blockade in the PH, which suggests that there may be descending excitatory pathways from this cortical region to the PH. Microinjections of both NBQX and LY235959 into the PH also attenuated defensive and antinociceptive responses. This suggests that the blockade of AMPA/kainate and NMDA receptors reduces the activity of glutamatergic efferent pathways. Both inputs from the ACC to the PH and glutamatergic hypothalamic short links disinhibited by intra-hypothalamic GABAA receptors blockade are potentially implicated. Microinjection of a bidirectional neurotracer in the PH showed a Cg1-PH pathway and PH neuronal reciprocal connections with the periaqueductal grey matter. Microinjections of an antegrade neurotracer into the Cg1 showed axonal fibres and glutamatergic vesicle-immunoreactive terminal boutons surrounding both mediorostral-lateroposterior thalamic nucleus and PH neuronal perikarya. These data suggest a critical role played by ACC-PH glutamatergic pathways and AMPA/kainate and NMDA receptors in the panic attack-like reactions and antinociception organised by PH neurons.
Collapse
|
13
|
The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats. Eur J Pharmacol 2015; 758:147-52. [DOI: 10.1016/j.ejphar.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
|
14
|
Reis GM, Fais RS, Prado WA. The antinociceptive effect of stimulating the retrosplenial cortex in the rat tail-flick test but not in the formalin test involves the rostral anterior cingulate cortex. Pharmacol Biochem Behav 2015; 131:112-8. [DOI: 10.1016/j.pbb.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
15
|
Rossaneis A, Genaro K, Dias Q, Guethe L, Fais R, Del Bel E, Prado W. Descending mechanisms activated by the anterior pretectal nucleus initiate but do not maintain neuropathic pain in rats. Eur J Pain 2014; 19:1148-57. [DOI: 10.1002/ejp.638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 11/06/2022]
Affiliation(s)
- A.C. Rossaneis
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - K. Genaro
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - Q.M. Dias
- Oswaldo Cruz Foundation; Fiocruz Rondônia; Brazil
| | - L.M. Guethe
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - R.S. Fais
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - E.A. Del Bel
- Department of Morphology, Estomatology and Physiology; Faculty of Odontology of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - W.A. Prado
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
16
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
17
|
Brito RG, Santos PL, Prado DS, Santana MT, Araújo AAS, Bonjardim LR, Santos MRV, de Lucca Júnior W, Oliveira AP, Quintans-Júnior LJ. Citronellol reduces orofacial nociceptive behaviour in mice - evidence of involvement of retrosplenial cortex and periaqueductal grey areas. Basic Clin Pharmacol Toxicol 2012; 112:215-21. [PMID: 23035741 DOI: 10.1111/bcpt.12018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/16/2012] [Indexed: 12/15/2022]
Abstract
Citronellol (CT) is a monoterpenoid alcohol present in the essential oil of many medicinal plants, such as Cymbopogon citratus. We evaluated the antinociceptive effects of CT on orofacial nociception in mice and investigated the central pathway involved in the effect. Male Swiss mice were pretreated with CT (25, 50 and 100 mg/kg, i.p.), morphine (5 mg/kg, i.p.) or vehicle (saline + tween 80 0.2%). Thirty minutes after the treatment, we injected formalin (20 μl, 2%), capsaicin (20 μl, 2.5 μg) or glutamate (40 μl, 25 μM) into the right limb. For the action in the CNS, ninety minutes after the treatment, the animals were perfused, the brains collected, crioprotected, cut in a criostate and submitted in an immunofluorescence protocol for Fos protein. CT produced significant (p < 0.01) antinociceptive effect, in all doses, in the formalin, capsaicin and glutamate tests. The immunofluorescence showed that the CT activated significantly (p < 0.05) the olfactory bulb, the piriform cortex, the retrosplenial cortex and the periaqueductal grey of the CNS. Together, our results provide first-time evidence that this monoterpene attenuates orofacial pain at least, in part, through an activation of CNS areas, mainly retrosplenial cortex and periaqueductal grey.
Collapse
Affiliation(s)
- Renan G Brito
- Department of Physiology, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Reis GM, Rossaneis AC, Silveira JWS, Prado WA. μ1- and 5-HT1-dependent mechanisms in the anterior pretectal nucleus mediate the antinociceptive effects of retrosplenial cortex stimulation in rats. Life Sci 2012; 90:950-5. [PMID: 22575824 DOI: 10.1016/j.lfs.2012.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/03/2012] [Accepted: 04/20/2012] [Indexed: 11/26/2022]
Abstract
AIM This study examines if injection of cobalt chloride (CoCl(2)) or antagonists of muscarinic cholinergic (atropine), μ(1)-opioid (naloxonazine) or 5-HT(1) serotonergic (methiothepin) receptors into the dorsal or ventral portions of the anterior pretectal nucleus (APtN) alters the antinociceptive effects of stimulating the retrosplenial cortex (RSC) in rats. MAIN METHOD Changes in the nociceptive threshold were evaluated using the tail flick or incision pain tests in rats that were electrically stimulated at the RSC after the injection of saline, CoCl(2) (1 mM, 0.10 μL) or antagonists into the dorsal or ventral APtN. KEY FINDINGS The injection of CoCl(2), naloxonazine (5 μg/0.10 μL) or methiothepin (3 μg/0.10 μL) into the dorsal APtN reduced the stimulation-produced antinociception from the RSC in the rat tail flick test. Reduction of incision pain was observed following stimulation of the RSC after the injection of the same substances into the ventral APtN. The injection of atropine (10 ng/0.10 μL) or ketanserine (5 μg/0.10 μL) into the dorsal or ventral APtN was ineffective against the antinociception resulting from RSC stimulation. SIGNIFICANCE μ(1)-opioid- and 5-HT(1)-expressing neurons and cell processes in dorsal and ventral APtN are both implicated in the mediation of stimulation-produced antinociception from the RSC in the rat tail flick and incision pain tests, respectively.
Collapse
Affiliation(s)
- Gláucia M Reis
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, Brazil
| | | | | | | |
Collapse
|