1
|
Singh M, Dolan CV, Lapato DM, Hottenga JJ, Pool R, Verhulst B, Boomsma DI, Breeze CE, de Geus EJC, Hemani G, Min JL, Peterson RE, Maes HHM, van Dongen J, Neale MC. Unidirectional and Bidirectional Causation between Smoking and Blood DNA Methylation: Evidence from Twin-based Mendelian Randomisation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.19.24309184. [PMID: 38946972 PMCID: PMC11213072 DOI: 10.1101/2024.06.19.24309184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects. Here, we apply an integrated approach combining MR with twin causal models to examine causality between smoking and blood DNAm in the Netherlands Twin Register (N=2577). Analyses revealed potential causal effects of current smoking on DNAm at >500 sites in/near genes enriched for functional pathways relevant to known biological effects of smoking (e.g., hemopoiesis, cell- and neuro-development, and immune regulation). Notably, we also found evidence of reverse and bidirectional causation at several DNAm sites, suggesting that variation in DNAm at these sites may influence smoking liability. Seventeen of the loci with putative effects of DNAm on smoking showed highly specific enrichment for gene-regulatory functional elements in the brain, while the top three sites annotated to genes involved in G protein-coupled receptor signalling and innate immune response. These novel findings are partly attributable to the analyses of current smoking in twin models, rather than lifetime smoking typically examined in MR studies, as well as the increased statistical power achieved using multiallelic/polygenic scores as instrumental variables while controlling for potential horizontal pleiotropy. This study highlights the value of twin studies with genotypic and DNAm data for investigating causal relationships of DNAm with health and disease.
Collapse
|
2
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Liu W, Wang Z, Wang W, Wang Z, Xing Y, Hölscher C. Liraglutide Reduces Alcohol Consumption, Anxiety, Memory Impairment, and Synapse Loss in Alcohol Dependent Mice. Neurochem Res 2024; 49:1061-1075. [PMID: 38267691 DOI: 10.1007/s11064-023-04093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) analogues have been commercialized for the management of type 2 diabetes. Recent studies have underscored GLP-1's role as a modulator of alcohol-related behavior. However, the role of the GLP-1 analogue liraglutide on alcohol-withdrawal responses have not been fully elucidated. Liraglutide binds to the G-protein-coupled receptor and activates an adenylyl cyclase and the associated classic growth factor signaling pathway, which acts growth factor-like and neuroprotective properties. The underlying neurobiological mechanisms of liraglutide on alcohol withdrawal remains unknown. This study endeavored to explore the effects of liraglutide on the emotion and memory ability of alcohol-withdrawal mice, and synaptic morphology in the medial prefrontal cortex (mPFC) and the hippocampus (HP), and thus affects the relapse-like drinking of alcohol-withdrawal mice. The alcohol-withdrawal group was reintroduced to a 20% v/v alcohol and water through the two-bottle choice for four consecutive days, a period referred to as alcohol re-drinking. Male C57BL/6J mice were exposed to a regimen of 20% alcohol and water for a duration of 6 weeks. This regimen established the two-bottle choice model of alcohol exposure. Learning capabilities, memory proficiency, and anxiety-like behavior were evaluated using the Morris water maze, open field, and elevated plus maze paradigms. Furthermore, synaptic morphology and the levels of synaptic transport-related proteins were assessed via Golgi staining and Western Blot analysis after a two-week alcohol deprivation period. Alcohol re-drinking of alcohol-withdrawal mice was also evaluated using a two-bottle choice paradigm. Our findings indicate that liraglutide can substantially decrease alcohol consumption and preference (p < 0.05) in the alcohol group and enhance learning and memory performance (p < 0.01), as well as alleviate anxiety-like behavior (p < 0.01) of alcohol-withdrawal mice. Alcohol consumption led to a reduction in dendritic spine density in the mPFC and HP, which was restored to normal levels by liraglutide (p < 0.001). Furthermore, liraglutide was found to augment the levels of synaptic transport-related proteins in mice subjected to alcohol withdrawal (p < 0.01). The study findings corroborate that liraglutide has the potential to mitigate alcohol consumption and ameliorate the memory impairments and anxiety induced by alcohol withdrawal. The therapeutic efficacy of liraglutide might be attributed to its role in counteracting synapse loss in the mPFC and HP regions and thus prevented relapse-like drinking in alcohol-withdrawal mice.
Collapse
Affiliation(s)
- Weizhen Liu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ziliang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wang Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhiju Wang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ying Xing
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Christian Hölscher
- Henan Academy of Innovation in Medical Science, XinZheng, 451100, Henan, China.
| |
Collapse
|
4
|
The Effects of Transcranial Focused Ultrasound Stimulation of Nucleus Accumbens on Neuronal Gene Expression and Brain Tissue in High Alcohol-Preferring Rats. Mol Neurobiol 2023; 60:1099-1116. [PMID: 36417101 DOI: 10.1007/s12035-022-03130-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
We investigated the effect of low-intensity focused ultrasound (LIFU) on gene expression related to alcohol dependence and histological effects on brain tissue. We also aimed at determining the miRNA-mRNA relationship and their pathways in alcohol dependence-induced expression changes after focused ultrasound therapy. We designed a case-control study for 100 days of observation to investigate differences in gene expression in the short-term stimulation group (STS) and long-term stimulation group (LTS) compared with the control sham group (SG). The study was performed in our Experimental Research Laboratory. 24 male high alcohol-preferring rats 63 to 79 days old, weighing 270 to 300 g, were included in the experiment. LTS received 50-day LIFU and STS received 10-day LIFU and 40-day sham stimulation, while the SG received 50-day sham stimulation. In miRNA expression analysis, it was found that LIFU caused gene expression differences in NAc. Significant differences were found between the groups for gene expression. Compared to the SG, the expression of 454 genes in the NAc region was changed in the STS while the expression of 382 genes was changed in the LTS. In the LTS, the expression of 32 genes was changed in total compared to STS. Our data suggest that LIFU targeted on NAc may assist in the treatment of alcohol dependence, especially in the long term possibly through altering gene expression. Our immunohistochemical studies verified that LIFU does not cause any tissue damage. These findings may lead to new studies in investigating the efficacy of LIFU for the treatment of alcohol dependence and also for other psychiatric disorders.
Collapse
|
5
|
Kobrzycka AT, Stankiewicz AM, Goscik J, Gora M, Burzynska B, Iwanicka-Nowicka R, Pierzchala-Koziec K, Wieczorek M. Hypothalamic Neurochemical Changes in Long-Term Recovered Bilateral Subdiaphragmatic Vagotomized Rats. Front Behav Neurosci 2022; 16:869526. [PMID: 35874650 PMCID: PMC9304976 DOI: 10.3389/fnbeh.2022.869526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Vagus nerve is one of the crucial routes in communication between the immune and central nervous systems. The impaired vagal nerve function may intensify peripheral inflammatory processes. This effect subsides along with prolonged recovery after permanent nerve injury. One of the results of such compensation is a normalized plasma concentration of stress hormone corticosterone – a marker of hypothalamic-pituitary-adrenal (HPA) axis activity. In this work, we strive to explain this corticosterone normalization by studying the mechanisms responsible for compensation-related neurochemical alterations in the hypothalamus. Materials and Methods Using microarrays and high performance liquid chromatography (HPLC), we measured genome-wide gene expression and major amino acid neurotransmitters content in the hypothalamus of bilaterally vagotomized rats, 1 month after surgery. Results Our results show that, in the long term, vagotomy affects hypothalamic amino acids concentration but not mRNA expression of tested genes. Discussion We propose an alternative pathway of immune to CNS communication after vagotomy, leading to activation of the HPA axis, by influencing central amino acids and subsequent monoaminergic neurotransmission.
Collapse
Affiliation(s)
- Anna Teresa Kobrzycka
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Łodz, Łodz, Poland
- *Correspondence: Anna Teresa Kobrzycka,
| | - Adrian Mateusz Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Software Department, Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Monika Gora
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Burzynska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Marek Wieczorek
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Łodz, Łodz, Poland
- Marek Wieczorek,
| |
Collapse
|
6
|
Kil HK, Kim KW, Lee DH, Lee SM, Lee CH, Kim SY. Changes in the Gene Expression Profiles of the Inferior Colliculus Following Unilateral Cochlear Ablation in Adult Rats. Biochem Genet 2021; 59:731-750. [PMID: 33515340 DOI: 10.1007/s10528-021-10034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to explore gene expression changes in the inferior colliculus (IC) after single-sided deafness (SSD). Forty 8-week-old female Sprague-Dawley rats were used. Twenty rats underwent right-side cochlear ablation, and IC tissues were harvested after 2 weeks (SSD 2-week group). Twenty rats underwent a sham operation and were sacrificed after 2 weeks (control group). Both sides of the IC were analyzed using a gene expression array. Pathway analyses were performed on genes that were differentially expressed compared with their levels in the control group. The expression levels of genes involved in the candidate pathways were confirmed using reverse transcription polymerase chain reaction (RT-PCR). Among the genes with ≥ 1.5-fold changes in expression levels and P < 0.05, there were 7 and 9 genes with increased and decreased expression, respectively, in the ipsilateral IC and 10 and 12 genes with increased and decreased expression, respectively, in the contralateral IC. The pathway analysis did not identify significantly related pathway. In the bilateral analysis, a total of 14 genes were ≥ 1.3-fold downregulated in both the ipsilateral and contralateral IC in the SSD 2-week group compared with their expression in the control group. Pathway analyses of these 14 genes included 7 genes, namely, amine compound solute carrier (Slc)5a7; Slc18a3; Slc6a5; synaptic vesicle glycoprotein 2C (Sv2c); S100 calcium binding protein A10 (S100a10); a gene with sequence similarity to family 111, member A (Fam111a); and peripherin (Prph), that were related to the acetylcholine neurotransmitter release cycle, SLC transporters, and the neurotransmitter release cycle pathways. RT-PCR showed reduced expression of Slc5a7, Sv2c, and Prph in the contralateral IC and Slc18a3 and Slc6a5 in the ipsilateral IC of the SSD 2-week group compared with that in the control group.
Collapse
Affiliation(s)
- Hog Kwon Kil
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - Chang Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea.
| |
Collapse
|
7
|
Ho C, Lin CY. Genes Associated with Calcium Signaling are Involved in Alcohol-Induced Breast Cancer Growth. Alcohol Clin Exp Res 2020; 45:79-91. [PMID: 33222221 DOI: 10.1111/acer.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol consumption is a risk factor for breast cancer, contributing to up to nearly 23,000 new cases each year. Mechanistic studies show that alcohol increases tumor aggressiveness and metastatic potential, promotes angiogenesis, induces chronic inflammation, and dysregulates RNA polymerase III-related genes. Alcohol has also been shown to affect estrogen signaling in breast cancer, including in our study of the transcriptomic effects of alcohol in breast cancer cells. METHODS To elucidate mechanisms of action of alcohol in breast cancer, we carried out secondary analyses of our alcohol-responsive transcriptome data using gene ontology and pathway databases and analysis tools and cistromic data analysis of candidate transcription factors which may mediate the transcriptomic alterations. Predicted alcohol-responsive pathways and mechanisms were perturbed and examined experimentally in breast cancer cells. The clinical relevance of identified genes was determined by expression profiles in patient samples and correlation with disease outcomes and alcohol consumption in previously published study cohorts. RESULTS Gene ontology analysis showed that alcohol alters the expression of many metabolism-related genes, and cistromic data of differentially expressed genes revealed the potential involvement of nuclear factor of activated T cells 3 (NFATC3) in mediating the transcriptomic effects of alcohol. Pathway analysis also predicted regulation of calcium signaling by alcohol in breast cancer cells. Chemical perturbation of this pathway reversed the effect of alcohol on breast cancer cell growth and reduced the elevated cytosolic Ca2+ levels induced by alcohol. Expression levels of alcohol-responsive genes in tumor samples from breast cancer patients are associated with poor disease outcomes. Moreover, expression of some of these genes was altered in breast cancer patients who consumed alcohol previously as compared to those who did not drink. CONCLUSION Alcohol alters expression of genes that regulate intracellular calcium levels and downstream signaling pathways which drive breast cancer cell proliferation and disease progression.
Collapse
Affiliation(s)
- Charles Ho
- From the, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Science & Engineering Research Center, Houston, Texas, USA
| | - Chin-Yo Lin
- From the, Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Science & Engineering Research Center, Houston, Texas, USA
| |
Collapse
|
8
|
Mierzejewski P, Zakrzewska A, Kuczyńska J, Wyszogrodzka E, Dominiak M. Intergenerational implications of alcohol intake: metabolic disorders in alcohol-naïve rat offspring. PeerJ 2020; 8:e9886. [PMID: 32974100 PMCID: PMC7489241 DOI: 10.7717/peerj.9886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol drinking may be associated with an increased risk of various metabolic diseases. Rat lines selectively bred for alcohol preference and alcohol avoidance constitute an interesting model to study inherited factors related to alcohol drinking and metabolic disorders. The aim of the present study was to compare the levels of selected laboratory biomarkers of metabolic disorders in blood samples from naïve offspring of Warsaw alcohol high-preferring (WHP), Warsaw alcohol low-preferring (WLP), and wild Wistar rats. Blood samples were collected from 3-month old (300–350 g) alcohol-naïve, male offspring of WHP (n = 8) and WLP rats (n = 8), as well as alcohol-naïve, male, wild Wistar rats. Markers of metabolic, hepatic, and pancreatic disorders were analysed (levels of homocysteine, glucose, total cholesterol, triglycerides and γ-glutamyl transferase (GGT), aspartate (AST), alanine aminotransferase (ALT), and amylase serum activities). Alcohol-naïve offspring of WHP, WLP, and wild Wistar rats differed significantly in the levels of triglycerides, total cholesterol, homocysteine, as well as in the activity of GGT, ALT, AST, and amylase enzymes. Most markers in the alcohol-naïve offspring of WHP rats were altered even thought they were never exposed to alcohol pre- or postnatally. This may suggest that parental alcohol abuse can have a detrimental influence on offspring vulnerability to metabolic disorders.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Alicja Zakrzewska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Julita Kuczyńska
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Edyta Wyszogrodzka
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
9
|
Godino A, Renard GM. Effects of alcohol and psychostimulants on the vasopressin system: behavioral implications. J Neuroendocrinol 2018; 30:e12611. [PMID: 29802803 DOI: 10.1111/jne.12611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
Drug addiction is a chronic brain disease characterized by a compulsion to seek drugs, a loss of control with respect to drug consumption, and negative emotional states, including increased anxiety and irritability during withdrawal. Central vasopressin (AVP) and its receptors are involved in controlling social behavior, anxiety and reward, all of which are altered by drugs of abuse. Hypothalamic AVP neurons influence the stress response by modulating the hypothalamic-pituitary-adrenal (HPA) axis. The extrahypothalamic AVP system, however, is commonly associated with social recognition, motivational and anxiety responses. The specific relationship between AVP and drugs of abuse has been rarely reviewed. Here, we provide an overview of the interaction between the brain AVP system and psychostimulants and alcohol. We focus on the effects of alcohol and psychostimulants on AVP regulation of the HPA axis, their effect on the brain AVP system and their behavioral implications, the influence of the AVP system on addictive behaviors, AVP's organizational effects on the brain and consequently on behavior, and we highlight clinical studies on the relation between the AVP system and drug addiction. Finally, we discuss the data to address areas that need further research to support clinical trials and prevent drug-related disorders. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Casilla de Correo 389-5000, Facultad de Psicología, Universidad Nacional de CórdobaCórdoba, Argentina
| | - Georgina M Renard
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
10
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
de Paiva Lima C, da Silva E Silva DA, Damasceno S, Ribeiro AF, Rocha CS, Berenguer de Matos AH, Correia D, Boerngen-Lacerda R, Brunialti Godard AL. Loss of control over the ethanol consumption: differential transcriptional regulation in prefrontal cortex. J Neurogenet 2017; 31:170-177. [PMID: 28714806 DOI: 10.1080/01677063.2017.1349121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alcohol use disorder (AUD) is a complex multifactorial disease with heritability of ∼50% and corresponds to the state in which the body triggers a reinforcement or reward compulsive behavior due to ethanol consumption, even when faced with negative consequences. Although several studies have shown the impact of high ethanol intake on the prefrontal cortex (PFC) gene expression, few have addressed the relationship between the patterns of gene expression underlying the compulsive behaviour associated with relapsing. In this study, we used a chronic three-bottle free-choice mouse model to investigate the PFC transcriptome in three different groups of mice drinkers: 'Light drinkers' (preference for water throughout the experiment); 'Heavy drinkers' (preference for ethanol with a non-compulsive intake), and 'Inflexible drinkers' (preference for ethanol with a compulsive drinking component). Our aim was to correlate the intake patterns observed in this model with gene expression changes in the PFC, a brain region critical for the development and maintenance of alcohol addiction. We found that the Camk2a gene showed a downregulated profile only in the Inflexible when compared to the Light drinkers group, the Camk2n1 and Pkp2 genes showed an upregulated profile only in the Inflexible drinkers when compared to the Control group, and the Gja1 gene showed an upregulated profile in the Light and Inflexible drinkers when compared to the Control group. These different transcription patterns have been associated to the presence of alcohol, in the Camk2n1 and Gja1 genes; to the amount of ethanol consumed, in the Camk2a gene; and to the loss of control in the alcohol consumption, in the Pkp2 gene. Here, we provide, for the first time, the potential involvement of the Pkp2 gene in the compulsivity and loss of control over the voluntary ethanol consumption.
Collapse
Affiliation(s)
- Carolina de Paiva Lima
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Daniel Almeida da Silva E Silva
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Samara Damasceno
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Andrea Frozino Ribeiro
- b Programa de Pós-Graduação em Neurociências, Faculdade de Filosofia de Ciências Humanas , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| | - Cristiane S Rocha
- c Departamento de Genética Médica, Faculdade de Ciências Medicas , Universidade de Campinas, Cidade Universitária Zeferino Vaz , Campinas , SP , Brazil
| | - Alexandre H Berenguer de Matos
- c Departamento de Genética Médica, Faculdade de Ciências Medicas , Universidade de Campinas, Cidade Universitária Zeferino Vaz , Campinas , SP , Brazil
| | - Diego Correia
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil.,d Departamento de Farmacologia, Jardim das Américas , Universidade Federal do Paraná , Curitiba , PR , Brazil
| | - Roseli Boerngen-Lacerda
- d Departamento de Farmacologia, Jardim das Américas , Universidade Federal do Paraná , Curitiba , PR , Brazil
| | - Ana Lúcia Brunialti Godard
- a Programa de Pós-Graduação em Genética, Departamento de Biologia Geral , Universidade Federal de Minas Gerais , Belo Horizonte , MG , Brazil
| |
Collapse
|
12
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|