1
|
Shirenova SD, Khlebnikova NN, Krupina NA. Changes in Sociability and Preference for Social Novelty in Female Rats in Prolonged Social Isolation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023; 53:103-118. [PMID: 36969361 PMCID: PMC10006548 DOI: 10.1007/s11055-023-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/26/2022] [Indexed: 03/25/2023]
Abstract
Chronic stress due to social isolation (SI) can lead to distress with negative consequences for both humans and animals. Numerous disorders caused by SI include disorders in the emotional-motivational domain and cognitive functions, as well as changes in social behavior. There are currently no data identifying the sequelae of SI when its duration is significantly increased. Although female rats have been shown to be highly sensitive to stress, research on them is lacking. The present study assessed sociability and preference for "social novelty" in a three-chamber social test in female Wistar rats in two series of experiments at different time points during prolonged SI, which began at adolescence and continued to ages 5.5 and 9.5 months. At two months of SI, rats showed an increased preference for a social object over a non-social object (increased sociability) simultaneously with the appearance of signs of a decrease in the preference for a new social object over an already familiar social object (signs of a decrease in the preference for social novelty). In a social interaction test, the rats also displayed increases in the durations of social contacts, including aggressive interactions; they showed a decrease in exploratory risk assessments (head dips from the open arms) in the elevated plus maze test and a decrease in exploratory activity. After SI lasting 8.5 months, the rats showed signs of social deficit and a marked decrease in the preference for social novelty. No signs of increased aggressiveness were found. Thus, the impact of SI on social behavior depended on its duration and, we believe, was accompanied by a change in coping strategies.
Collapse
Affiliation(s)
- S. D. Shirenova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N. N. Khlebnikova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N. A. Krupina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
2
|
Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 168:311-347. [PMID: 36868632 PMCID: PMC10392610 DOI: 10.1016/bs.irn.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Striking sex differences exist in presentation and incidence of several psychiatric disorders. For example, major depressive disorder is more prevalent in women than men, and women who develop alcohol use disorder progress through drinking milestones more rapidly than men. With regards to psychiatric treatment responses, women respond more favorably to selective serotonin reuptake inhibitors than men, whereas men have better outcomes when prescribed tricyclic antidepressants. Despite such well-documented biases in incidence, presentation, and treatment response, sex as a biological variable has long been neglected in preclinical and clinical research. An emerging family of druggable targets for psychiatric diseases, metabotropic glutamate (mGlu) receptors are G-protein coupled receptors broadly distributed throughout the central nervous system. mGlu receptors confer diverse neuromodulatory actions of glutamate at the levels of synaptic plasticity, neuronal excitability, and gene transcription. In this chapter, we summarize the current preclinical and clinical evidence for sex differences in mGlu receptor function. We first highlight basal sex differences in mGlu receptor expression and function and proceed to describe how gonadal hormones, notably estradiol, regulate mGlu receptor signaling. We then describe sex-specific mechanisms by which mGlu receptors differentially modulate synaptic plasticity and behavior in basal states and models relevant for disease. Finally, we discuss human research findings and highlight areas in need of further research. Taken together, this review emphasizes how mGlu receptor function and expression can differ across sex. Gaining a more complete understanding of how sex differences in mGlu receptor function contribute to psychiatric diseases will be critical in the development of novel therapeutics that are effective in all individuals.
Collapse
Affiliation(s)
- Carly B Fabian
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L Seney
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - Max E Joffe
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
3
|
Rodríguez-Landa JF. Considerations of Timing Post-ovariectomy in Mice and Rats in Studying Anxiety- and Depression-Like Behaviors Associated With Surgical Menopause in Women. Front Behav Neurosci 2022; 16:829274. [PMID: 35309685 PMCID: PMC8931748 DOI: 10.3389/fnbeh.2022.829274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
|
4
|
Price ME, McCool BA. Structural, functional, and behavioral significance of sex and gonadal hormones in the basolateral amygdala: A review of preclinical literature. Alcohol 2022; 98:25-41. [PMID: 34371120 DOI: 10.1016/j.alcohol.2021.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
The basolateral amygdala (BLA) is intimately involved in the development of neuropsychiatric disorders such as anxiety and alcohol use disorder (AUD). These disorders have clear sex biases, with women more likely to develop an anxiety disorder and men more likely to develop AUD. Preclinical models have largely confirmed these sex-specific vulnerabilities and emphasize the effects of sex hormones on behaviors influenced by the BLA. This review will discuss sex differences in BLA-related behaviors and highlight potential mechanisms mediated by altered BLA structure and function, including the composition of GABAergic interneuron subpopulations, glutamatergic pyramidal neuron morphology, glutamate/GABA neurotransmission, and neuromodulators. Further, sex hormones differentially organize dimorphic circuits during sensitive developmental periods (organizational effects) and initiate more transient effects throughout adulthood (activational effects). Current literature indicates that estradiol and allopregnanolone, a neuroactive progestogen, generally reduce BLA-related behaviors through a variety of mechanisms, including activation of estrogen receptors or facilitation of GABAA-mediated inhibition, respectively. This enhanced GABAergic inhibition may protect BLA pyramidal neurons from the excitability associated with anxiety and alcohol withdrawal. Understanding sex differences and the effects of sex hormones on BLA structure and function may help explain sex-specific vulnerabilities in BLA-related behaviors and ultimately improve treatments for anxiety and AUD.
Collapse
|
5
|
Miller CK, Krentzel AA, Patisaul HB, Meitzen J. Metabotropic glutamate receptor subtype 5 (mGlu 5) is necessary for estradiol mitigation of light-induced anxiety behavior in female rats. Physiol Behav 2019; 214:112770. [PMID: 31830486 DOI: 10.1016/j.physbeh.2019.112770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Anxiety-related behaviors are influenced by steroid hormones such as 17β-estradiol and environmental stimuli such as acute stressors. For example, rats exhibit increased anxiety-related behaviors in the presence, but not the absence, of light. In females, estradiol potentially mitigates these effects. Experiments across behavioral paradigms and brain regions indicate that estradiol action can be mediated via activation of metabotropic glutamate receptors, including Group I subtype five (mGlu5). mGlu5 has been implicated in mediating estradiol's effects upon psychostimulant-induced behaviors, dopamine release and neuron phenotype in striatal regions. Whether estradiol activation of mGlu5 modulates anxiety or locomotor behavior in the absence of psychostimulants is unknown. Here we test if mGlu5 is necessary for estradiol mitigation of light-induced acute anxiety and locomotor behaviors. Ovariectomized adult female rats were pre-treated with either the mGlu5 antagonist MPEP or saline before estradiol or oil treatment. Anxiety and locomotor behaviors were assessed in the presence or absence of white light to induce high and low acute anxiety behavior phenotypes, respectively. In the presence of white light, estradiol treatment mitigated light-induced anxiety-related behaviors but not overall locomotor activity. MPEP treatment blocked estradiol effects upon light-induced anxiety-related behaviors but did not affect overall locomotor activity. In the absence of white light, estradiol or MPEP treatment did not influence anxiety-related behaviors or locomotor activity, consistent with a low anxiety phenotype. These novel findings indicate that mGlu5 activation is necessary for estradiol mitigation of anxiety-related behaviors induced by an acute stressor.
Collapse
Affiliation(s)
- Christiana K Miller
- Graduate Program in Biology, North Carolina State University, Raleigh, NC, USA; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.
| | - Amanda A Krentzel
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Heather B Patisaul
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Puga-Olguín A, Rodríguez-Landa JF, Rovirosa-Hernández MDJ, Germán-Ponciano LJ, Caba M, Meza E, Guillén-Ruiz G, Olmos-Vázquez OJ. Long-term ovariectomy increases anxiety- and despair-like behaviors associated with lower Fos immunoreactivity in the lateral septal nucleus in rats. Behav Brain Res 2019; 360:185-195. [DOI: 10.1016/j.bbr.2018.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/24/2018] [Accepted: 12/06/2018] [Indexed: 01/01/2023]
|
7
|
De Jesús-Burgos MI, González-García S, Cruz-Santa Y, Pérez-Acevedo NL. Amygdalar activation of group I metabotropic glutamate receptors produces anti- and pro-conflict effects depending upon animal sex in a sexually dimorphic conditioned conflict-based anxiety model. Behav Brain Res 2016; 302:200-12. [PMID: 26777900 PMCID: PMC4839301 DOI: 10.1016/j.bbr.2016.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022]
Abstract
Women are more susceptible than men to develop anxiety disorders, however, the mechanisms involved are still unclear. In this study, we investigated the role of group I metabotropic glutamate receptors (mGluRs), a target for anxiety disorders, and whether estradiol may modulate conflict-based anxiety in female rats by using the Vogel Conflict Test (VCT). We used ovariectomized female rats with high (OVX+EB) and low (OVX) estradiol levels and intact male rats to evaluate sex differences. Infusion of (S)-3,5-Dihydroxyphenylglycine (DHPG), a group I mGluR agonist, into the basolateral amygdala, a region involved in anxiety-responses, statistically increased the number of shocks in OVX, but not OVX+EB female rats at 0.1, nor at 1.0 μM. In contrast, DHPG statistically decreased the number of shocks in male rats at 1.0 μM only. DHPG (0.1 μM) increased the number of recoveries in OVX, but not OVX+EB or male rats. Sex differences were detected for the number of shocks, recoveries and punished licks, where female rats displayed more conflict than male rats. Western blot analyses showed that protein expression of mGluR1, but not mGluR5 was higher in OVX+EB>OVX>male rats in the amygdala, whereas no significant differences were detected in the hippocampus, olfactory bulb and/or the periaqueductal gray. Therefore, DHPG produced paradoxical effects that are sex dependent; producing anxiolytic-like effects in female rats, while anxiogenic-like effects in male rats according to the VCT. These results highlight the importance of including female experimental models to underpin the neural circuitry of anxiety according to sex and for the screening of novel anxiolytic compounds.
Collapse
Affiliation(s)
- María I De Jesús-Burgos
- Department of Biology, University of Puerto Rico, Cayey Campus, PO Box 372230, Cayey, PR 00737-2230, USA
| | | | - Yanira Cruz-Santa
- Department of Social Sciences, University of Puerto Rico, Cayey Campus, PO Box 372230, Cayey, PR 00737-2230, USA
| | - Nivia L Pérez-Acevedo
- Department of Anatomy and Neurobiology, School of Medicine, UPR-MSC, PO Box 365067, San Juan, PR 00936-5067, USA.
| |
Collapse
|