1
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2024. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
2
|
Wood DJ, Huebschman JL, Martinez D, Tsvetkov E, Snyder K, Tjhia R, Kumar J, Hughes BW, Taniguchi M, Smith LN, Cowan CW, Penrod RD. The activity-regulated cytoskeleton-associated protein (Arc) functions in a cell type- and sex-specific manner in the adult nucleus accumbens to regulate non-contingent cocaine behaviors. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12910. [PMID: 39164860 PMCID: PMC11335578 DOI: 10.1111/gbb.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/28/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024]
Abstract
Repeated cocaine use produces adaptations in brain function that contribute to long-lasting behaviors associated with cocaine use disorder (CUD). In rodents, the activity-regulated cytoskeleton-associated protein (Arc) can regulate glutamatergic synaptic transmission, and cocaine regulates Arc expression and subcellular localization in multiple brain regions, including the nucleus accumbens (NAc)-a brain region linked to CUD-related behavior. We show here that repeated, non-contingent cocaine administration in global Arc KO male mice produced a dramatic hypersensitization of cocaine locomotor responses and drug experience-dependent sensitization of conditioned place preference (CPP). In contrast to the global Arc KO mice, viral-mediated reduction of Arc in the adult male, but not female, NAc (shArcNAc) reduced both CPP and cocaine-induced locomotor activity, but without altering basal miniature or evoked glutamatergic synaptic transmission. Interestingly, cell type-specific knockdown of Arc in D1 dopamine receptor-expressing NAc neurons reduced cocaine-induced locomotor sensitization, but not cocaine CPP; whereas, Arc knockdown in D2 dopamine receptor-expressing NAc neurons reduced cocaine CPP, but not cocaine-induced locomotion. Taken together, our findings reveal that global, developmental loss of Arc produces hypersensitized cocaine responses; however, these effects cannot be explained by Arc's function in the adult mouse NAc since Arc is required in a cell type- and sex-specific manner to support cocaine-context associations and locomotor responses.
Collapse
Affiliation(s)
- Daniel J Wood
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jessica L Huebschman
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dalia Martinez
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Evgeny Tsvetkov
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kirsten Snyder
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond Tjhia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Jaswinder Kumar
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brandon W Hughes
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Laura N Smith
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| |
Collapse
|
3
|
Salery M, Godino A, Xu YQ, Fullard JF, Durand-de Cuttoli R, LaBanca AR, Holt LM, Russo SJ, Roussos P, Nestler EJ. Transcriptional correlates of cocaine-associated learning in striatal ARC ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571585. [PMID: 38168167 PMCID: PMC10760161 DOI: 10.1101/2023.12.13.571585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Learned associations between the rewarding effects of drugs and the context in which they are experienced underlie context-induced relapse. Previous work demonstrates the importance of sparse neuronal populations - called neuronal ensembles - in associative learning and cocaine seeking, but it remains unknown whether the encoding vs. retrieval of cocaine-associated memories involves similar or distinct mechanisms of ensemble activation and reactivation in nucleus accumbens (NAc). We use ArcCreER T2 mice to establish that mostly distinct NAc ensembles are recruited by initial vs. repeated exposures to cocaine, which are then differentially reactivated and exert distinct effects during cocaine-related memory retrieval. Single-nuclei RNA-sequencing of these ensembles demonstrates predominant recruitment of D1 medium spiny neurons and identifies transcriptional properties that are selective to cocaine-recruited NAc neurons and could explain distinct excitability features. These findings fundamentally advance our understanding of how cocaine drives pathological memory formation during repeated exposures.
Collapse
|
4
|
Barry SM, Barry GM, Martinez D, Penrod RD, Cowan CW. The activity-regulated cytoskeleton-associated protein, Arc, functions in the nucleus accumbens shell to limit multiple triggers of cocaine-seeking behaviour. Addict Biol 2023; 28:e13335. [PMID: 37753560 DOI: 10.1111/adb.13335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Use of addictive substances like cocaine produces enduring associations between the drug experience and cues in the drug-taking environment. In individuals with a substance use disorder (SUD) and attempting to remain abstinent, these powerful drug-cue associations can trigger a return to active drug use, but the molecular mechanisms regulating drug-cue associations remain poorly understood. The activity-regulated cytoskeleton-associated protein (Arc) is induced by cocaine in the nucleus accumbens (NAc), an important brain reward region, but Arc's NAc function in SUD-related behaviour remains unclear. We show here that cocaine self-administration (SA) in rats produced a significant upregulation of Arc protein in both the core and shell subregions of the NAc. Subregion-specific Arc reduction (shRNA) in the medial NAc Shell enhanced both context-associated and cue-reinstated cocaine seeking, but without altering the motivation to work for cocaine, the sensitivity to the reinforcing effects of cocaine or the ability of cocaine priming to reinstate drug seeking. In contrast, we observed no effects of Arc knockdown in the NAc core on any aspect of cocaine SA, extinction or reinstated cocaine seeking, suggesting that Arc functions within the medial NAc shell, but not NAc core, to limit the strength of drug-context and drug-cue associations that promote cocaine-seeking behaviour.
Collapse
Affiliation(s)
- Sarah M Barry
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gabriella M Barry
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dalia Martinez
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Rachel D Penrod
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christopher W Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
5
|
Bijoch Ł, Klos J, Pękała M, Fiołna K, Kaczmarek L, Beroun A. Diverse processing of pharmacological and natural rewards by the central amygdala. Cell Rep 2023; 42:113036. [PMID: 37616162 DOI: 10.1016/j.celrep.2023.113036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The central amygdala (CeA) with its medial (CeM) and lateral (CeL) nuclei is the brain hub for processing stimuli with emotional context. CeL nucleus gives a strong inhibitory input to the CeM, and this local circuitry assigns values (positive or negative) to incoming stimuli, guiding appropriate behavior (approach or avoid). However, the particular involvement of CeA in processing such emotionally relevant information and adaptations of the CeA circuitry are not yet well understood. In this study, we examined synaptic plasticity in the CeA after exposure to two types of rewards, pharmacological (cocaine) and natural (sugar). We found that both rewards engage CeM, where they generate silent synapses resulting in the strengthening of the network. However, only cocaine triggers plasticity in the CeL, which leads to the weakening of its excitatory inputs. Finally, chemogenetic inhibition of CeM attenuates animal preference for sugar, while activation delays cocaine-induced increase in locomotor activity.
Collapse
Affiliation(s)
- Łukasz Bijoch
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Joanna Klos
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Martyna Pękała
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Kristina Fiołna
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland; Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Beroun
- Nencki-EMBL Center of Excellence for Neural Plasticity and Brain Disorders: BRAINCITY, Laboratory of Neuronal Plasticity, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, L. Pasteura 3, 02-093 Warsaw, Poland.
| |
Collapse
|
6
|
Gallegos DA, Minto M, Liu F, Hazlett MF, Aryana Yousefzadeh S, Bartelt LC, West AE. Cell-type specific transcriptional adaptations of nucleus accumbens interneurons to amphetamine. Mol Psychiatry 2023; 28:3414-3428. [PMID: 35173267 PMCID: PMC9378812 DOI: 10.1038/s41380-022-01466-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Parvalbumin-expressing (PV+) interneurons of the nucleus accumbens (NAc) play an essential role in the addictive-like behaviors induced by psychostimulant exposure. To identify molecular mechanisms of PV+ neuron plasticity, we isolated interneuron nuclei from the NAc of male and female mice following acute or repeated exposure to amphetamine (AMPH) and sequenced for cell type-specific RNA expression and chromatin accessibility. AMPH regulated the transcription of hundreds of genes in PV+ interneurons, and this program was largely distinct from that regulated in other NAc GABAergic neurons. Chromatin accessibility at enhancers predicted cell-type specific gene regulation, identifying transcriptional mechanisms of differential AMPH responses. Finally, we assessed expression of PV-enriched, AMPH-regulated genes in an Mecp2 mutant mouse strain that shows heightened behavioral sensitivity to psychostimulants to explore the functional importance of this transcriptional program. Together these data provide novel insight into the cell-type specific programs of transcriptional plasticity in NAc neurons that underlie addictive-like behaviors.
Collapse
Affiliation(s)
- David A Gallegos
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Melyssa Minto
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Fang Liu
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Mariah F Hazlett
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | | | - Luke C Bartelt
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
7
|
Sibarov DA, Tsytsarev V, Volnova A, Vaganova AN, Alves J, Rojas L, Sanabria P, Ignashchenkova A, Savage ED, Inyushin M. Arc protein, a remnant of ancient retrovirus, forms virus-like particles, which are abundantly generated by neurons during epileptic seizures, and affects epileptic susceptibility in rodent models. Front Neurol 2023; 14:1201104. [PMID: 37483450 PMCID: PMC10361770 DOI: 10.3389/fneur.2023.1201104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
A product of the immediate early gene Arc (Activity-regulated cytoskeleton-associated protein or Arc protein) of retroviral ancestry resides in the genome of all tetrapods for millions of years and is expressed endogenously in neurons. It is a well-known protein, very important for synaptic plasticity and memory consolidation. Activity-dependent Arc expression concentrated in glutamatergic synapses affects the long-time synaptic strength of those excitatory synapses. Because it modulates excitatory-inhibitory balance in a neuronal network, the Arc gene itself was found to be related to the pathogenesis of epilepsy. General Arc knockout rodent models develop a susceptibility to epileptic seizures. Because of activity dependence, synaptic Arc protein synthesis also is affected by seizures. Interestingly, it was found that Arc protein in synapses of active neurons self-assemble in capsids of retrovirus-like particles, which can transfer genetic information between neurons, at least across neuronal synaptic boutons. Released Arc particles can be accumulated in astrocytes after seizures. It is still not known how capsid assembling and transmission timescale is affected by seizures. This scientific field is relatively novel and is experiencing swift transformation as it grapples with difficult concepts in light of evolving experimental findings. We summarize the emergent literature on the subject and also discuss the specific rodent models for studying Arc effects in epilepsy. We summarized both to clarify the possible role of Arc-related pseudo-viral particles in epileptic disorders, which may be helpful to researchers interested in this growing area of investigation.
Collapse
Affiliation(s)
- Dmitry A. Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anastasia N. Vaganova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Janaina Alves
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | - Legier Rojas
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | - Priscila Sanabria
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| | | | | | - Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe, Bayamón, PR, United States
| |
Collapse
|
8
|
Pagano R, Salamian A, Zielinski J, Beroun A, Nalberczak-Skóra M, Skonieczna E, Cały A, Tay N, Banaschewski T, Desrivières S, Grigis A, Garavan H, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Hohmann S, Fröhner JH, Smolka MN, Vaidya N, Walter H, Whelan R, Kalita K, Bito H, Müller CP, Schumann G, Okuno H, Radwanska K. Arc controls alcohol cue relapse by a central amygdala mechanism. Mol Psychiatry 2023; 28:733-745. [PMID: 36357670 DOI: 10.1038/s41380-022-01849-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic and fatal disease. The main impediment of the AUD therapy is a high probability of relapse to alcohol abuse even after prolonged abstinence. The molecular mechanisms of cue-induced relapse are not well established, despite the fact that they may offer new targets for the treatment of AUD. Using a comprehensive animal model of AUD, virally-mediated and amygdala-targeted genetic manipulations by CRISPR/Cas9 technology and ex vivo electrophysiology, we identify a mechanism that selectively controls cue-induced alcohol relapse and AUD symptom severity. This mechanism is based on activity-regulated cytoskeleton-associated protein (Arc)/ARG3.1-dependent plasticity of the amygdala synapses. In humans, we identified single nucleotide polymorphisms in the ARC gene and their methylation predicting not only amygdala size, but also frequency of alcohol use, even at the onset of regular consumption. Targeting Arc during alcohol cue exposure may thus be a selective new mechanism for relapse prevention.
Collapse
Affiliation(s)
- Roberto Pagano
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Janusz Zielinski
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anna Beroun
- Laboratory of Neuronal Plasticity, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Nicole Tay
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rüdiger Brühl
- Braunschweig and Berlin, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Jean-Luc Martinot
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Eric Artiges
- INSERM U1299 "Trajectoires développementales en psychiatrie, Institut National de la Santé et de la Recherche Médicale, Paris, Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
- Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Université Paris-Saclay, Paris, Gif-sur-Yvette, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London, UK
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian P Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
9
|
Slosky LM, Pires A, Bai Y, Clark NB, Hauser ER, Gross JD, Porkka F, Zhou Y, Chen X, Pogorelov VM, Toth K, Wetsel WC, Barak LS, Caron MG. Establishment of multi-stage intravenous self-administration paradigms in mice. Sci Rep 2022; 12:21422. [PMID: 36503898 PMCID: PMC9742147 DOI: 10.1038/s41598-022-24740-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Genetically tractable animal models provide needed strategies to resolve the biological basis of drug addiction. Intravenous self-administration (IVSA) is the gold standard for modeling psychostimulant and opioid addiction in animals, but technical limitations have precluded the widespread use of IVSA in mice. Here, we describe IVSA paradigms for mice that capture the multi-stage nature of the disorder and permit predictive modeling. In these paradigms, C57BL/6J mice with long-standing indwelling jugular catheters engaged in cocaine- or remifentanil-associated lever responding that was fixed ratio-dependent, dose-dependent, extinguished by withholding the drug, and reinstated by the presentation of drug-paired cues. The application of multivariate analysis suggested that drug taking in both paradigms was a function of two latent variables we termed incentive motivation and discriminative control. Machine learning revealed that vulnerability to drug seeking and relapse were predicted by a mouse's a priori response to novelty, sensitivity to drug-induced locomotion, and drug-taking behavior. The application of these behavioral and statistical-analysis approaches to genetically-engineered mice will facilitate the identification of neural circuits driving addiction susceptibility and relapse and focused therapeutic development.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Andrea Pires
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC, USA
| | | | - Elizabeth R Hauser
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Joshua D Gross
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Fiona Porkka
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Yang Zhou
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Xiaoxiao Chen
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Krisztian Toth
- Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University, Durham, NC, USA
| | | | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
10
|
Krapacher FA, Fernández‐Suárez D, Andersson A, Carrier‐Ruiz A, Ibáñez CF. Convergent dopamine and ALK4 signaling to PCBP1 controls FosB alternative splicing and cocaine behavioral sensitization. EMBO J 2022; 41:e110721. [PMID: 35730718 PMCID: PMC10545536 DOI: 10.15252/embj.2022110721] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
ΔfosB is an alternatively spliced product of the FosB gene that is essential for dopamine-induced reward pathways and that acts as a master switch for addiction. However, the molecular mechanisms of its generation and regulation by dopamine signaling are unknown. Here, we report that dopamine D1 receptor signaling synergizes with the activin/ALK4/Smad3 pathway to potentiate the generation of ΔFosB mRNA in medium spiny neurons (MSNs) of the nucleus accumbens (NAc) via activation of the RNA-binding protein PCBP1, a regulator of mRNA splicing. Concurrent activation of PCBP1 and Smad3 by D1 and ALK4 signaling induced their interaction, nuclear translocation, and binding to sequences in exon-4 and intron-4 of FosB mRNA. Ablation of either ALK4 or PCBP1 in MSNs impaired ΔFosB mRNA induction and nuclear translocation of ΔFosB protein in response to repeated co-stimulation of D1 and ALK4 receptors. Finally, ALK4 is required in NAc MSNs of adult mice for behavioral sensitization to cocaine. These findings uncover an unexpected mechanism for ΔFosB generation and drug-induced sensitization through convergent dopamine and ALK4 signaling.
Collapse
Affiliation(s)
| | | | | | | | - Carlos F Ibáñez
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Peking‐Tsinghua Center for Life Sciences, PKU‐IDG/McGovern Institute for Brain ResearchPeking University School of Life SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
11
|
Valles G, Huebschman JL, Chow E, Kelly C, Guo Y, Smith LN. Jugular Vein Catheter Design and Cocaine Self-Administration Using Mice: A Comprehensive Method. Front Behav Neurosci 2022; 16:880845. [PMID: 35783231 PMCID: PMC9242005 DOI: 10.3389/fnbeh.2022.880845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Intravenous self-administration (IVSA) is a behavioral method of voluntary drug intake in animal models which is used to study the reinforcing effects of drugs of abuse. It is considered to have greater face validity in the study of substance use and abuse than other assays, and thus, allows for valuable insight into the neurobiological basis of addiction, and the development of substance abuse disorders. The technique typically involves surgically inserting a catheter into the jugular vein, which enables the infusion of drug solution after the performance of a desired operant behavior. Two nose- poke ports or levers are offered as manipulanda and are randomly assigned as active (reinforced) or inactive (non-reinforced) to allow for the examination of discrimination in the assessment of learning. Here, we describe our methodological approach to this assay in a mouse model, including construction and surgical implantation of a jugular vein catheter, set up of operant chambers, and considerations during each phase of the operant task.
Collapse
Affiliation(s)
- Gia Valles
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Jessica L. Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Elsbeth Chow
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Corinne Kelly
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Laura N. Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
- *Correspondence: Laura N. Smith
| |
Collapse
|
12
|
Singh MB, Babigian CJ, Sartor GC. Domain-selective BET inhibition attenuates transcriptional and behavioral responses to cocaine. Neuropharmacology 2022; 210:109040. [PMID: 35314160 PMCID: PMC8986626 DOI: 10.1016/j.neuropharm.2022.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
Abstract
Epigenetic pharmacotherapies have emerged as a promising treatment option for substance use disorder (SUD) due to their ability to reverse maladaptive transcriptional and behavioral responses to drugs of abuse. In particular, inhibitors of bromodomain and extra terminal domain (BET) reader proteins have been shown to reduce cocaine- and opioid-seeking behaviors in rodents. However, only pan-BET inhibitors, small molecules that bind to both bromodomains (BD1 and BD2) with all BET proteins, have been investigated in animal models of SUD. Given the potential side effects associated with pan-BET inhibitors, safer and more selective strategies are needed to advance BET therapeutics as a potential treatment for SUD. Here, we show that RVX-208, a clinically tested, BD2-selective BET inhibitor, dose-dependently reduced cocaine conditioned place preference in male and female mice, similar to the pan-BET inhibitor JQ1. In other behavioral experiments, RVX-208 treatment did not alter distance traveled, anxiety-like behavior, or novel object recognition memory. At the transcriptional level, RVX-208 attenuated the expression of multiple cocaine-induced genes in the nucleus accumbens in a sex-dependent manner. RVX-208 produced a distinct transcriptional response in stimulated primary neurons compared to JQ1 but had little effect on gene expression in non-stimulated neurons. Together, these data indicate that targeting domain-specific BET mechanisms may be an effective and safer strategy to reduce cocaine-induced neurobehavioral adaptations.
Collapse
Affiliation(s)
- Mandakini B Singh
- Department of Pharmaceutical Sciences , University of Connecticut, Storrs, CT, 06269, United States
| | - Christopher J Babigian
- Department of Pharmaceutical Sciences , University of Connecticut, Storrs, CT, 06269, United States
| | - Gregory C Sartor
- Department of Pharmaceutical Sciences , University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
13
|
Chen Z, Ding Y, Zeng Y, Zhang XP, Chen JY. Dexmedetomidine reduces propofol-induced hippocampal neuron injury by modulating the miR-377-5p/Arc pathway. BMC Pharmacol Toxicol 2022; 23:18. [PMID: 35337381 PMCID: PMC8957152 DOI: 10.1186/s40360-022-00555-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/08/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Propofol and dexmedetomidine (DEX) are widely used in general anesthesia, and exert toxic and protective effects on hippocampal neurons, respectively. The study sought to investigate the molecular mechanisms of DEX-mediated neuroprotection against propofol-induced hippocampal neuron injury in mouse brains. METHODS Hippocampal neurons of mice and HT22 cells were treated with propofol, DEX, and propofol+DEX. In addition, transfection of miR-377-5p mimics or inhibitors was performed in HT22 cells. Neuronal apoptosis was evaluated by a means of terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) or Hochest 33,258 staining; Arc positive expression in hippocampus tissues was detected using a microscope in immunohistochemistry assays; miRNA-377-5p expression was quantified by RT-qPCR; the protein levels of Arc, DNMT3A, and DNMT3B were determined using western blot; Cell Counting Kit-8 (CCK-8) assay was used to detect the viability and apoptotic rate of the neurons; methylation analysis in the miR-377-5p promoter was performed through methylated DNA immunoprecipitation (MeDIP) assay; dual luciferase reporter assay was performed to confirm whether Arc was under targeted regulation of miR-377-5p. RESULTS In the current study, both in vitro and in vivo, propofol treatment induced hippocampal neuron apoptosis and suppressed cell viability. DNMT3A and DNMT3B expression levels were decreased following propofol treatment, resulting in lowered methylation in the miR-377-5p promoter region and then enhanced expression of miR-377-5p, leading to a decrease in the expression of downstream Arc. Conversely, the expression levels of DNMT3A and DNMT3B were increased following DEX treatment, thus methylation in miR-377-5p promoter region was improved, and miR-377-5p expression was decreased, leading to an increase in the expression of downstream Arc. Eventually, DEX pretreatment protected hippocampal neurons against propofol-induced neurotoxicity by recovering the expression levels of DNMT3A, miR-377-5p, and Arc to the normal levels. Additionally, DNMT3A knockdown improved miR-377-5p expression but reduced Arc expression, and DNMT3A overexpression exerted the opposite effects. Dual luciferase reporter assay revealed a binding target between miR-377-5p and Arc 3'UTR. The neuroprotective effect of DEX against propofol-induced neuronal apoptosis was diminished after Arc knockdown. Silencing Arc independently triggered the apoptosis of HT22 cells, which was alleviated through transfection of miR-377-5p inhibitors. CONCLUSIONS DEX reduced propofol-induced hippocampal neuron injury via the miR-377-5p/Arc signaling pathway.
Collapse
Affiliation(s)
- Zong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO.19 Nonglin Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Yong Ding
- Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO.19 Nonglin Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Ying Zeng
- Department of Anesthesiology, Shenzhen Shajin Hospital Affiliated to Guangzhou Medical University, Shenzhen, China
| | - Xue-Ping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen Anesthesiology Engineering Center, The Second Clinical Medical College of Jinan University, NO. 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong Province, China.
| | - Jian-Yan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, NO.19 Nonglin Road, Yuexiu District, Guangzhou, Guangdong Province, China.
- Department of Anesthesiology, Shenzhen Shajin Hospital Affiliated to Guangzhou Medical University, Shenzhen, China.
| |
Collapse
|
14
|
Huebschman JL, Davis MC, Tovar Pensa C, Guo Y, Smith LN. The fragile X mental retardation protein promotes adjustments in cocaine self-administration that preserve reinforcement level. Eur J Neurosci 2021; 54:4920-4933. [PMID: 34133054 DOI: 10.1111/ejn.15356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 01/29/2023]
Abstract
The fragile X mental retardation protein (FMRP), an RNA-binding protein, regulates cocaine-induced neuronal plasticity and is critical for the normal development of drug-induced locomotor sensitization, as well as reward-related learning in the conditioned place preference assay. However, it is unknown whether FMRP impacts behaviors that are used to more closely model substance use disorders. Utilizing a cocaine intravenous self-administration (IVSA) assay in Fmr1 knockout (KO) and wild-type (WT) littermate mice, we find that, despite normal acquisition and extinction learning, Fmr1 KO mice fail to make a normal upward shift in responding during dose-response testing. Later, when given access to the original acquisition dose under increasing fixed ratio (FR) schedules of reinforcement (FR1, FR3, and FR5), Fmr1 KO mice earn significantly fewer cocaine infusions than WT mice. Importantly, similar deficits are not present in operant conditioning using a palatable food reinforcer, indicating that our results do not represent broad learning or reward-related deficits in Fmr1 KO mice. Additionally, we find an FMRP target, the activity-regulated cytoskeleton-associated protein (Arc), to be significantly reduced in synaptic cellular fractions prepared from the nucleus accumbens of Fmr1 KO, compared with WT, mice following operant tasks reinforced with cocaine but not food. Overall, our findings suggest that FMRP facilitates adjustments in drug self-administration behavior that generally serve to preserve reinforcement level, and combined with our similar IVSA findings in Arc KO mice may implicate Arc, along with FMRP, in behavioral shifts that occur in drug taking when drug availability is altered.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| | - Megan C Davis
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Catherina Tovar Pensa
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Shi M, Ding J, Li L, Bai H, Li X, Lan L, Fan H, Gao L. Effects of Ketamine on Learning and Memory in the Hippocampus of Rats through ERK, CREB, and Arc. Brain Sci 2020; 11:brainsci11010027. [PMID: 33383707 PMCID: PMC7824469 DOI: 10.3390/brainsci11010027] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022] Open
Abstract
Ketamine has become a popular recreational drug due to its neuronal anesthesia effect and low price. The process of learning and memory is part of the distinctive high-level neural activities in animals. We investigated the effects of subanesthetic and anesthetic doses of ketamine on the learning and memory-related signal transduction mechanisms. We used the Morris water maze test to execute rats' learning and memory ability and detected changes of Arc mRNA and Arc, cAMP-response element-binding protein (CREB), phospho-CREB (p-CREB), extracellular signal-regulated kinase (ERK), and phospho-ERK (p-ERK) protein expression in the hippocampus 10 min and 24 h after administration. Ten min after ketamine injection, the Arc gene and the protein expression levels increased in all groups; p-ERK only increased in the chronic subanesthetic dose group. After 24 h, the Arc gene and the protein expression levels of the subanesthetic dose group increased, but those of the chronic subanesthetic dose group and anesthetic dose group decreased. However, p-ERK increased in all groups. A chronic subanesthetic dose of ketamine could increase learning and memory ability through ERK, CREB, and Arc in a short time, and the high body temperature after the subanesthetic dose of ketamine injection was the main factor leading to changes in Arc. The subanesthetic dose of ketamine regulated learning and memory through ERK, CREB, and ARC 24 h after injection.
Collapse
|
16
|
Yakout DW, Shree N, Mabb AM. Effect of pharmacological manipulations on Arc function. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 2:100013. [PMID: 34909648 PMCID: PMC8663979 DOI: 10.1016/j.crphar.2020.100013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a brain-enriched immediate early gene that regulates important mechanisms implicated in learning and memory. Arc levels are controlled through a balance of induction and degradation in an activity-dependent manner. Arc further undergoes multiple post-translational modifications that regulate its stability, localization and function. Recent studies demonstrate that these features of Arc can be pharmacologically manipulated. In this review, we discuss some of these compounds, with an emphasis on drugs of abuse and psychotropic drugs. We also discuss inflammatory states that regulate Arc.
Collapse
Affiliation(s)
- Dina W. Yakout
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Nitheyaa Shree
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|