1
|
Serefko A, Wróbel J, Szopa A, Dobrowolski P, Kluz T, Wdowiak A, Bojar I, Poleszak E, Romejko-Wolniewicz E, Derlatka P, Grabowska-Derlatka L, Kacperczyk-Bartnik J, Gieleta AW, Bartnik P, Jakimiuk A, Misiek M, Wróbel A. The Orexin OX 2 Receptor-Dependent Pathway Is Implicated in the Development of Overactive Bladder and Depression in Rats Exposed to Corticosterone. Neurourol Urodyn 2025; 44:229-244. [PMID: 39402852 DOI: 10.1002/nau.25602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 12/24/2024]
Abstract
AIM In the present study, we wanted to check whether TCS OX2 29 (TCS), a potent selective antagonist of OX2 receptors, would have positive effects in an animal model of detrusor overactivity co-existed with the depression-like state in Wistar male rats. METHODS The forced swim test with the measurement of spontaneous locomotor activity, conscious cystometry, determination of c-Fos expression in central micturition areas, and a set of biochemical analyses (with the use of urine, hippocampus, bladder urothelium, and detrusor muscle of tested animals) were carried out. RESULTS The outcomes showed that a 7-day administration of TCS (3 mg/kg/day, subcutaneously) normalizes the cystometric parameters corresponding to overactivity of the detrusor and reverses the pro-depressive response. Furthermore, the antagonism of OX2 receptors restored the abnormal levels of overactive bladder markers (i.e., ATP, CGRP, OCT3, TRPV1, ROCK1, and VAChT), diminished neuronal overactivity in central micturition areas (i.e., pontine micturition center, ventrolateral periaqueductal gray, and medial preoptic area) as well as restored the altered hippocampal levels of CRF, cytokines (IL-1β, IL-6, IL-10, and TNF-α), and growth factors (BDNF and NGF) that reflected biochemical disturbances detected in depressed people. CONCLUSIONS It seems that our findings open new perspectives regarding the implication of the orexin system in the functioning of the urinary bladder and in the pathophysiology of depression.
Collapse
Affiliation(s)
- Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Artur Wdowiak
- Chair of Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Ewa Romejko-Wolniewicz
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Derlatka
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Paweł Bartnik
- Second Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics and Gynecology, National Medical Institute of the Ministry of Interior and Administration, Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, Warsaw, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
2
|
Wróbel J, Iwaniak P, Dobrowolski P, Chwil M, Sadok I, Kluz T, Wdowiak A, Bojar I, Poleszak E, Misiek M, Zapała Ł, Urbańska EM, Wróbel A. The GPR39 Receptor Plays an Important Role in the Pathogenesis of Overactive Bladder and Corticosterone-Induced Depression. Int J Mol Sci 2024; 25:12630. [PMID: 39684342 DOI: 10.3390/ijms252312630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Despite the close and clinically confirmed association between depression and overactive bladder, it remains unclear whether this affective disorder is a factor causing overactive bladder or whether overactive bladder is a specific symptom of psychosomatic disorders. This study examined the effects of repeated corticosterone administration on the occurrence of symptoms associated with depression and overactive bladder. Additionally, we examined whether administering TC-G 1008, an antidepressant that selectively activates the GPR39 receptor, could alleviate corticosterone-induced depression-like behavior and detrusor overactivity-related changes in cystometric measurements. We also explored its potential to reverse alterations in various biomarkers associated with both conditions in the serum, urinary bladder, and brain of female rats. The administration of corticosterone (20 mg/kg/day for 14 days) yielded anticipated results, including an increase in the duration of immobility during the forced swim test, alterations in parameters specific to bladder overactivity, a decrease in neurotrophins, and an elevation in pro-inflammatory cytokine levels. Treatment with TC-G 1008 (15 mg/kg/day) alleviated symptoms of both detrusor overactivity and depression, while also restoring the levels of biochemical and cystometric markers to normal ranges. Additionally, antidepressants based on GPR39 agonists could enhance the levels of kynurenic acid in the neuroprotective pathway. These results indicate that the GPR39 agonist receptor might be a promising future therapeutic approach for treating overactive bladder that occurs alongside depression.
Collapse
Affiliation(s)
- Jan Wróbel
- Medical Faculty, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka St., 20-950 Lublin, Poland
| | - Ilona Sadok
- Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, Collegium Medicum, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rejtana 16c, 35-959 Rzeszow, Poland
| | - Artur Wdowiak
- Obstetrics and Gynecology, Faculty of Health Sciences, Medical University of Lublin, 4-6 Staszica St., 20-081 Lublin, Poland
| | - Iwona Bojar
- Department of Women's Health, Institute of Rural Health in Lublin, Jaczewskiego 2 St., 20-090 Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki St., 20-093 Lublin, Poland
| | - Marcin Misiek
- Department of Women's Health, Institute of Rural Health in Lublin, Jaczewskiego 2 St., 20-090 Lublin, Poland
| | - Łukasz Zapała
- Clinic of General, Oncological and Functional Urology, Medical University of Warsaw, Lindleya 4, 02-005 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| |
Collapse
|
3
|
Zholos AV, Melnyk MI, Dryn DO. Molecular mechanisms of cholinergic neurotransmission in visceral smooth muscles with a focus on receptor-operated TRPC4 channel and impairment of gastrointestinal motility by general anaesthetics and anxiolytics. Neuropharmacology 2024; 242:109776. [PMID: 37913983 DOI: 10.1016/j.neuropharm.2023.109776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Acetylcholine is the primary excitatory neurotransmitter in visceral smooth muscles, wherein it binds to and activates two muscarinic receptors subtypes, M2 and M3, thus causing smooth muscle excitation and contraction. The first part of this review focuses on the types of cells involved in cholinergic neurotransmission and on the molecular mechanisms underlying acetylcholine-induced membrane depolarisation, which is the central event of excitation-contraction coupling causing Ca2+ entry via L-type Ca2+ channels and smooth muscle contraction. Studies of the muscarinic cation current in intestinal myocytes (mICAT) revealed its main molecular counterpart, receptor-operated TRPC4 channel, which is activated in synergy by both M2 and M3 receptors. M3 receptors activation is of permissive nature, while activation of M2 receptors via Gi/o proteins that are coupled to them plays a direct role in TRPC4 opening. Our understanding of signalling pathways underlying mICAT generation has vastly expanded in recent years through studies of TRPC4 gating in native cells and its regulation in heterologous cells. Recent studies using muscarinic receptor knockout have established that at low agonist concentration activation of both M2 receptor and the M2/M3 receptor complex elicits smooth muscle contraction, while at high agonist concentration M3 receptor function becomes dominant. Based on this knowledge, in the second part of this review we discuss the cellular and molecular mechanisms underlying the numerous anticholinergic effects on neuroactive drugs, in particular general anaesthetics and anxiolytics, which can significantly impair gastrointestinal motility. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Alexander V Zholos
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine.
| | - Mariia I Melnyk
- Educational and Scientific Centre "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dariia O Dryn
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Jung J, Kim A, Yang SH. The Innovative Approach in Functional Bladder Disorders: The Communication Between Bladder and Brain-Gut Axis. Int Neurourol J 2023; 27:15-22. [PMID: 37015721 PMCID: PMC10072998 DOI: 10.5213/inj.2346036.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Functional bladder disorders including overactive bladder and interstitial cystitis may induce problems in many other parts of our body such as brain and gut. In fact, diagnosis is often less accurate owing to their complex symptoms. To have correct diagnosis of these diseases, we need to understand the pathophysiology behind overlapped clinical presentation. First, we focused on reviewing literatures that have reported the link between bladder and brain, as the patients with bladder disorders frequently accompanied mood disorders such as depression and anxiety. Second, we reviewed literatures that have described the relationship between bladder and gut. There exist many evidences of patients who suffered from both bladder and intestinal diseases, such as irritable bowel syndrome and inflammatory bowel disease, at the same time. Furthermore, the interaction between brain and gut, well-known as brain-gut axis, might be a key factor that could change the activity of bladder and vice versa. For example, the affective disorders could alter the activity of efferent nerves or autonomic nervous system that modulate the gut itself and its microbiota, which might cause the destruction of homeostasis in bladder eventually. In this way, the communication between bladder and brain-gut axis might affect permeability, inflammation, as well as infectious etiology and dysbiosis in bladder diseases. In this review, we aimed to find an innovative insight of the pathophysiology in the functional bladder disorders, and we could provide a new understanding of the overlapped clinical presentation by elucidating the pathophysiology of functional bladder disorders.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul, Korea
| |
Collapse
|
5
|
Wang Y, Benavides R, Diatchenko L, Grant AV, Li Y. A graph-embedded topic model enables characterization of diverse pain phenotypes among UK biobank individuals. iScience 2022; 25:104390. [PMID: 35637735 PMCID: PMC9142639 DOI: 10.1016/j.isci.2022.104390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
Large biobank repositories of clinical conditions and medications data open opportunities to investigate the phenotypic disease network. We present a graph embedded topic model (GETM). We integrate existing biomedical knowledge graph information in the form of pre-trained graph embedding into the embedded topic model. Via a variational autoencoder framework, we infer patient phenotypic mixture by modeling multi-modal discrete patient medical records. We applied GETM to UK Biobank (UKB) self-reported clinical phenotype data, which contains 443 self-reported medical conditions and 802 medications for 457,461 individuals. Compared to existing methods, GETM demonstrates good imputation performance. With a more focused application on characterizing pain phenotypes, we observe that GETM-inferred phenotypes not only accurately predict the status of chronic musculoskeletal (CMK) pain but also reveal known pain-related topics. Intriguingly, medications and conditions in the cardiovascular category are enriched among the most predictive topics of chronic pain. Interpretable deep learning to integrate knowledge graphs and patient data Modeling phenotypes from self-reports of 457,461 individuals from the UK Biobank Predicting and characterizing chronic pain phenotypes using latent phenotypes Potential link between cardiovascular conditions or medications and chronic pain
Collapse
Affiliation(s)
- Yuening Wang
- School of Computer Science, McGill University, Canada
| | - Rodrigo Benavides
- Department of Anesthesiology, Centro Nacional de Rehabilitación, San Jose, Costa Rica
| | - Luda Diatchenko
- Department of Anesthesia, McGill University, Canada.,Faculty of Dentistry, McGill University, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Canada
| | - Audrey V Grant
- Department of Anesthesia, McGill University, Canada.,Faculty of Dentistry, McGill University, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Canada
| | - Yue Li
- School of Computer Science, McGill University, Canada
| |
Collapse
|
6
|
|
7
|
Gandi C, Sacco E. Pharmacological Management of Urinary Incontinence: Current and Emerging Treatment. Clin Pharmacol 2021; 13:209-223. [PMID: 34858068 PMCID: PMC8630428 DOI: 10.2147/cpaa.s289323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 12/16/2022] Open
Abstract
Pharmacological management of urinary incontinence (UI) is currently based on antimuscarinic and beta-3-agonist drugs. Botulinum toxin A detrusor injections represent an effective but more invasive alternative. This review covers the latest developments of the currently available drugs and the emerging compounds for the treatment of UI. Evidence shows that new antimuscarinics and beta-3-agonists with improved safety profiles may offer unique options to patients intolerant to currently available drugs. Combination therapy proved to be a non-invasive alternative for patients refractory to first-line monotherapy. Exciting advances are ongoing in the research to improve the efficacy/tolerability profile of botulinum toxin, through innovative routes of administration. Several new agents emerged from preclinical studies, some of which have now entered the clinical phase of development and could represent, in the coming years, a new way for the treatment of UI. Recent evidence on the existence of different overactive bladder phenotypes could be the key to tailored treatment. Rather than discovering new molecules, reaching the ability to identify the right drug for the right patient could be the real gamechanger of the future.
Collapse
Affiliation(s)
- Carlo Gandi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University School of Medicine, Rome, Italy
| | - Emilio Sacco
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
8
|
Matsuoka K, Akaihata H, Hata J, Tanji R, Honda-Takinami R, Onagi A, Hoshi S, Koguchi T, Sato Y, Kataoka M, Ogawa S, Kojima Y. l-Theanine Protects Bladder Function by Suppressing Chronic Sympathetic Hyperactivity in Spontaneously Hypertensive Rat. Metabolites 2021; 11:metabo11110778. [PMID: 34822436 PMCID: PMC8618158 DOI: 10.3390/metabo11110778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic sympathetic hyperactivity is known to affect metabolism and cause various organ damage including bladder dysfunction. In this study, we evaluated whether l-theanine, a major amino acid found in green tea, ameliorates bladder dysfunction induced by chronic sympathetic hyperactivity as a dietary component for daily consumption. Spontaneously hypertensive rats (SHRs), as an animal model of bladder dysfunction, were divided into SHR-water and SHR-theanine groups. After 6 weeks of oral administration, the sympathetic nervous system, bladder function, and oxidative stress of bladder tissue were evaluated. The mean blood pressure, serum noradrenaline level, and media-to-lumen ratio of small arteries in the suburothelium were significantly lower in the SHR-theanine than in the SHR-water group. Micturition interval was significantly longer, and bladder capacity was significantly higher in the SHR-theanine than in the SHR-water group. Bladder strip contractility was also higher in the SHR-theanine than in the SHR-water group. Western blotting of bladder showed that expression of malondialdehyde was significantly lower in the SHR-theanine than in the SHR-water group. These results suggested that orally administered l-theanine may contribute at least partly to the prevention of bladder dysfunctions by inhibiting chronic sympathetic hyperactivity and protecting bladder contractility.
Collapse
|
9
|
West EG, Sellers DJ, Chess-Williams R, McDermott C. The anxiolytic sertraline reduces the impact of psychological stress on bladder function in mice. Life Sci 2021; 278:119598. [PMID: 33984361 DOI: 10.1016/j.lfs.2021.119598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/05/2023]
Abstract
AIMS To determine if treatment with the selective serotonin reuptake inhibitor (SSRI) sertraline reduces the bladder dysfunction caused by water avoidance stress in mice. MAIN METHODS Adult female mice were randomly allocated to (1) Unstressed, (2) Stressed or (3) Stress + Sertraline experimental groups. Stressed mice were subjected to water avoidance for 1 h/day for 10 days and received sertraline or vehicle in drinking water, starting 10-days prior to the first stress exposure. Age matched control/unstressed mice were house under normal conditions without stress exposure. Voiding behaviour was assessed throughout the experimental protocol. After the final stress exposure, a blood sample was taken to measure plasma corticosterone levels and bladders were removed, catheterised and intravesical pressure responses recorded during distension and in response to pharmacological agents. KEY FINDINGS Plasma corticosterone levels in sertraline-treated animals were equivalent to unstressed controls and significantly decreased compared to the stressed group. Voiding frequency was significantly increased in the stressed group, and treatment with sertraline significantly decreased voiding frequency, however, this remained elevated compared to unstressed control animals. Bladders from stressed mice displayed enhanced maximal contractile response to the muscarinic agonist carbachol and greater release of ACh in the serosal fluid, which was reduced to control levels by sertraline treatment. Spontaneous phasic contractions were not altered by stress but were significantly reduced in bladders from sertraline treated animals, relative to controls. SIGNIFICANCE These results indicate that management of voiding dysfunction caused by psychological stress may be aided by the addition of an SSRI such as sertraline.
Collapse
Affiliation(s)
- Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4229, Australia.
| |
Collapse
|
10
|
Wróbel A, Serefko A, Szopa A, Poleszak E. Stimulation of atypical cannabinoid receptor GPR55 abolishes the symptoms of detrusor overactivity in spontaneously hypertensive rats. Eur J Pharm Sci 2020; 150:105329. [PMID: 32360768 DOI: 10.1016/j.ejps.2020.105329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/29/2022]
Abstract
Overactive bladder is a troublesome disease that affects 15% of the population in developed countries. Since pharmacotherapy of this condition is frequently associated with side effects, the better tolerated drugs are being searched for. The main objective of our study was to check whether activation of the atypical cannabinoid receptor GPR55 would normalize the changes in cystometric, cardiovascular and biochemical parameters in the hypertensive female Wistar-Kyoto rats presenting the symptoms of overactive bladder accompanied by inflammation and oxidative damage in the urinary tracts. A 14-day intra-arterial administration of O-1602 (0.25 mg/kg/day), a potent agonist of GRP55 receptors, was able to abolish the signs of detrusor overactivity, inflammation and oxidative damage in the urinary bladder of the spontaneously hypertensive animals. Moreover, it increased their heart rate, reduced the mean blood pressure, and normalized the levels of several proteins that play a significant role in the proper functioning of the urinary bladder (i.e., calcitonin gene related peptide, organic cation transporter 3, extracellular signal-regulated kinase 1/2, vesicular acetylcholine transporter, RhoA). Based on the outcomes of our experiments, the atypical cannabinoid receptor GPR55 has emerged as a potential drug target for the treatment of overactive bladder in female subjects. It could be particularly attractive in the cases in which this condition is accompanied with elevated blood pressure, though further studies on this subject are needed.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland.
| | - Anna Serefko
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland.
| | - Aleksandra Szopa
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Ewa Poleszak
- Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| |
Collapse
|