1
|
Pande LJ, Arnet RE, Piper BJ. An Examination of the Complex Pharmacological Properties of the Non-Selective Opioid Modulator Buprenorphine. Pharmaceuticals (Basel) 2023; 16:1397. [PMID: 37895868 PMCID: PMC10610465 DOI: 10.3390/ph16101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The goal of this review is to provide a recent examination of the pharmacodynamics as well as pharmacokinetics, misuse potential, toxicology, and prenatal consequences of buprenorphine. Buprenorphine is currently a Schedule III opioid in the US used for opioid-use disorder (OUD) and as an analgesic. Buprenorphine has high affinity for the mu-opioid receptor (MOR), delta (DOR), and kappa (KOR) and intermediate affinity for the nociceptin (NOR). Buprenorphine's active metabolite, norbuprenorphine, crosses the blood-brain barrier, is a potent metabolite that attenuates the analgesic effects of buprenorphine due to binding to NOR, and is responsible for the respiratory depressant effects. The area under the concentration curves are very similar for buprenorphine and norbuprenorphine, which indicates that it is important to consider this metabolite. Crowding sourcing has identified a buprenorphine street value (USD 3.95/mg), indicating some non-medical use. There have also been eleven-thousand reports involving buprenorphine and minors (age < 19) at US poison control centers. Prenatal exposure to clinically relevant dosages in rats produces reductions in myelin and increases in depression-like behavior. In conclusion, the pharmacology of this OUD pharmacotherapy including the consequences of prenatal buprenorphine exposure in humans and experimental animals should continue to be carefully evaluated.
Collapse
Affiliation(s)
- Leana J. Pande
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (L.J.P.); (R.E.A.)
- Touro College of Osteopathic Medicine, Middletown, NY 10027, USA
| | - Rhudjerry E. Arnet
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (L.J.P.); (R.E.A.)
| | - Brian J. Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA; (L.J.P.); (R.E.A.)
- Center for Pharmacy Innovation and Outcomes, Danville, PA 17821, USA
| |
Collapse
|
2
|
Zhang XY, Diaz-delCastillo M, Kong L, Daniels N, MacIntosh-Smith W, Abdallah A, Domanski D, Sofrenovic D, Yeung TP(S, Valiente D, Vollert J, Sena E, Rice AS, Soliman N. A systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain. PLoS One 2023; 18:e0290382. [PMID: 37682863 PMCID: PMC10490990 DOI: 10.1371/journal.pone.0290382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/07/2023] [Indexed: 09/10/2023] Open
Abstract
Thigmotaxis is an innate predator avoidance behaviour of rodents. To gain insight into how injury and disease models, and analgesic drug treatments affect thigmotaxis, we performed a systematic review and meta-analysis of studies that assessed thigmotaxis in the open field test. Systematic searches were conducted of 3 databases in October 2020, March and August 2022. Study design characteristics and experimental data were extracted and analysed using a random-effects meta-analysis. We also assessed the correlation between thigmotaxis and stimulus-evoked limb withdrawal. This review included the meta-analysis of 165 studies We report thigmotaxis was increased in injury and disease models associated with persistent pain and this increase was attenuated by analgesic drug treatments in both rat and mouse experiments. Its usefulness, however, may be limited in certain injury and disease models because our analysis suggested that thigmotaxis may be associated with the locomotor function. We also conducted subgroup analyses and meta-regression, but our findings on sources of heterogeneity are inconclusive because analyses were limited by insufficient available data. It was difficult to assess internal validity because reporting of methodological quality measures was poor, therefore, the studies have an unclear risk of bias. The correlation between time in the centre (type of a thigmotactic metric) and types of stimulus-evoked limb withdrawal was inconsistent. Therefore, stimulus-evoked and ethologically relevant behavioural paradigms should be viewed as two separate entities as they are conceptually and methodologically different from each other.
Collapse
Affiliation(s)
- Xue Ying Zhang
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | | | - Lingsi Kong
- Department of Women and Children’s Health, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Natasha Daniels
- Bart’s Health NHS Trust Whipps Cross Hospital, London, United Kingdom
| | - William MacIntosh-Smith
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Aya Abdallah
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Dominik Domanski
- School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Denis Sofrenovic
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Diego Valiente
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jan Vollert
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Emily Sena
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew S. Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Nadia Soliman
- Pain Research, Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
3
|
Clarkson JM, Martin JE, Sparrey J, Leach MC, McKeegan DEF. Striving for humane deaths for laboratory mice: hypobaric hypoxia provides a potential alternative to carbon dioxide exposure. Proc Biol Sci 2023; 290:20222446. [PMID: 37122253 PMCID: PMC10130715 DOI: 10.1098/rspb.2022.2446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Killing is often an unavoidable and necessary procedure for laboratory mice involved in scientific research, and providing a humane death is vital for public acceptance. Exposure to carbon dioxide (CO2) gas is the most widely used methodology despite well proven welfare concerns. Consequently, the continued use of CO2 and its globally permitted status in legislation and guidelines presents an ethical dilemma for users. We investigated whether killing with hypobaric hypoxia via gradual decompression was associated with better welfare outcomes for killing laboratory mice. We compared the spontaneous behaviour of mice exposed to CO2, decompression or sham conditions, and used analgesic or anxiolytic interventions to determine their relative welfare impact. Gradual decompression resulted in longer times to unconsciousness and death and the pharmacological interventions support the notion of a minimally negative animal experience, while providing further evidence for pain and anxiety associated with exposure to CO2. Decompression resulted in moderate ear haemorrhage, but our welfare assessment suggests this may happen when mice are unconscious. Hence, gradual decompression could be the basis of significant refinement for killing laboratory mice. Future work should corroborate behaviour with neurobiological markers of loss of consciousness to verify the conscious phase of concern for animal welfare.
Collapse
Affiliation(s)
- J. M. Clarkson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- School for Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - J. E. Martin
- School for Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J. Sparrey
- Livetec Systems Ltd, Wrest Park, Silsoe, Bedford, UK
| | - M. C. Leach
- Comparative Biology Centre, Newcastle University, Newcastle upon Tyne, UK
| | - D. E. F. McKeegan
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Illario JA, Osborn KG, Garcia AV, Sepulveda YJ, Momper JD, Kiel JW, Kirihennedige AS, Sun SA, Richter PJ. Comparative Pharmacokinetics and Injection Site Histopathology in Nude Mice Treated with Long-acting Buprenorphine Formulations. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:147-152. [PMID: 36813268 PMCID: PMC10078935 DOI: 10.30802/aalas-jaalas-22-000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Two long-acting formulations of buprenorphine are commercially available as analgesics for rodents. However, these drugs have not yet been studied in nude mice. We sought to investigate whether the manufacturer-recommended or labeled mouse doses of either drug would provide and sustain the purported therapeutic plasma concentration of buprenorphine (1 ng/mL) over 72 h in nude mice and to characterize the injection site histopathology. NU/NU nude and NU/+ heterozygous mice were subcutaneously injected with extended-release buprenorphine polymeric formulation (ER; 1 mg/kg), extendedrelease buprenorphine suspension (XR; 3.25 mg/kg), or saline (2.5 mL/kg). Plasma concentrations of buprenorphine were measured 6, 24, 48, and 72 h after injection. The injection site was examined histologically at 96 h after administration. XR dosing yielded significantly higher plasma buprenorphine concentrations than did ER dosing at every time point in both nude and heterozygous mice. No significant difference in plasma buprenorphine concentrations were detected between nude and heterozygous mice. Both formulations yielded plasma levels of buprenorphine of over 1 ng/mL at 6 h; XR sustained buprenorphine plasma levels above 1 ng/mL for over 48 h, whereas ER sustained this level for over 6 h. Injections sites of both formulations were characterized by a cystic lesion with a fibrous/fibroblastic capsule. ER induced more inflammatory infiltrates than did XR. This study indicates that while both XR and ER are suitable for use in nude mice, XR has a longer duration of likely therapeutic plasma levels and induces less subcutaneous inflammation at the injection site.
Collapse
Affiliation(s)
| | - Kent G Osborn
- Animal Care Program, University of California San Diego, La Jolla, California
| | - Arnold V Garcia
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Yadira J Sepulveda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Jeffrey W Kiel
- Professor Emeritus, University of Texas Health San Antonio, San Antonio, Texas
| | - Ayuri S Kirihennedige
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Steven A Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Philip J Richter
- Animal Care Program, University of California San Diego, La Jolla, California
| |
Collapse
|
5
|
Effects of a Multimodal Approach Using Buprenorphine with/without Meloxicam on Food Intake, Body Weight, Nest Consolidating Behavior, Burrowing Behavior, and Gastrointestinal Tissues in Postoperative Male Mice. Vet Sci 2022; 9:vetsci9110589. [DOI: 10.3390/vetsci9110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Distress affects animal welfare and scientific data validity. There is a lack of reports on the effects of multimodal analgesic approaches in mice. In this study, under the hypothesis that a multimodal analgesic protocol using buprenorphine with meloxicam has analgesic effects, we evaluated the effects of a multimodal analgesic protocol using buprenorphine with meloxicam on the well-being of mice during analgesic administration by changing the dosage of meloxicam. A total of 42 Slc:ICR male mice were categorized into nonsurgical and surgical groups (7 mice per group) and treated with an anesthetic (isoflurane) and analgesics (buprenorphine ± meloxicam). Analgesics were administered for 48 h after treatment. Buprenorphine (subcutaneous; 0.1 mg/kg/8 h) and meloxicam (subcutaneous; 0, 2.5, or 5 mg/kg/24 h) were administered twice. Body weight, food intake, nest consolidation score, and latency to burrow were evaluated. A significant decrease in food intake was observed 24 h after treatment, while a significant increase was observed 48 h post-treatment in all groups. Body weight showed a decreasing trend but was not significantly reduced. Furthermore, stomach, duodenum, and jejunum tissues showed no morphological abnormalities. Significant differences in burrow diving scores and the latency to burrow were observed between some groups, but these were not regarded as a consequence of the surgery and/or the meloxicam dose. When buprenorphine and meloxicam were combined, administering up to 5 mg/kg/day of meloxicam for 48 h to male mice after abdominal surgery had no significant negative effects on any tested parameters. In conclusion, a multimodal analgesic protocol of buprenorphine with meloxicam is among the options for increasing well-being in mice following abdominal surgery.
Collapse
|
6
|
Arthur JD, Alamaw ED, Jampachairsri K, Sharp P, Nagamine CM, Huss MK, Pacharinsak C. Efficacy of 3 Buprenorphine Formulations for the Attenuation of Hypersensitivity after Plantar Incision in Immunodeficient NSG Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:448-456. [PMID: 36068076 PMCID: PMC9536821 DOI: 10.30802/aalas-jaalas-22-000058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Buprenorphine is perhaps the most prescribed analgesic for management of postoperative pain in mice. Although various buprenorphine formulations are effective in commonly used immunocompetent mouse strains, a knowledge gap exists regarding its efficacy in immunodeficient mice. Here we used a plantar incision to evaluate the efficacy of 3 buprenorphine formulations for attenuating postoperative mechanical and thermal hypersensitivity in the immunodeficient NSG mouse strain. We also characterized the pharmacokinetics of these formulations over a 72-h period. We hypothesized that all 3 buprenorphine formulations evaluated-the standard preparation and 2 extended-release products (Bup-HCl, Bup-ER, and Bup-XR, respectively)-would attenuate postoperative mechanical and thermal hypersensitivity resulting from a plantar incision in NSG mice. Male and female NSG mice (n = 48) were allocated to 4 treatment groups: saline (0.9% NaCl, 5 mL/kg SC once); Bup-HCl (0.1 mg/kg SC, BID for 2 d); Bup-ER (1.0 mg/kg SC once); and Bup-XR (3.25 mg/kg SC once). Mechani- cal and thermal hypersensitivity assessments were conducted 24 h before surgery and at 4, 8, 24, 48, and 72 h afterward. All groups of mice showed mechanical and thermal hypersensitivity within the first 24 h after surgery. Behavioral pain indicators (guarding, toe-touching [intermittent partial weight bearing], licking the incision, vocalizations) were observed in some mice from each group at every postoperative time point. Plasma buprenorphine was measured in a separate group of mice and concentrations surpassed the suggested therapeutic level (1.0 ng/mL) for less than 4 h for Bup-HCl, for at least 24 h for Bup-ER, and for 72 h for Bup-XR. Our results indicate that at the dosages studied, these buprenorphine formulations do not adequately attenuate postoperative mechanical and thermal hypersensitivity in the plantar incisional model in NSG mice. These findings support the need for strain-specific analgesic protocols for mice used in research.
Collapse
Affiliation(s)
- Justin D Arthur
- Department of Comparative Medicine, Stanford University, Stanford, California;,Corresponding author.
| | - Eden D Alamaw
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | - Patrick Sharp
- Department of Animal Research Services, University of California, Merced, Merced, California;,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Monika K Huss
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | |
Collapse
|
7
|
Hakomäki H, Eskola S, Kokki H, Lehtonen M, Räsänen J, Laaksonen S, Voipio HM, Ranta VP, Kokki M. Central Nervous System Distribution of Buprenorphine in Pregnant Sheep, Fetuses and Newborn Lambs After Continuous Transdermal and Single Subcutaneous Extended-Release Dosing. Eur J Pharm Sci 2022; 178:106283. [PMID: 36029997 DOI: 10.1016/j.ejps.2022.106283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
Buprenorphine is used during pregnancy for the treatment of opioid use disorder. Limited data exist on the central nervous system (CNS) permeation and distribution, and on the fetal exposure to buprenorphine. The aim of our study was to determine the extent of buprenorphine distribution to CNS in the pregnant sheep, and their fetus at steady-state, and their newborn lambs postdelivery, using three different dosing regimens. Twenty-eight pregnant ewes in late gestation received buprenorphine via 7-day transdermal patch releasing buprenorphine 20 µg/h (n=9) or 40 µg/h (n=11), or an extended-release 8 mg/week subcutaneous injection (n=8). Plasma, cerebrospinal fluid, and CNS tissue samples were collected at steady-state from ewes and fetuses, and from lambs 0.33 - 45 hours after delivery. High accumulation of buprenorphine was observed in all CNS tissues. The median CNS/plasma concentration -ratios of buprenorphine in different CNS areas ranged between 13 and 50 in the ewes, and between 26 and 198 in the fetuses. In the ewes the CNS/plasma -ratios were similar after the three dosing regimens, but higher in the fetuses in the 40 µg/h dosing group, medians 65 - 122, than in the 20 µg/h group, medians 26 - 54. The subcutaneous injection (theoretical release rate 47.6 µg/h) produced higher concentrations than observed after 40 µg/h transdermal patch dosing. The median fetal/maternal concentration -ratios in different dosing groups ranged between 0.21 and 0.54 in plasma, and between 0.38 and 1.3 in CNS tissues, respectively, with the highest ratios observed in the spinal cord. Buprenorphine concentrations in the cerebrospinal fluid were 8 - 13 % of the concurrent plasma concentration in the ewes and 28 % in the fetuses. Buprenorphine was quantifiable in the newborn lambs' plasma and CNS tissues two days postdelivery. Norbuprenorphine was analyzed from all plasma, cerebrospinal fluid, and CNS tissue samples but was nondetectable or below the LLOQ in most. The current study demonstrates that buprenorphine accumulates into CNS tissues at much higher concentrations than in plasma in pregnant sheep, fetuses, and their newborn lambs even 45 hours after delivery.
Collapse
Key Words
- BUP, Buprenorphine
- CL, Plasma clearance
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- F/M -ratio, Fetal to maternal concentration ratio
- HPLC, , High-performance liquid chromatography
- L/M -ratio, Lamb to maternal concentration ratio
- LC/MS/MS, Liquid chromatography - tandem mass spectrometry
- LLOQ, Lower limit of quantification
- NBUP, Norbuprenorphine
- brain
- buprenorphine
- pharmacokinetics, pregnancy
- sheep
- tissue
Collapse
Affiliation(s)
| | - Sophia Eskola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Hannu Kokki
- School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Juha Räsänen
- Fetal Medicine Center, Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sakari Laaksonen
- Department of Comparative Medicine, Oulu Laboratory Animal Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hanna-Marja Voipio
- Department of Comparative Medicine, Oulu Laboratory Animal Centre, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Veli-Pekka Ranta
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Merja Kokki
- Department of Anesthesiology and Intensive Care, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
The role of kappa opioid receptors in immune system - An overview. Eur J Pharmacol 2022; 933:175214. [PMID: 36007608 DOI: 10.1016/j.ejphar.2022.175214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022]
Abstract
Opioids are one of the most effective anti-nociceptive agents used in patients with cancer pain or after serious surgery in most countries. The endogenous opioid system participates in pain perception, but recently its role in inflammation was determined. κ-opioid receptors (KOP receptors), a member of the opioid receptor family, are expressed in the central and peripheral nervous system as well as on the surface of different types of immune cells, e.g. T cells, B cells and monocytes. In this review, we focused on the involvement of KOP receptors in the inflammatory process and described their function in a number of conditions in which the immune system plays a key role (e.g. inflammatory bowel disease, arthritis, subarachnoid hemorrhage, vascular dysfunction) and inflammatory pain. We summed up the application of known KOP ligands in pathophysiology and we aimed to shed new light on KOP receptors as important elements during inflammation.
Collapse
|
9
|
Myers PH, Goulding DR, Wiltshire RA, McGee CA, Dickerson AB, Comins MM, Shi M, Kissling GE, Lih FB, Deterding LJ, Laber-Laird KE, Blankenship-Paris TL. Serum Buprenorphine Concentrations and Behavioral Activity in Mice After a Single Subcutaneous Injection of Simbadol, Buprenorphine SR-LAB, or Standard Buprenorphine. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2021; 60:661-666. [PMID: 34740385 DOI: 10.30802/aalas-jaalas-21-000028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Buprenorphine, an analgesic commonly used in rodent surgery, requires repeated dosing every 4 to 6 h in order to provide adequate analgesia. However, redosing requires repeated handling, which may itself cause stress. Buprenorphine SR-LAB, which reportedly maintains serum levels of buprenorphine greater than 1 ng/mL for 48 to 72 h, is commercially available. However, the viscosity of the product and small dosing volumes make accurate dosing a challenge. Simbadol is a concentrated formulation of buprenorphine hydrochloride labeled for use in cats with recommended dosing frequency of every 24 h. We measured serum concentrations over time after a single injection of this product in C57BL/6NCrl mice and compared it to standard buprenorphine (Buprenex) and Buprenorphine SR-LAB. Male and female mice were injected subcutaneously with one of the 3 buprenorphine formulations at a dose of 1 mg/kg at time 0. Groups of mice (n = 8) were euthanized at 1, 4, 8, 12, 16 h for all groups and 24 h for the Simbadol and the Buprenorphine SR-LAB. Liquid chromatography-mass spectrometry (LC-MS/MS) was used to determine concentrations of buprenorphine in each serum sample. High concentrations were observed in both Simbadol and standard buprenorphine groups one hour after injection (>50 ng/mL). These groups had similar buprenorphine concentration curves, including rates of decline. The standard buprenorphine group had mean concentrations less than 1 ng/mL by 12 h and the Simbadol group by 16 h. In contrast, the Buprenorphine SR-LAB group remained above the 1 ng/mL therapeutic threshold throughout the 24 h. In addition, clinical signs, including increased activity, that lasted for up to an hour after the injection in the Simbadol and standard buprenorphine groups. We conclude that Simbadol does not offer dosing advantages over the standard buprenorphine formulation when given at 1 mg/kg. Buprenorphine SR-LAB maintained a steady concentration of buprenorphine above 1 ng/mL for at least 24 h, and as such is a superior choice for providing long-term analgesia.
Collapse
Affiliation(s)
- Page H Myers
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - David R Goulding
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Rebecca A Wiltshire
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Christopher A McGee
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Angela B Dickerson
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Molly M Comins
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Fred B Lih
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Leesa J Deterding
- Mass Spectrometry Research and Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Kathy E Laber-Laird
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| | - Terry L Blankenship-Paris
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, DHHS, Research Triangle Park, North Carolina
| |
Collapse
|
10
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
11
|
Navarro K, Jampachaisri K, Huss M, Pacharinsak C. Lipid bound extended release buprenorphine (high and low doses) and sustained release buprenorphine effectively attenuate post-operative hypersensitivity in an incisional pain model in mice ( Mus musculus). Animal Model Exp Med 2021; 4:129-137. [PMID: 34179720 PMCID: PMC8212827 DOI: 10.1002/ame2.12157] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Extended-release buprenorphine (XR) is indicated for pain management in rodents, but little is known about its use in mice. This study aimed to investigate whether high dose XR effectively attenuates post-operative hypersensitivity better than low dose XR in a mouse model of incisional pain. Methods Mice (n = 44) were randomly assigned to 1 of 4 treatment groups: (a) saline (1 ml/kg SC, once); (b) sustained release buprenorphine (Bup-SR, 1 mg/kg SC, once); (c) low dose extended-release buprenorphine (XR-lo, 3.25 mg/kg SC, once); (d) high dose extended-release buprenorphine (XR-hi, 6.5 mg/kg SC, once). On days -1, 0 (4 hours), 1, 2, and 3, mechanical and thermal hypersensitivities were evaluated, and plasma buprenorphine concentrations were measured. Results Mechanical (days 0-2) and thermal (days 0-1) hypersensitivities were observed in the saline group. Bup-SR, XR-lo, and XR-hi attenuated mechanical hypersensitivity on days 0, 1, and 2. None of the treatment groups, except XR-Lo on day 0, attenuated thermal hypersensitivity on days 0 or 1. Plasma buprenorphine concentration peaked at 4 hours (day 0) in all treatment groups and remained greater than 1 ng/mL on days 0-2. No abnormal clinical observations or gross pathologic findings were seen in any groups. Conclusion The results indicate XR-hi did not effectively attenuate post-operative hypersensitivity better than XR-lo. Thus both 3.25 and 6.5 mg/kg XR are recommended for attenuating post-operative hypersensitivity for at least up to 48 hours in mice.
Collapse
Affiliation(s)
- Kaela Navarro
- Department of Comparative MedicineStanford UniversityStanfordCAUSA
| | | | - Monika Huss
- Department of Comparative MedicineStanford UniversityStanfordCAUSA
| | | |
Collapse
|
12
|
Repeatability analysis improves the reliability of behavioral data. PLoS One 2020; 15:e0230900. [PMID: 32240211 PMCID: PMC7117744 DOI: 10.1371/journal.pone.0230900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/11/2020] [Indexed: 11/19/2022] Open
Abstract
Reliability of data has become a major concern in the course of the reproducibility crisis. Especially when studying animal behavior, confounding factors such as novelty of the test apparatus can lead to a wide variability of data which may mask treatment effects and consequently lead to misinterpretation. Habituation to the test situation is a common practice to circumvent novelty induced increases in variance and to improve the reliability of the respective measurements. However, there is a lack of published empirical knowledge regarding reasonable habituation procedures and a method validation seems to be overdue. This study aimed at setting up a simple strategy to increase reliability of behavioral data measured in a familiar test apparatus. Therefore, exemplary data from mice tested in an Open Field (OF) arena were used to elucidate the potential of habituation and how reliability of measures can be confirmed by means of a repeatability analysis using the software R. On seven consecutive days, male C57BL/6J, BALB/cJ and 129S1/SvImJ mice were tested in an OF arena once daily and individual mouse behavior was recorded. A repeatability analysis was conducted with regard to repeated trials of habituation. Our data analysis revealed that monitoring animal behavior during habituation is important to determine when individual differences of the measurements are stable. Repeatability values from distance travelled and average activity increased over the habituation period, revealing that around 60% of the variance of the data can be explained by individual differences between mice. The first day of habituation was significantly different from the following 6 days. A three-day habituation period appeared to be sufficient in this study. Overall, these results emphasize the importance of habituation and in depth analysis of habituation data to define the correct starting point of the experiment for improving the reliability and reproducibility of experimental data.
Collapse
|