1
|
Maslard C, Arkoun M, Leroy F, Girodet S, Salon C, Prudent M. Decoding the Double Stress Puzzle: Investigating Nutrient Uptake Efficiency and Root Architecture in Soybean Under Heat- and Water-Stresses. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39558463 DOI: 10.1111/pce.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
In the context of climate change, associated with increasingly frequent water deficits and heat waves, there is an urgent need to maintain the performance of soybean, a leading legume crop worldwide, before its yield declines. The objective of this study was to explore which plant traits improve soybean tolerance to heat and/or water stress, with a focus on traits involved in plant architecture and nutrient uptake. For this purpose, two soybean genotypes were grown under controlled conditions in a high-throughput phenotyping platform where either optimal conditions, heat waves, water stress or both heat waves and water stresses were applied during the vegetative stage. By correlating architectural to functional traits, related to water, carbon allocation and nutrient absorption, we were able to explain the stress susceptibility level of the two genotypes. We have shown that water flow in the plant is central to the uptake and allocation of mineral elements in the plant, despite its modulation by stress and in a genotype-dependent manner. This cross-analysis of plant ecophysiology and plant nutrition under different stresses provides new information, especially on the importance of mineral elements in the different plant organs, and can inform future crop design, particularly under changing climatic conditions.
Collapse
Affiliation(s)
- Corentin Maslard
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, Saint Malo, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, Saint Malo, France
| | - Fanny Leroy
- Plateforme PLATIN', US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
2
|
Yang Y, Wang L, Zhang D, Che Z, Wang Q, Cui R, Zhao W, Huang F, Zhang H, Cheng H, Yu D. Soybean type-B response regulator GmRR1 mediates phosphorus uptake and yield by modifying root architecture. PLANT PHYSIOLOGY 2024; 194:1527-1544. [PMID: 37882637 DOI: 10.1093/plphys/kiad570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Phosphorus (P) plays a pivotal role in plant growth and development. Low P stress can greatly hamper plant growth. Here, we identified a QTL (named QPH-9-1), which is associated with P efficiency across multiple environments through linkage analysis and genome-wide association study. Furthermore, we successfully cloned the underlying soybean (Glycine max) gene GmRR1 (a soybean type-B Response Regulator 1) that encodes a type-B response regulator protein. Knockout of GmRR1 resulted in a substantial increase in plant height, biomass, P uptake efficiency, and yield-related traits due to the modification of root structure. In contrast, overexpression of GmRR1 in plants resulted in a decrease in these phenotypes. Further analysis revealed that knockout of GmRR1 substantially increased the levels of auxin and ethylene in roots, thereby promoting root hair formation and growth by promoting the formation of root hair primordium and lengthening the root apical meristem. Yeast two-hybrid, bimolecular fluorescence complementation, and dual-luciferase assays demonstrated an interaction between GmRR1 and Histidine-containing Phosphotransmitter protein 1. Expression analysis suggested that these proteins coparticipated in response to low P stress. Analysis of genomic sequences showed that GmRR1 underwent a selection during soybean domestication. Taken together, this study provides further insights into how plants respond to low P stress by modifying root architecture through phytohormone pathways.
Collapse
Affiliation(s)
- Yuming Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Li Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhijun Che
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Qing Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifan Cui
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Wei Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengyou Zhang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Hao Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyue Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Guan ZH, Cao Z, Li XG, Scholten T, Kühn P, Wang L, Yu RP, He JS. Soil phosphorus availability mediates the effects of nitrogen addition on community- and species-level phosphorus-acquisition strategies in alpine grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167630. [PMID: 37806588 DOI: 10.1016/j.scitotenv.2023.167630] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Plants modulate their phosphorus (P) acquisition strategies (i.e., change in root morphology, exudate composition, and mycorrhizal symbiosis) to adapt to varying soil P availability. However, how community- and species-level P-acquisition strategies change in response to nitrogen (N) supply under different P levels remains unclear. To address this research gap, we conducted an 8-year fully factorial field experiment in an alpine grassland on the Qinghai-Tibet Plateau (QTP) combined with a 12-week glasshouse experiment with four treatments (N addition, P addition, combined N and P addition, and control). In the field experiment (community-level), when P availability was low, N addition increased the release of carboxylate from roots and led to a higher percentage of colonisation by arbuscular mycorrhizal fungi (AMF), along with decreased root length, specific root length (SRL), and total root length colonised by AMF. When P availability was higher, N addition resulted in an increase in the plant's demand for P, accompanied by an increase in root diameter and phosphatase activity. In the glasshouse experiment (species-level), the P-acquisition strategies of grasses and sedge in response to N addition alone mirrored those observed in the field, exhibiting a reduction in root length, SRL, and total root length colonised, but an increased percentage of AMF colonisation. Forbs responded to N addition alone with increased investment in all P-acquisition strategies, especially increased root biomass and length. P-acquisition strategies showed consistent changes among all species in response to combined N and P addition. Our results suggest that increased carboxylate release and AMF colonisation rate are common P-acquisition strategies of plants in alpine grasslands under N-induced P limitation. The main difference in P-acquisition strategies between forbs and grasses/sedges in response to N addition under low-P conditions was an increase in root biomass and length.
Collapse
Affiliation(s)
- Zhen-Huan Guan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zuonan Cao
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen 72070, Germany
| | - Xiao Gang Li
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen 72070, Germany
| | - Peter Kühn
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen 72070, Germany
| | - Lin Wang
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Rui-Peng Yu
- Beijing Key Laboratory of Biodiversity and Organic Farming, Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Lin LY, Chow HX, Chen CH, Mitsuda N, Chou WC, Liu TY. Role of autophagy-related proteins ATG8f and ATG8h in the maintenance of autophagic activity in Arabidopsis roots under phosphate starvation. FRONTIERS IN PLANT SCIENCE 2023; 14:1018984. [PMID: 37434600 PMCID: PMC10331476 DOI: 10.3389/fpls.2023.1018984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/23/2023] [Indexed: 07/13/2023]
Abstract
Nutrient starvation-induced autophagy is a conserved process in eukaryotes. Plants defective in autophagy show hypersensitivity to carbon and nitrogen limitation. However, the role of autophagy in plant phosphate (Pi) starvation response is relatively less explored. Among the core autophagy-related (ATG) genes, ATG8 encodes a ubiquitin-like protein involved in autophagosome formation and selective cargo recruitment. The Arabidopsis thaliana ATG8 genes, AtATG8f and AtATG8h, are notably induced in roots under low Pi. In this study, we show that such upregulation correlates with their promoter activities and can be suppressed in the phosphate response 1 (phr1) mutant. Yeast one-hybrid analysis failed to attest the binding of the AtPHR1 transcription factor to the promoter regions of AtATG8f and AtATG8h. Dual luciferase reporter assays in Arabidopsis mesophyll protoplasts also indicated that AtPHR1 could not transactivate the expression of both genes. Loss of AtATG8f and AtATG8h leads to decreased root microsomal-enriched ATG8 but increased ATG8 lipidation. Moreover, atg8f/atg8h mutants exhibit reduced autophagic flux estimated by the vacuolar degradation of ATG8 in the Pi-limited root but maintain normal cellular Pi homeostasis with reduced number of lateral roots. While the expression patterns of AtATG8f and AtATG8h overlap in the root stele, AtATG8f is more strongly expressed in the root apex and root hair and remarkably at sites where lateral root primordia develop. We hypothesize that Pi starvation-induction of AtATG8f and AtATG8h may not directly contribute to Pi recycling but rely on a second wave of transcriptional activation triggered by PHR1 that fine-tunes cell type-specific autophagic activity.
Collapse
Affiliation(s)
- Li-Yen Lin
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Xuan Chow
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hao Chen
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Wen-Chun Chou
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Yin Liu
- Institute of Bioinformatics and Structural Biology, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, College of Life Sciences and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Zhang H, Zhao D, Tang Z, Zhang Y, Zhang K, Dong J, Wang F. Exogenous brassinosteroids promotes root growth, enhances stress tolerance, and increases yield in maize. PLANT SIGNALING & BEHAVIOR 2022; 17:2095139. [PMID: 35775499 PMCID: PMC9255028 DOI: 10.1080/15592324.2022.2095139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) regulate of maize (Zea mays L.) growth, but the underlying molecular mechanism remains unclear. In this study, we used a multi-disciplinary approach to determine how BRs regulate maize morphology and physiology during development. Treatment with the BRs promoted primary root the elongation and growth during germination, and the early development of lateral roots. BRs treatment during the middle growth stage increased the levels of various stress resistance factors, and enhanced resistance to lodging, likely by protecting the plant against stem rot and sheath rot. BRs had no significant effect on plant height during late growth, but it increased leaf angle and photosynthetic efficiency, as well as yield and quality traits. Our findings increase our understanding of the regulatory effects of BR on maize root growth and development and the mechanism by which BR improves disease resistance, which could further the potential for using BR to improve maize yield.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Dan Zhao
- College of Life Sciences, Hengshui University, Hengshui, Hebei, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ziyan Tang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Ying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- Pear Engineering and Technology Research Center of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengru Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
- CONTACT Fengru Wang State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei071001, China
| |
Collapse
|
6
|
Boonyaves K, Wu TY, Dong Y, Urano D. Interplay between ARABIDOPSIS Gβ and WRKY transcription factors differentiates environmental stress responses. PLANT PHYSIOLOGY 2022; 190:813-827. [PMID: 35748759 PMCID: PMC9434291 DOI: 10.1093/plphys/kiac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Different environmental stresses often evoke similar physiological disorders such as growth retardation; however, specific consequences reported among individual stresses indicate potential mechanisms to distinguish different stress types in plants. Here, we examined mechanisms to differentiate between stress types in Arabidopsis (Arabidopsis thaliana). Gene expression patterns recapitulating several abiotic stress responses suggested abscisic acid (ABA) as a mediator of the common stress response, while stress type-specific responses were related to metabolic adaptations. Transcriptome and metabolome analyses identified Arabidopsis Gβ (AGB1) mediating the common stress-responsive genes and primary metabolisms under nitrogen excess. AGB1 regulated the expressions of multiple WRKY transcription factors. Gene Ontology and mutant analyses revealed different roles among WRKYs: WRKY40 is involved in ABA and common stress responses, while WRKY75 regulates metabolic processes. The AGB1-WRKY signaling module controlled developmental plasticity in roots under nitrogen excess. Signal transmission from AGB1 to a selective set of WRKYs would be essential to evoke unique responses to different types of stresses.
Collapse
Affiliation(s)
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | |
Collapse
|
7
|
Satheesh V, Zhang J, Li J, You Q, Zhao P, Wang P, Lei M. High transcriptome plasticity drives phosphate starvation responses in tomato. STRESS BIOLOGY 2022; 2:18. [PMID: 37676521 PMCID: PMC10441952 DOI: 10.1007/s44154-022-00035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 09/08/2023]
Abstract
Tomato is an important vegetable crop and fluctuating available soil phosphate (Pi) level elicits several morpho-physiological responses driven by underlying molecular responses. Therefore, understanding these molecular responses at the gene and isoform levels has become critical in the quest for developing crops with improved Pi use efficiency. A quantitative time-series RNA-seq analysis was performed to decipher the global transcriptomic changes that accompany Pi starvation in tomato. Apart from changes in the expression levels of genes, there were also alterations in the expression of alternatively-spliced transcripts. Physiological responses such as anthocyanin accumulation, reactive oxygen species generation and cell death are obvious 7 days after Pi deprivation accompanied with the maximum amount of transcriptional change in the genome making it an important stage for in-depth study while studying Pi stress responses (PSR). Our study demonstrates that transcriptomic changes under Pi deficiency are dynamic and complex in tomato. Overall, our study dwells on the dynamism of the transcriptome in eliciting a response to adapt to low Pi stress and lays it bare. Findings from this study will prove to be an invaluable resource for researchers using tomato as a model for understanding nutrient deficiency.
Collapse
Affiliation(s)
- Viswanathan Satheesh
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Jieqiong Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- School of Life Science and Technology, Tongji University, Shanghai, 200092 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinkai Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qiuye You
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Panfeng Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Peng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
8
|
Prasad G, Mittal S, Kumar A, Chauhan D, Sahu TK, Kumar S, Singh R, Yadav MC, Singh AK. Transcriptome Analysis of Bread Wheat Genotype KRL3-4 Provides a New Insight Into Regulatory Mechanisms Associated With Sodicity (High pH) Tolerance. Front Genet 2022; 12:782366. [PMID: 35222517 PMCID: PMC8864244 DOI: 10.3389/fgene.2021.782366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Globally, sodicity is one of the major abiotic stresses limiting the wheat productivity in arid and semi-arid regions. With due consideration, an investigation of the complex gene network associated with sodicity stress tolerance is required to identify transcriptional changes in plants during abiotic stress conditions. For this purpose, we sequenced the flag leaf transcriptome of a highly tolerant bread wheat germplasm (KRL 3-4) in order to extend our knowledge and better understanding of the molecular basis of sodicity tolerance. A total of 1,980 genes were differentially expressed in the flag leaf due to sodicity stress. Among these genes, 872 DEGs were upregulated and 1,108 were downregulated. Furthermore, annotation of DEGs revealed that a total of 1,384 genes were assigned to 2,267 GO terms corresponding to 502 (biological process), 638 (cellular component), and 1,127 (molecular function). GO annotation also revealed the involvement of genes related to several transcription factors; the important ones are expansins, peroxidase, glutathione-S-transferase, and metal ion transporters in response to sodicity. Additionally, from 127 KEGG pathways, only 40 were confidently enriched at a p-value <0.05 covering the five main KEGG categories of metabolism, i.e., environmental information processing, genetic information processing, organismal systems, and cellular processes. Most enriched pathways were prioritized using MapMan software and revealed that lipid metabolism, nutrient uptake, and protein homeostasis were paramount. We have also found 39 SNPs that mapped to the important sodicity stress-responsive genes associated with various pathways such as ROS scavenging, serine/threonine protein kinase, calcium signaling, and metal ion transporters. In a nutshell, only 19 important candidate genes contributing to sodicity tolerance in bread wheat were identified, and these genes might be helpful for better understanding and further improvement of sodicity tolerance in bread wheat.
Collapse
Affiliation(s)
- Geeta Prasad
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | - Shikha Mittal
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | - Arvind Kumar
- ICAR-Central Soil Salinity Research Institute, Karnal, India
| | - Divya Chauhan
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | | | - Sundeep Kumar
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-NBPGR, New Delhi, India
| | | | | |
Collapse
|
9
|
New insights into the role of chrysanthemum calcineurin B-like interacting protein kinase CmCIPK23 in nitrate signaling in Arabidopsis roots. Sci Rep 2022; 12:1018. [PMID: 35046428 PMCID: PMC8770472 DOI: 10.1038/s41598-021-04758-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Nitrate is an important source of nitrogen and also acts as a signaling molecule to trigger numerous physiological, growth, and developmental processes throughout the life of the plant. Many nitrate transporters, transcription factors, and protein kinases participate in the regulation of nitrate signaling. Here, we identified a gene encoding the chrysanthemum calcineurin B-like interacting protein kinase CmCIPK23, which participates in nitrate signaling pathways. In Arabidopsis, overexpression of CmCIPK23 significantly decreased lateral root number and length and primary root length compared to the WT when grown on modified Murashige and Skoog medium with KNO3 as the sole nitrogen source (modified MS). The expression of nitrate-responsive genes differed significantly between CmCIPK23-overexpressing Arabidopsis (CmCIPK23-OE) and the WT after nitrate treatment. Nitrate content was significantly lower in CmCIPK23-OE roots, which may have resulted from reduced nitrate uptake at high external nitrate concentrations (≥ 1 mM). Nitrate reductase activity and the expression of nitrate reductase and glutamine synthase genes were lower in CmCIPK23-OE roots. We also found that CmCIPK23 interacted with the transcription factor CmTGA1, whose Arabidopsis homolog regulates the nitrate response. We inferred that CmCIPK23 overexpression influences root development on modified MS medium, as well as root nitrate uptake and assimilation at high external nitrate supply. These findings offer new perspectives on the mechanisms by which the chrysanthemum CBL interacting protein kinase CmCIPK23 influences nitrate signaling.
Collapse
|
10
|
Lopez G, Ahmadi SH, Amelung W, Athmann M, Ewert F, Gaiser T, Gocke MI, Kautz T, Postma J, Rachmilevitch S, Schaaf G, Schnepf A, Stoschus A, Watt M, Yu P, Seidel SJ. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1067498. [PMID: 36684760 PMCID: PMC9846339 DOI: 10.3389/fpls.2022.1067498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 05/10/2023]
Abstract
Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.
Collapse
Affiliation(s)
- Gina Lopez
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- *Correspondence: Gina Lopez, ; Sabine Julia Seidel,
| | - Seyed Hamid Ahmadi
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran
- Drought Research Center, Shiraz University, Shiraz, Iran
| | - Wulf Amelung
- Soil Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Miriam Athmann
- Organic Farming and Cropping Systems, University of Kassel, Witzenhausen, Germany
| | - Frank Ewert
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Directorate, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Thomas Gaiser
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Martina I. Gocke
- Soil Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Timo Kautz
- Crop Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Johannes Postma
- Institute of Bio-Geosciences (IBG-2, Plant Sciences), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shimon Rachmilevitch
- Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Gabriel Schaaf
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Andrea Schnepf
- Institute for Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alixandrine Stoschus
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Michelle Watt
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, VIC, Australia
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sabine Julia Seidel
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- *Correspondence: Gina Lopez, ; Sabine Julia Seidel,
| |
Collapse
|
11
|
Comparative Study between Traditional and Nano Calcium Phosphate Fertilizers on Growth and Production of Snap Bean ( Phaseolus vulgaris L.) Plants. NANOMATERIALS 2021; 11:nano11112913. [PMID: 34835677 PMCID: PMC8625305 DOI: 10.3390/nano11112913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Recently, nanofertilizers are being tested as a new technology, either for soil or foliar applications, to improve food production and with a reduced environmental impact. Nano calcium phosphate (NCaP) was successfully synthesized, characterized and applied in this study. A pot experiment was carried out in two successive seasons in 2016 and 2017 on (Phaseolus vulgaris L.) plants to obtain the best phosphorus treatments. The results were applied in a field experiment during the 2018-2019 season. Single superphosphate (SSP) at 30 and 60 kg P2O5 fed-1 and NCaP at 10%, 20% and 30% from the recommended dose were applied to the soil. Foliar application involved both monoammonium phosphate (MAP) at one rate of 2.5 g L-1 and NCaP at 5% and 10% from the MAP rate. The results of all experiments showed that NCaP significantly increased the shoot and root dry weights, the nutrient content in the shoot and root, the yield components, the nutrient concentration and crude protein percentage in pods of the snap bean plants compared with traditional P. The greatest increase was obtained from a 20% NCaP soil application in combination with a 5% NCaP foliar application. The present study recommends using NCaP as an alternative source of P to mitigate the negative effects of traditional sources.
Collapse
|
12
|
Zhang F, He W, Yuan Q, Wei K, Ruan L, Wang L, Cheng H. Transcriptome analysis identifies CsNRT genes involved in nitrogen uptake in tea plants, with a major role of CsNRT2.4. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:970-979. [PMID: 34571390 DOI: 10.1016/j.plaphy.2021.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Tea trees have a high demand for nitrogen (N) fertilizer to improve the yield and quality of tea. In this research, transcriptome analysis revealed the effect of N starvation and resupply upon N uptake in tea plants. We identified 4098 differentially expressed genes (DEGs) that were significantly enriched in amino acid and N metabolism and were extensively mapped to the tea genome. The CsNRT gene family plays vital roles in the nitrogen uptake of tea plants. The full CDS sequences of CsNRT1.1, CsNRT1.2, CsNRT1.5, CsNRT1.7, CsNRT2.4, CsNRT2.5, CsNRT3.1 and CsNRT3.2 were cloned. One-year-old cutting seedlings of Zhongcha302 (ZC302) were selected for hydroponic culture and were used for gene expression analysis. The seedlings were resupplied with 0.2 and 2 mM N after N starvation. The results of the gene expression under different N treatments and in various tissues indicated that the expression of CsNRT2.4 was highly expressed in tea roots and was greatly induced by N. Overexpressed CsNRT2.4 in transgenic Arabidopsis thaliana increased the root lengths and fresh weights and improved the NO3- uptake rate in the Arabidopsis roots at a low NO3- level. Thus, we inferred that CsNRT2.4 was a key gene for N uptake in tea plant roots. This study provides new insights into the molecular mechanisms of tea plant responses to N resupply and reveals hub genes for improving nitrogen usage efficiency (NUE) in tea plants.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei He
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qingyun Yuan
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
13
|
Shen N, Hou S, Tu G, Lan W, Jing Y. Transcription Factor WRKY33 Mediates the Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Arabidopsis Roots. Int J Mol Sci 2021; 22:ijms22179275. [PMID: 34502184 PMCID: PMC8431420 DOI: 10.3390/ijms22179275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
The remodeling of root architecture is regarded as a major development to improve the plant's adaptivity to phosphate (Pi)-deficient conditions. The WRKY transcription factors family has been reported to regulate the Pi-deficiency-induced systemic responses by affecting Pi absorption or transportation. Whether these transcription factors act as a regulator to mediate the Pi-deficiency-induced remodeling of root architecture, a typical local response, is still unclear. Here, we identified an Arabidopsis transcription factor, WRKY33, that acted as a negative regulator to mediate the Pi-deficiency-induced remodeling of root architecture. The disruption of WRKY33 in wrky33-2 mutant increased the plant's low Pi sensitivity by further inhibiting the primary root growth and promoting the formation of root hair. Furthermore, we revealed that WRKY33 negatively regulated the remodeling of root architecture by controlling the transcriptional expression of ALMT1 under Pi-deficient conditions, which further mediated the Fe3+ accumulation in root tips to inhibit the root growth. In conclusion, this study demonstrates a previously unrecognized signaling crosstalk between WRKY33 and the ALMT1-mediated malate transport system to regulate the Pi deficiency responses.
Collapse
Affiliation(s)
- Nuo Shen
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (N.S.); (S.H.); (G.T.)
| | - Sifan Hou
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (N.S.); (S.H.); (G.T.)
| | - Guoqing Tu
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (N.S.); (S.H.); (G.T.)
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, China; (N.S.); (S.H.); (G.T.)
- Correspondence: (W.L.); (Y.J.); Tel.: + 025-89681357 (W.L.)
| | - Yanping Jing
- College of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence: (W.L.); (Y.J.); Tel.: + 025-89681357 (W.L.)
| |
Collapse
|
14
|
Wang QJ, Yuan Y, Liao Z, Jiang Y, Wang Q, Zhang L, Gao S, Wu F, Li M, Xie W, Liu T, Xu J, Liu Y, Feng X, Lu Y. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. THE PLANT GENOME 2019; 12:1-13. [PMID: 33016582 DOI: 10.3835/plantgenome2019.06.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study. Hap5, harboring 12 favorable SNPs, could enhance strong root systems and P absorption under low-P stress. Phosphorus is an essential macronutrient required for normal plant growth and development. Determining the genetic basis of root traits will enhance our understanding of maize's (Zea mays L.) tolerance to low-P stress. Here, we identified significant phenotypic differences for 13 traits in maize seedlings subjected to P-sufficient and P-deficient conditions. Six extremely sensitive and seven low-P stress tolerant inbreds were selected from 356 inbred lines of maize. No significant differences were observed between temperate and tropical-subtropical groups with respect to trait ratios associated with the adaptation to low-P stress. The broad-sense heritability of these traits ranged from relatively moderate (0.59) to high (0.90). Through genome-wide association mapping with 541,575 informative single nucleotide polymorphisms (SNPs), 551, 1140 and 1157 significant SNPs were detected for the 13 traits in 2012, 2016 and both years combined, respectively, along with 23 shared candidate genes, seven of which overlapped with reported quantitative trait loci and genes for low-P stress. Five haplotypes located in candidate gene GRMZM2G009544 were identified; among these, Hap5, harboring 12 favorable SNP alleles, showed significantly greater values for the root traits studied than the other four haplotypes under both experimental conditions. The candidate genes and favorable haplotypes and alleles identified here provide promising resources for genetic studies and molecular breeding for improving tolerance to abiotic stress in maize.
Collapse
Affiliation(s)
- Qing-Jun Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yibing Yuan
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Zhengqiao Liao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yi Jiang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Litian Zhang
- College of Chuancha, Yibin Univ., Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Menglu Li
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Wubing Xie
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Tianhong Liu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yaxi Liu
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| |
Collapse
|
15
|
Arifuzzaman M, Oladzadabbasabadi A, McClean P, Rahman M. Shovelomics for phenotyping root architectural traits of rapeseed/canola (Brassica napus L.) and genome-wide association mapping. Mol Genet Genomics 2019; 294:985-1000. [PMID: 30968249 DOI: 10.1007/s00438-019-01563-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/03/2019] [Indexed: 01/22/2023]
Abstract
Root system in plants plays an important role in mining moisture and nutrients from the soil and is positively correlated to yield in many crops including rapeseed/canola (Brassica napus L.). Substantial phenotypic diversity in root architectural traits among the B. napus growth types leads to a scope of root system improvement in breeding populations. In this study, 216 diverse genotypes were phenotyped for five different root architectural traits following shovelomics approach in the field condition during 2015 and 2016. A single nucleotide polymorphism (SNP) marker panel consisting of 30,262 SNPs was used to conduct genome-wide association study to detect marker/trait association. A total of 31 significant marker loci were identified at 0.01 percentile tail P value cutoff for different root traits. Six marker loci for soil-level taproot diameter (R1Dia), six loci for belowground taproot diameter (R2Dia), seven loci for number of primary root branches (PRB), eight loci for root angle, and eight loci for root score (RS) were detected in this study. Several markers associated with root diameters R1Dia and R2Dia were also associated with PRB and RS. Significant phenotypic correlation between these traits was observed in both environments. Therefore, taproot diameter appears to be a major determinant of the canola root system architecture and can be used as proxy for other root traits. Fifteen candidate genes related to root traits and root development were detected within 100 kbp upstream and downstream of different significant markers. The identified markers associated with different root architectural traits can be considered for marker-assisted selection for root traits in canola in future.
Collapse
Affiliation(s)
| | | | - Phillip McClean
- Departemnt of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Mukhlesur Rahman
- Departemnt of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
16
|
Shukla V, Lombardi L, Iacopino S, Pencik A, Novak O, Perata P, Giuntoli B, Licausi F. Endogenous Hypoxia in Lateral Root Primordia Controls Root Architecture by Antagonizing Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2019; 12:538-551. [PMID: 30641154 DOI: 10.1016/j.molp.2019.01.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 05/27/2023]
Abstract
As non-photosynthesizing organs, roots are dependent on diffusion of oxygen from the external environment and, in some instances, from the shoot for their aerobic metabolism. Establishment of hypoxic niches in the developing tissues of plants has been postulated as a consequence of insufficient diffusion of oxygen to satisfy the demands throughout development. Here, we report that such niches are established at specific stages of lateral root primordia development in Arabidopsis thaliana grown under aerobic conditions. Using gain- and loss-of-function mutants, we show that ERF-VII transcription factors, which mediate hypoxic responses, control root architecture by acting in cells with a high level of auxin signaling. ERF-VIIs repress the expression of the auxin-induced genes LBD16, LBD18, and PUCHI, which are essential for lateral root development, by binding to their promoters. Our results support a model in which the establishment of hypoxic niches in the developing lateral root primordia contributes to the shutting down of key auxin-induced genes and regulates the production of lateral roots.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Sergio Iacopino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Ales Pencik
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS & Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | | | - Beatrice Giuntoli
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| | - Francesco Licausi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Biology Department, University of Pisa, Pisa, Italy.
| |
Collapse
|
17
|
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. FRONTIERS IN PLANT SCIENCE 2019; 10:157. [PMID: 30881364 PMCID: PMC6407669 DOI: 10.3389/fpls.2019.00157] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/29/2019] [Indexed: 05/19/2023]
Abstract
Root exudation is an important process determining plant interactions with the soil environment. Many studies have linked this process to soil nutrient mobilization. Yet, it remains unresolved how exudation is controlled and how exactly and under what circumstances plants benefit from exudation. The majority of root exudates including primary metabolites (sugars, amino acids, and organic acids) are believed to be passively lost from the root and used by rhizosphere-dwelling microbes. In this review, we synthetize recent advances in ecology and plant biology to explain and propose mechanisms by which root exudation of primary metabolites is controlled, and what role their exudation plays in plant nutrient acquisition strategies. Specifically, we propose a novel conceptual framework for root exudates. This framework is built upon two main concepts: (1) root exudation of primary metabolites is driven by diffusion, with plants and microbes both modulating concentration gradients and therefore diffusion rates to soil depending on their nutritional status; (2) exuded metabolite concentrations can be sensed at the root tip and signals are translated to modify root architecture. The flux of primary metabolites through root exudation is mostly located at the root tip, where the lack of cell differentiation favors diffusion of metabolites to the soil. We show examples of how the root tip senses concentration changes of exuded metabolites and translates that into signals to modify root growth. Plants can modify the concentration of metabolites either by controlling source/sink processes or by expressing and regulating efflux carriers, therefore challenging the idea of root exudation as a purely unregulated passive process. Through root exudate flux, plants can locally enhance concentrations of many common metabolites, which can serve as sensors and integrators of the plant nutritional status and of the nutrient availability in the surrounding environment. Plant-associated micro-organisms also constitute a strong sink for plant carbon, thereby increasing concentration gradients of metabolites and affecting root exudation. Understanding the mechanisms of and the effects that environmental stimuli have on the magnitude and type of root exudation will ultimately improve our knowledge of processes determining soil CO2 emissions, ecosystem functioning, and how to improve the sustainability of agricultural production.
Collapse
Affiliation(s)
- Alberto Canarini
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
- *Correspondence: Alberto Canarini,
| | - Christina Kaiser
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| | - Andrew Merchant
- Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW, Australia
| | - Andreas Richter
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| | - Wolfgang Wanek
- Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry Meets Microbiology’, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Ding Y, Wang Z, Ren M, Zhang P, Li Z, Chen S, Ge C, Wang Y. Iron and callose homeostatic regulation in rice roots under low phosphorus. BMC PLANT BIOLOGY 2018; 18:326. [PMID: 30514218 PMCID: PMC6278065 DOI: 10.1186/s12870-018-1486-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phosphorus (Pi) deficiency induces root morphological remodeling in plants. The primary root length of rice increased under Pi deficiency stress; however, the underlying mechanism is not well understood. In this study, transcriptome analysis (RNA-seq) and Real-time quantitative PCR (qRT-PCR) techniques were combined with the determination of physiological and biochemical indexes to research the regulation mechanisms of iron (Fe) accumulation and callose deposition in rice roots, to illuminate the relationship between Fe accumulation and primary root growth under Pi deficient conditions. RESULTS Induced expression of LPR1 genes was observed under low Pi, which also caused Fe accumulation, resulting in iron plaque formation on the root surface in rice; however, in contrast to Arabidopsis, low Pi promoted primary root lengthening in rice. This might be due to Fe accumulation and callose deposition being still appropriately regulated under low Pi. The down-regulated expression of Fe-uptake-related key genes (including IRT, NAS, NAAT, YSLs, OsNRAMP1, ZIPs, ARF, and Rabs) inhibited iron uptake pathways I, II, and III in rice roots under low Pi conditions. In contrast, due to the up-regulated expression of the VITs gene, Fe was increasingly stored in both root vacuoles and cell walls. Furthermore, due to induced expression and increased activity of β-1-3 glucanase, callose deposition was more controlled in low Pi treated rice roots. In addition, low Pi and low Fe treatment still caused primary root lengthening. CONCLUSIONS The obtained results indicate that Low phosphorus induces iron and callose homeostatic regulation in rice roots. Because of the Fe homeostatic regulation, Fe plays a small role in rice root morphological remodeling under low Pi.
Collapse
Affiliation(s)
- Yan Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
- College of Materials and chemical engineering, Bengbu University, 1866 Caoshan Road, Bengbu, 233000 People’s Republic of China
| | - Zegang Wang
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Menglian Ren
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Ping Zhang
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Zhongnan Li
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Sheng Chen
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Cailin Ge
- College of Bioscience and Biotechnology, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| | - Yulong Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou University, 88 Daxue South Road, Yangzhou, 225009 People’s Republic of China
| |
Collapse
|
19
|
Dreher D, Yadav H, Zander S, Hause B. Is there genetic variation in mycorrhization of Medicago truncatula? PeerJ 2017; 5:e3713. [PMID: 28894638 PMCID: PMC5592082 DOI: 10.7717/peerj.3713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/28/2017] [Indexed: 12/30/2022] Open
Abstract
Differences in the plant's response among ecotypes or accessions are often used to identify molecular markers for the respective process. In order to analyze genetic diversity of Medicago truncatula in respect to interaction with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis, mycorrhizal colonization was evaluated in 32 lines of the nested core collection representing the genetic diversity of the SARDI collection. All studied lines and the reference line Jemalong A17 were inoculated with R. irregularis and the mycorrhization rate was determined at three time points after inoculation. There were, however, no reliable and consistent differences in mycorrhization rates among all lines. To circumvent possible overlay of potential differences by use of the highly effective inoculum, native sandy soil was used in an independent experiment. Here, significant differences in mycorrhization rates among few of the lines were detectable, but the overall high variability in the mycorrhization rate hindered clear conclusions. To narrow down the number of lines to be tested in more detail, root system architecture (RSA) of in vitro-grown seedlings of all lines under two different phosphate (Pi) supply condition was determined in terms of primary root length and number of lateral roots. Under high Pi supply (100 µM), only minor differences were observed, whereas in response to Pi-limitation (3 µM) several lines exhibited a drastically changed number of lateral roots. Five lines showing the highest alterations or deviations in RSA were selected and inoculated with R. irregularis using two different Pi-fertilization regimes with either 13 mM or 3 mM Pi. Mycorrhization rate of these lines was checked in detail by molecular markers, such as transcript levels of RiTubulin and MtPT4. Under high phosphate supply, the ecotypes L000368 and L000555 exhibited slightly increased fungal colonization and more functional arbuscules, respectively. To address the question, whether capability for mycorrhizal colonization might be correlated to general invasion by microorganisms, selected lines were checked for infection by the root rot causing pathogen, Aphanoymces euteiches. The mycorrhizal colonization phenotype, however, did not correlate with the resistance phenotype upon infection with two strains of A. euteiches as L000368 showed partial resistance and L000555 exhibited high susceptibility as determined by quantification of A. euteiches rRNA within infected roots. Although there is genetic diversity in respect to pathogen infection, genetic diversity in mycorrhizal colonization of M. truncatula is rather low and it will be rather difficult to use it as a trait to access genetic markers.
Collapse
Affiliation(s)
- Dorothée Dreher
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Heena Yadav
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Sindy Zander
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
20
|
Wang Y, Zhang J, Cui W, Guan C, Mao W, Zhang Z. Improvement in Fruit Quality by Overexpressing miR399a in Woodland Strawberry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7361-7370. [PMID: 28783952 DOI: 10.1021/acs.jafc.7b01687] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fruit quality is an important trait in strawberry and is determined by many factors. The soluble solid content in strawberry fruits is positively related to the phosphorus content. MicroRNA399 (miR399) is involved in the regulation of phosphate (Pi) homeostasis. However, the effect of miR399 on strawberry quality remains unknown. In this study, miR399a-overexpressing transgenic woodland strawberries (Fragaria vesca) were obtained via an Agrobacterium-mediated transformation. The phosphorus (P) content was 1.1-fold to 2.1-fold higher in the leaves and fruits of the miR399a-overexpressing plants than in the wild type (WT). However, the P content in the miR399a-overexpressing plants was decreased by 25% to 45% in the roots. The primary root length of the transgenic lines in both the high-Pi and low-Pi media was shorter than that of the WT. Interestingly, the transgenic lines in pots under Pi-sufficient conditions grew better than the WT, and the fruit quality, including the contents of fructose and glucose and soluble solid, was significantly higher in the transgenic lines than in the WT. The overexpression of miR399a in strawberry can be used to improve the parameters involved in fruit quality and provides information regarding breeding nutrient-improved strawberry.
Collapse
Affiliation(s)
- Yan Wang
- College of Horticulture, Shenyang Agricultural University , Shenyang 110866, China
| | - Junxiang Zhang
- College of Horticulture, Shenyang Agricultural University , Shenyang 110866, China
| | - Weixu Cui
- College of Horticulture, Shenyang Agricultural University , Shenyang 110866, China
| | - Chunyue Guan
- College of Horticulture, Shenyang Agricultural University , Shenyang 110866, China
| | - Wenjuan Mao
- College of Horticulture, Shenyang Agricultural University , Shenyang 110866, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University , Shenyang 110866, China
| |
Collapse
|
21
|
Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-Arredondo D, Wissuwa M, Delhaize E, Rouached H. Improving phosphorus use efficiency: a complex trait with emerging opportunities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:868-885. [PMID: 27859875 DOI: 10.1111/tpj.13423] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is one of the essential nutrients for plants, and is indispensable for plant growth and development. P deficiency severely limits crop yield, and regular fertilizer applications are required to obtain high yields and to prevent soil degradation. To access P from the soil, plants have evolved high- and low-affinity Pi transporters and the ability to induce root architectural changes to forage P. Also, adjustments of numerous cellular processes are triggered by the P starvation response, a tightly regulated process in plants. With the increasing demand for food as a result of a growing population, the demand for P fertilizer is steadily increasing. Given the high costs of fertilizers and in light of the fact that phosphate rock, the source of P fertilizer, is a finite natural resource, there is a need to enhance P fertilizer use efficiency in agricultural systems and to develop plants with enhanced Pi uptake and internal P-use efficiency (PUE). In this review we will provide an overview of continuing relevant research and highlight different approaches towards developing crops with enhanced PUE. In this context, we will summarize our current understanding of root responses to low phosphorus conditions and will emphasize the importance of combining PUE with tolerance of other stresses, such as aluminum toxicity. Of the many genes associated with Pi deficiency, this review will focus on those that hold promise or are already at an advanced stage of testing (OsPSTOL1, AVP1, PHO1 and OsPHT1;6). Finally, an update is provided on the progress made exploring alternative technologies, such as phosphite fertilizer.
Collapse
Affiliation(s)
- Sigrid Heuer
- University of Adelaide / Australian Centre for Plant Functional Genomics (ACPFG), PMB 1, Glen Osmond, 5064, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun W, Qian X, Gu J, Wang XJ, Li Y, Duan ML. Effects of inoculation with organic-phosphorus-mineralizing bacteria on soybean (Glycine max) growth and indigenous bacterial community diversity. Can J Microbiol 2017; 63:392-401. [PMID: 28177785 DOI: 10.1139/cjm-2016-0758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Three different organic-phosphorus-mineralizing bacteria (OPMB) strains were inoculated to soil planted with soybean (Glycine max), and their effects on soybean growth and indigenous bacterial community diversity were investigated. Inoculation with Pseudomonas fluorescens Z4-1 and Brevibacillus agri L7-1 increased organic phosphorus degradation by 22% and 30%, respectively, compared with the control at the mature stage. Strains P. fluorescens Z4-1 and B. agri L7-1 significantly improved the soil alkaline phosphatase activity, average well color development, and the soybean root activity. Terminal restriction fragment length polymorphism analysis demonstrated that P. fluorescens Z4-1 and B. agri L7-1 could persist in the soil at relative abundances of 2.0%-6.4% throughout soybean growth. Thus, P. fluorescens Z4-1 and B. agri L7-1 could potentially be used in organic-phosphorus-mineralizing biofertilizers. OPMB inoculation altered the genetic structure of the soil bacterial communities but had no apparent influence on the carbon source utilization profiles of the soil bacterial communities. Principal components analysis showed that the changes in the carbon source utilization profiles of bacterial community depended mainly on the plant growth stages rather than inoculation with OPMB. The results help to understand the evolution of the soil bacterial community after OPMB inoculation.
Collapse
Affiliation(s)
- Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiao-Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Man-Li Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
23
|
Yuan W, Zhang D, Song T, Xu F, Lin S, Xu W, Li Q, Zhu Y, Liang J, Zhang J. Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1731-1741. [PMID: 28369625 PMCID: PMC5441905 DOI: 10.1093/jxb/erx040] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phosphorus deficiency in soil is one of the major limiting factors for plant growth. Plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the plant response to low-phosphorus stress (LP). However, few details are known regarding the action of PM H+-ATPase in mediating root proton (H+) flux and root growth under LP. In this study, we investigated the involvement and function of different Arabidopsis PM H+-ATPase genes in root H+ flux in response to LP. First, we examined the expressions of all Arabidopsis PM H+-ATPase gene family members (AHA1-AHA11) under LP. Expression of AHA2 and AHA7 in roots was enhanced under this condition. When the two genes were deficient in their respective Arabidopsis mutant plants, root growth and responses of the mutants to LP were highly inhibited compared with the wild-type plant. AHA2-deficient plants exhibited reduced primary root elongation and lower H+ efflux in the root elongation zone. AHA7-deficient plants exhibited reduced root hair density and lower H+ efflux in the root hair zone. The modulation of H+ efflux by AHA2 or AHA7 was affected by the action of 14-3-3 proteins and/or auxin regulatory pathways in the context of root growth and response to LP. Our results suggest that under LP conditions, AHA2 acts mainly to modulate primary root elongation by mediating H+ efflux in the root elongation zone, whereas AHA7 plays an important role in root hair formation by mediating H+ efflux in the root hair zone.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Dongping Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Yangzhou University, Jiangsu, China
| | - Tao Song
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Feiyun Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Nanjing Agricultural University, Nanjing, China
| | - Sheng Lin
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Yiyong Zhu
- Nanjing Agricultural University, Nanjing, China
| | | | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
24
|
Dong J, Piñeros MA, Li X, Yang H, Liu Y, Murphy AS, Kochian LV, Liu D. An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Roots. MOLECULAR PLANT 2017; 10:244-259. [PMID: 27847325 DOI: 10.1016/j.molp.2016.11.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/24/2016] [Accepted: 11/05/2016] [Indexed: 05/21/2023]
Abstract
The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi deficiency. hps10 is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electrogenic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi deficiency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.
Collapse
Affiliation(s)
- Jinsong Dong
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Miguel A Piñeros
- USDA-ARS, Robert Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14580, USA
| | - Xiaoxuan Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haibing Yang
- Department of Horticulture, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
|
26
|
Zhu XF, Zhu CQ, Wang C, Dong XY, Shen RF. Nitric oxide acts upstream of ethylene in cell wall phosphorus reutilization in phosphorus-deficient rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:753-760. [PMID: 28064177 PMCID: PMC6055659 DOI: 10.1093/jxb/erw480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/01/2016] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) and ethylene are both involved in cell wall phosphorus (P) reutilization in P-deficient rice; however, the crosstalk between them remains unclear. In the present study using P-deficient 'Nipponbare' (Nip), root NO accumulation significantly increased after 1 h and reached a maximum at 3 h, while ethylene production significantly increased after 3 h and reached a maximum at 6 h, indicating NO responded more quickly than ethylene. Irrespective of P status, addition of the NO donor sodium nitroprusside (SNP) significantly increased while the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) significantly decreased the production of ethylene, while neither the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) nor the ethylene inhibitor aminoethoxyvinylglycine (AVG) had any influence on NO accumulation, suggesting NO acted upstream of ethylene. Under P-deficient conditions, SNP and ACC alone significantly increased root soluble P content through increasing pectin content, and c-PTIO addition to the ACC treatment still showed the same tendency; however, AVG+SNP treatment had no effect, further indicating that ethylene was the downstream signal affecting pectin content. The expression of the phosphate transporter gene OsPT2 showed the same tendency as the NO-ethylene-pectin pathway. Taken together, we conclude that ethylene functions downstream of NO in cell wall P reutilization in P-deficient rice.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Chun Quan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Xiao Ying Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| |
Collapse
|
27
|
Liu L, Yang D, Liang T, Zhang H, He Z, Liang Z. Phosphate starvation promoted the accumulation of phenolic acids by inducing the key enzyme genes in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2016; 35:1933-42. [PMID: 27271760 DOI: 10.1007/s00299-016-2007-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/24/2016] [Indexed: 05/20/2023]
Abstract
Phosphate starvation increased the production of phenolic acids by inducing the key enzyme genes in a positive feedback pathway in Saliva miltiorrhiza hairy roots. SPX may be involved in this process. Salvia miltiorrhiza is a wildly popular traditional Chinese medicine used for the treatment of coronary heart diseases and inflammation. Phosphate is an essential plant macronutrient that is often deficient, thereby limiting crop yield. In this study, we investigated the effects of phosphate concentration on the biomass and accumulation of phenolic acid in S. miltiorrhiza. Results show that 0.124 mM phosphate was favorable for plant growth. Moreover, 0.0124 mM phosphate was beneficial for the accumulation of phenolic acids, wherein the contents of danshensu, caffeic acid, rosmarinic acid, and salvianolic acid B were, respectively, 2.33-, 1.02-, 1.68-, and 2.17-fold higher than that of the control. By contrast, 12.4 mM phosphate inhibited the accumulation of phenolic acids. The key enzyme genes in the phenolic acid biosynthesis pathway were investigated to elucidate the mechanism of phosphate starvation-induced increase of phenolic acids. The results suggest that phosphate starvation induced the gene expression from the downstream pathway to the upstream pathway, i.e., a feedback phenomenon. In addition, phosphate starvation response gene SPX (SYG1, Pho81, and XPR1) was promoted by phosphate deficiency (0.0124 mM). We inferred that SPX responded to phosphate starvation, which then affected the expression of later responsive key enzyme genes in phenolic acid biosynthesis, resulting in the accumulation of phenolic acids. Our findings provide a resource-saving and environmental protection strategy to increase the yield of active substance in herbal preparations. The relationship between SPX and key enzyme genes and the role they play in phenolic acid biosynthesis during phosphate deficiency need further studies.
Collapse
Affiliation(s)
- Lin Liu
- College of Life Science of Northwest A&F University, Yangling, China
| | - DongFeng Yang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - TongYao Liang
- College of Life Science of Northwest A&F University, Yangling, China
| | - HaiHua Zhang
- College of Life Science of Northwest A&F University, Yangling, China
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - ZhiGui He
- College of Life Science of Northwest A&F University, Yangling, China
| | - ZongSuo Liang
- College of Life Science of Northwest A&F University, Yangling, China.
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
28
|
Leonel M, Carmo EL, Fernandes AM, Franco CML, Soratto RP. Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1900-1905. [PMID: 26058732 DOI: 10.1002/jsfa.7295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Starch is the major component of potato tubers, amounting approximately to 150-200 g kg (-1) of the tuber weight. Starch is considered to be a major factor for the functionality of the potato in food applications. This study evaluated the physical characteristics of potato starches isolated from tubers of different potato cultivars grown in soil with three levels of phosphorus (P) availability. All potatoes were growing according the same method. The starches were isolated by physical methods and the samples were analyzed for the amylose, P content, paste properties (RVA) and thermal properties of gelatinization and retrogradation (DSC). Experimental data were analyzed considering the potato cultivars and the three soil P availability. RESULTS For all measured parameters significant impact of cultivar and soil P availability was determined. Phosphorus contents in potato starches ranged from 0.252 to 0.647 g kg(-1) and amylose from 27.18 to 30.8%. Starches from different potato cultivars independent of soil showed a small range of gelatinization temperature. All starches showed low resistance heating and shear stress. CONCLUSION The results showed the influence of growing conditions (soil P availability) and also of the differences between the potato cultivars on important characteristics of applicability of starches.
Collapse
Affiliation(s)
- Magali Leonel
- Center for Tropical Roots and Starches (CERAT), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ezequiel L Carmo
- Center for Tropical Roots and Starches (CERAT), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Adalton M Fernandes
- Center for Tropical Roots and Starches (CERAT), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Célia M L Franco
- Center for Tropical Roots and Starches (CERAT), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Department of Food Engineering and Technology, Institute of Biosciences, Language, and Physical Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Rogério P Soratto
- Center for Tropical Roots and Starches (CERAT), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Department of Crop Science, College of Agricultural Sciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
29
|
Kapulnik Y, Koltai H. Fine-tuning by strigolactones of root response to low phosphate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:203-12. [PMID: 26667884 DOI: 10.1111/jipb.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
30
|
Sun Z, Wang Y, Mou F, Tian Y, Chen L, Zhang S, Jiang Q, Li X. Genome-Wide Small RNA Analysis of Soybean Reveals Auxin-Responsive microRNAs that are Differentially Expressed in Response to Salt Stress in Root Apex. FRONTIERS IN PLANT SCIENCE 2016; 6:1273. [PMID: 26834773 PMCID: PMC4716665 DOI: 10.3389/fpls.2015.01273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/28/2015] [Indexed: 05/04/2023]
Abstract
Root growth and the architecture of the root system in Arabidopsis are largely determined by root meristematic activity. Legume roots show strong developmental plasticity in response to both abiotic and biotic stimuli, including symbiotic rhizobia. However, a global analysis of gene regulation in the root meristem of soybean plants is lacking. In this study, we performed a global analysis of the small RNA transcriptome of root tips from soybean seedlings grown under normal and salt stress conditions. In total, 71 miRNA candidates, including known and novel variants of 59 miRNA families, were identified. We found 66 salt-responsive miRNAs in the soybean root meristem; among them, 22 are novel miRNAs. Interestingly, we found auxin-responsive cis-elements in the promoters of many salt-responsive miRNAs, implying that these miRNAs may be regulated by auxin and auxin signaling plays a key role in regulating the plasticity of the miRNAome and root development in soybean. A functional analysis of miR399, a salt-responsive miRNA in the root meristem, indicates the crucial role of this miRNA in modulating soybean root developmental plasticity. Our data provide novel insight into the miRNAome-mediated regulatory mechanism in soybean root growth under salt stress.
Collapse
Affiliation(s)
- Zhengxi Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
- University of Chinese Academy of SciencesBeijing, China
| | - Youning Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Fupeng Mou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Yinping Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Liang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Senlei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Qiong Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesShijiazhuang, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
31
|
Huang L, Zhang H, Zhang H, Deng XW, Wei N. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:330-9. [PMID: 26259199 PMCID: PMC4719586 DOI: 10.1016/j.plantsci.2015.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 05/05/2023]
Abstract
HY5 (Long Hypocotyles 5) is a key transcription factor in Arabidopsis thaliana that has a pivotal role in seedling development. Soil nitrogen is an essential macronutrient, and its uptake, assimilation and metabolism are influenced by nutrient availability and by lights. To understand the role of HY5 in nitrogen assimilation pathways, we examined the phenotype as well as the expression of selected nitrogen assimilation-related genes in hy5 mutant grown under various nitrogen limiting and nitrogen sufficient conditions, or different light conditions. We report that HY5 positively regulates nitrite reductase gene NIR1 and negatively regulates the ammonium transporter gene AMT1;2 under all nitrogen and light conditions tested, while it affects several other genes in a nitrogen supply-dependent manner. HY5 is not required for light induction of NIR1, AMT1;2 and NIA genes, but it is necessary for high level expression of NIR1 and NIA under optimal nutrient and light conditions. In addition, nitrogen deficiency exacerbates the abnormal root system of hy5. Together, our results suggest that HY5 exhibits the growth-promoting activity only when sufficient nutrients, including lights, are provided, and that HY5 has a complex involvement in nitrogen acquisition and metabolism in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Lifen Huang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Huiyong Zhang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Wei
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA.
| |
Collapse
|
32
|
Mukherjee A, Sarkar S, Chakraborty AS, Yelne R, Kavishetty V, Biswas T, Mandal N, Bhattacharyya S. Phosphate acquisition efficiency and phosphate starvation tolerance locus (PSTOL1) in rice. J Genet 2015; 93:683-8. [PMID: 25572226 DOI: 10.1007/s12041-014-0424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Phosphate availability is a major factor limiting tillering, grain filling vis-á-vis productivity of rice. Rice is often cultivated in soil like red and lateritic or acid, with low soluble phosphate content. To identify the best genotype suitable for these types of soils, P acquisition efficiency was estimated from 108 genotypes. Gobindabhog, Tulaipanji, Radhunipagal and Raghusail accumulated almost equal amounts of phosphate even when they were grown on P-sufficient soil. Here, we have reported the presence as well as the expression of a previously characterized rice gene, phosphate starvation tolerance locus (PSTOL1) in a set of selected genotypes. Two of four genotypes did not show any detectable expression but carried the gene. One mega cultivar, Swarna did not possess this gene but showed high P-deficiency tolerance ability. Increase of root biomass, not length, in P-limiting situations might be considered as one of the selecting criteria at the seedling stage. Neither the presence of PSTOL1 gene nor its closely-linked SSR RM1261, showed any association with P-deficiency tolerance among the 108 genotypes. Not only this, but the presence of PSTOL1 in recombinant inbred line (RIL) developed from a cross between Gobindabhog and Satabdi, also did not show any linkage with P-deficiency tolerance ability. Thus, before considering PSTOL1 gene in MAB, its expression and role in P-deficiency tolerance in the donor parent must be ascertained.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Department of Genetics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741 252, India.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang YL, Almvik M, Clarke N, Eich-Greatorex S, Øgaard AF, Krogstad T, Lambers H, Clarke JL. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AOB PLANTS 2015; 7:plv097. [PMID: 26286222 PMCID: PMC4583607 DOI: 10.1093/aobpla/plv097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/06/2015] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an important element for crop productivity and is widely applied in fertilizers. Most P fertilizers applied to land are sorbed onto soil particles, so research on improving plant uptake of less easily available P is important. In the current study, we investigated the responses in root morphology and root-exuded organic acids (OAs) to low available P (1 μM P) and sufficient P (50 μM P) in barley, canola and micropropagated seedlings of potato-three important food crops with divergent root traits, using a hydroponic plant growth system. We hypothesized that the dicots canola and tuber-producing potato and the monocot barley would respond differently under various P availabilities. WinRHIZO and liquid chromatography triple quadrupole mass spectrometry results suggested that under low P availability, canola developed longer roots and exhibited the fastest root exudation rate for citric acid. Barley showed a reduction in root length and root surface area and an increase in root-exuded malic acid under low-P conditions. Potato exuded relatively small amounts of OAs under low P, while there was a marked increase in root tips. Based on the results, we conclude that different crops show divergent morphological and physiological responses to low P availability, having evolved specific traits of root morphology and root exudation that enhance their P-uptake capacity under low-P conditions. These results could underpin future efforts to improve P uptake of the three crops that are of importance for future sustainable crop production.
Collapse
Affiliation(s)
- Yan-Liang Wang
- Norwegian Institute of Bioeconomy Research (NIBIO), PO Box 115, N-1431 Ås, Norway Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Marit Almvik
- Norwegian Institute of Bioeconomy Research (NIBIO), PO Box 115, N-1431 Ås, Norway
| | - Nicholas Clarke
- Norwegian Institute of Bioeconomy Research (NIBIO), PO Box 115, N-1431 Ås, Norway
| | - Susanne Eich-Greatorex
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Anne Falk Øgaard
- Norwegian Institute of Bioeconomy Research (NIBIO), PO Box 115, N-1431 Ås, Norway
| | - Tore Krogstad
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
| | - Hans Lambers
- School of Plant Biology and Institute of Agriculture, University of Western Australia, Crawley (Perth), WA 6009, Australia
| | - Jihong Liu Clarke
- Norwegian Institute of Bioeconomy Research (NIBIO), PO Box 115, N-1431 Ås, Norway
| |
Collapse
|
34
|
Yu C, Liu Y, Zhang A, Su S, Yan A, Huang L, Ali I, Liu Y, Forde BG, Gan Y. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice. PLoS One 2015; 10:e0135196. [PMID: 26258667 PMCID: PMC4530940 DOI: 10.1371/journal.pone.0135196] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/19/2015] [Indexed: 12/30/2022] Open
Abstract
MADS-box transcription factors are vital regulators participating in plant growth and development process and the functions of most of them are still unknown. ANR1 was reported to play a key role in controlling lateral root development through nitrate signal in Arabidopsis. OsMADS25 is one of five ANR1-like genes in Oryza Sativa and belongs to the ANR1 clade. Here we have investigated the role of OsMADS25 in the plant’s responses to external nitrate in Oryza Sativa. Our results showed that OsMADS25 protein was found in the nucleus as well as in the cytoplasm. Over-expression of OsMADS25 significantly promoted lateral and primary root growth as well as shoot growth in a nitrate-dependent manner in Arabidopsis. OsMADS25 overexpression in transgenic rice resulted in significantly increased primary root length, lateral root number, lateral root length and shoot fresh weight in the presence of nitrate. Down-regulation of OsMADS25 in transgenic rice exhibited significantly reduced shoot and root growth in the presence of nitrate. Furthermore, over-expression of OsMADS25 in transgenic rice promoted nitrate accumulation and significantly increased the expressions of nitrate transporter genes at high rates of nitrate supply while down-regulation of OsMADS25 produced the opposite effect. Taken together, our findings suggest that OsMADS25 is a positive regulator control lateral and primary root development in rice.
Collapse
Affiliation(s)
- Chunyan Yu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yihua Liu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Aidong Zhang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sha Su
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - An Yan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Linli Huang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Ali
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Brian G. Forde
- Centre for Sustainable Agriculture, Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
35
|
Velasquez SM, Dinneny JR, Estevez JM. Live imaging of root hairs. Methods Mol Biol 2015; 1242:59-66. [PMID: 25408443 DOI: 10.1007/978-1-4939-1902-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Root hairs are single cells specialized in the absorption of water and nutrients. Growing root hairs requires intensive cell wall changes to accommodate cell expansion at the apical end by a process known as tip growth. The cell wall of plants is a very rigid structure comprised largely of polysaccharides and hydroxyproline-rich O-glycoproteins. The importance of root hairs stems from their capacity to expand the surface of interaction between the root and the environment, in search for the necessary nutrients and water to allow plant growth. Therefore, it becomes crucial to deepen our knowledge of them, particularly in the light of the applicability in agriculture by allowing the expansion of croplands. Root hair growth is an extremely fast process, reaching growth rates of up to 1 μm/min and it also is a dynamic process; there can be situations in which the final length might not be affected but the growth rate is. Consequently, in this chapter we focus on a method for studying growth dynamics and rates during a time course. This method is versatile allowing for it to be used in other plant organs such as lateral root, hypocotyl, etc., and also in various conditions.
Collapse
Affiliation(s)
- Silvia M Velasquez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
36
|
Belal R, Tang R, Li Y, Mabrouk Y, Badr E, Luan S. An ABC transporter complex encoded by Aluminum Sensitive 3 and NAP3 is required for phosphate deficiency responses in Arabidopsis. Biochem Biophys Res Commun 2015; 463:18-23. [DOI: 10.1016/j.bbrc.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/15/2022]
|
37
|
Lavenus J, Goh T, Guyomarc'h S, Hill K, Lucas M, Voß U, Kenobi K, Wilson MH, Farcot E, Hagen G, Guilfoyle TJ, Fukaki H, Laplaze L, Bennett MJ. Inference of the Arabidopsis lateral root gene regulatory network suggests a bifurcation mechanism that defines primordia flanking and central zones. THE PLANT CELL 2015; 27:1368-88. [PMID: 25944102 PMCID: PMC4456640 DOI: 10.1105/tpc.114.132993] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/02/2015] [Accepted: 04/07/2015] [Indexed: 05/18/2023]
Abstract
A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network largely remains to be elucidated. In this study, we developed a time-delay correlation algorithm (TDCor) to infer the gene regulatory network (GRN) controlling LR primordium initiation and patterning in Arabidopsis from a time-series transcriptomic data set. The predicted network topology links the very early-activated genes involved in LR initiation to later expressed cell identity markers through a multistep genetic cascade exhibiting both positive and negative feedback loops. The predictions were tested for the key transcriptional regulator AUXIN RESPONSE FACTOR7 node, and over 70% of its targets were validated experimentally. Intriguingly, the predicted GRN revealed a mutual inhibition between the ARF7 and ARF5 modules that would control an early bifurcation between two cell fates. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.
Collapse
Affiliation(s)
- Julien Lavenus
- Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Tatsuaki Goh
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Soazig Guyomarc'h
- Université de Montpellier, UMR DIADE, 34394 Montpellier cedex 5, France
| | - Kristine Hill
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Mikael Lucas
- Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Kim Kenobi
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Etienne Farcot
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom Inria, Virtual Plants Team, 34095 Montpellier cedex 5, France
| | | | | | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, UMR DIADE, 34394 Montpellier cedex 5, France
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
38
|
Wada Y, Kusano H, Tsuge T, Aoyama T. Phosphatidylinositol phosphate 5-kinase genes respond to phosphate deficiency for root hair elongation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:426-37. [PMID: 25477067 DOI: 10.1111/tpj.12741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 05/07/2023]
Abstract
Plants drastically alter their root system architecture to adapt to different underground growth conditions. During phosphate (Pi) deficiency, most plants including Arabidopsis thaliana enhance the development of lateral roots and root hairs, resulting in bushy and hairy roots. To elucidate the signal pathway specific for the root hair elongation response to Pi deficiency, we investigated the expression of type-B phosphatidylinositol phosphate 5-kinase (PIP5K) genes, as a quantitative factor for root hair elongation in Arabidopsis. At young seedling stages, the PIP5K3 and PIP5K4 genes responded to Pi deficiency in steady-state transcript levels via PHR1-binding sequences (P1BSs) in their upstream regions. Both pip5k3 and pip5k4 single mutants, which exhibit short-root-hair phenotypes, remained responsive to Pi deficiency for root hair elongation; however the pip5k3pip5k4 double mutant exhibited shorter root hairs than the single mutants, and lost responsiveness to Pi deficiency at young seedling stages. In the tactical complementation line in which modified PIP5K3 and PIP5K4 genes with base substitutions in their P1BSs were co-introduced into the double mutant, root hairs of young seedlings had normal lengths under Pi-sufficient conditions, but were not responsive to Pi deficiency. From these results, we conclude that a Pi-deficiency signal is transferred to the pathway for root hair elongation via the PIP5K genes.
Collapse
Affiliation(s)
- Yukika Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | | | | | | |
Collapse
|
39
|
Kong X, Zhang M, De Smet I, Ding Z. Designer crops: optimal root system architecture for nutrient acquisition. Trends Biotechnol 2014; 32:597-8. [PMID: 25450041 DOI: 10.1016/j.tibtech.2014.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/25/2014] [Indexed: 11/27/2022]
Abstract
Plant root systems are highly plastic in response to environmental stimuli. Improved nutrient acquisition can increase fertilizer use efficiency and is critical for crop production. Recent analyses of field-grown crops highlighted the importance of root system architecture (RSA) in nutrient acquisition. This indicated that it is feasible in practice to exploit genotypes or mutations giving rise to optimal RSA for crop design in the future, especially with respect to plant breeding for infertile soils.
Collapse
Affiliation(s)
- Xiangpei Kong
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
| | - Maolin Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China
| | - Ive De Smet
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Technologiepark 927, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium; Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, College of Life Sciences, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
40
|
Yu P, White PJ, Hochholdinger F, Li C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. PLANTA 2014; 240:667-78. [PMID: 25143250 DOI: 10.1007/s00425-014-2150-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 05/03/2023]
Abstract
Mineral nutrients are distributed in a non-uniform manner in the soil. Plasticity in root responses to the availability of mineral nutrients is believed to be important for optimizing nutrient acquisition. The response of root architecture to heterogeneous nutrient availability has been documented in various plant species, and the molecular mechanisms coordinating these responses have been investigated particularly in Arabidopsis, a model dicotyledonous plant. Recently, progress has been made in describing the phenotypic plasticity of root architecture in maize, a monocotyledonous crop. This article reviews aspects of phenotypic plasticity of maize root system architecture, with special emphasis on describing (1) the development of its complex root system; (2) phenotypic responses in root system architecture to heterogeneous N availability; (3) the importance of phenotypic plasticity for N acquisition; (4) different regulation of root growth and nutrients uptake by shoot; and (5) root traits in maize breeding. This knowledge will inform breeding strategies for root traits enabling more efficient acquisition of soil resources and synchronizing crop growth demand, root resource acquisition and fertilizer application during crop growing season, thereby maximizing crop yields and nutrient-use efficiency and minimizing environmental pollution.
Collapse
Affiliation(s)
- Peng Yu
- Department of Plant Nutrition, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, People's Republic of China
| | | | | | | |
Collapse
|
41
|
Fan F, Cui B, Zhang T, Qiao G, Ding G, Wen X. The temporal transcriptomic response of Pinus massoniana seedlings to phosphorus deficiency. PLoS One 2014; 9:e105068. [PMID: 25165828 PMCID: PMC4148236 DOI: 10.1371/journal.pone.0105068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for plant growth and development. Several genes involved in phosphorus deficiency stress have been identified in various plant species. However, a whole genome understanding of the molecular mechanisms involved in plant adaptations to low P remains elusive, and there is particularly little information on the genetic basis of these acclimations in coniferous trees. Masson pine (Pinus massoniana) is grown mainly in the tropical and subtropical regions in China, many of which are severely lacking in inorganic phosphate (Pi). In previous work, we described an elite P. massoniana genotype demonstrating a high tolerance to Pi-deficiency. METHODOLOGY/PRINCIPAL FINDINGS To further investigate the mechanism of tolerance to low P, RNA-seq was performed to give an idea of extent of expression from the two mixed libraries, and microarray whose probes were designed based on the unigenes obtained from RNA-seq was used to elucidate the global gene expression profiles for the long-term phosphorus starvation. A total of 70,896 unigenes with lengths ranging from 201 to 20,490 bp were assembled from 112,108,862 high quality reads derived from RNA-Seq libraries. We identified 1,396 and 943 transcripts that were differentially regulated (P<0.05) under P1 (0.01 mM P) and P2 (0.06 mM P) Pi-deficiency conditions, respectively. Numerous transcripts were consistently differentially regulated under Pi deficiency stress, many of which were also up- or down-regulated in other species under the corresponding conditions, and are therefore ideal candidates for monitoring the P status of plants. The results also demonstrated the impact of different Pi starvation levels on global gene expression in Masson pine. CONCLUSIONS/SIGNIFICANCE To our knowledge, this work provides the first insight into the molecular mechanisms involved in acclimation to long-term Pi starvation and different Pi availability levels in coniferous trees.
Collapse
Affiliation(s)
- Fuhua Fan
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
- School of Forestry Science, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
- The School of Nuclear Technology and Chemical and Biological, Hubei University of Science and Technology, Xianning, Hubei Province, People’s Republic of China
| | - Bowen Cui
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Ting Zhang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Guang Qiao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Guijie Ding
- School of Forestry Science, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous region (Guizhou University), Ministry of Education, Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, People’s Republic of China
| |
Collapse
|
42
|
Li Y, Gu M, Zhang X, Zhang J, Fan H, Li P, Li Z, Xu G. Engineering a sensitive visual-tracking reporter system for real-time monitoring phosphorus deficiency in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:674-84. [PMID: 25187932 DOI: 10.1111/pbi.12171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/22/2013] [Indexed: 05/20/2023]
Abstract
Plant phosphorus (P) diagnosis is widely used for monitoring P status and guiding P fertilizer application in field conditions. The common methods for predicting plant response to P are time- and labour-consuming chemical measurements of the extractable soil P and plant P concentrations. In this study, we successfully generated a visual reporter system in tobacco (Nicotiana tabacum L.) to monitor plant P status by expressing of a Purple gene (Pr) isolated from cauliflower (Brassica oleracea var botrytis) driven by the promoter (Pro) of OsPT6, a P-starvation-induced rice gene. The leaves of OsPT6pro::Pr (PT6pro::Pr) transgenic tobacco continuously turned into dark purple with the increase of duration and severity of P deficiency, and recovered rapidly to basal green colour upon resupply of P. The expression of several anthocyanin biosynthesis involving genes was strongly activated in the transgenic tobacco in comparison to wild type under P-deficient condition. Such additive purple colour was not detected by deficiencies of other major- and micronutrients or stresses of salt, drought and cold. There was an extremely high correlation between P concentration and anthocyanin accumulation in the transgenic tobacco leaves. Using a hyperspectral sensing technology, P concentration in the leaves of transgenic plants could be predicted by the reflectance spectra at 554 nm wavelength with approximately 0.16 as the threshold value of the P deficiency. Taken together, the colour-based visual reporter system could be specifically and readily used for monitoring the plant P status by naked eyes and accurately assessed by spectral reflectance.
Collapse
|
43
|
Gupta DK, Chatterjee S, Datta S, Veer V, Walther C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. CHEMOSPHERE 2014; 108:134-144. [PMID: 24560283 DOI: 10.1016/j.chemosphere.2014.01.030] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
As a nonrenewable resource, phosphorus (P) is the second most important macronutrient for plant growth and nutrition. Demand of phosphorus application in the agricultural production is increasing fast throughout the globe. The bioavailability of phosphorus is distinctively low due to its slow diffusion and high fixation in soils which make phosphorus a key limiting factor for crop production. Applications of phosphorus-based fertilizers improve the soil fertility and agriculture yield but at the same time concerns over a number of factors that lead to environmental damage need to be addressed properly. Phosphate rock mining leads to reallocation and exposure of several heavy metals and radionuclides in crop fields and water bodies throughout the world. Proper management of phosphorus along with its fertilizers is required that may help the maximum utilization by plants and minimum run-off and wastage. Phosphorus solubilizing bacteria along with the root rhizosphere of plant integrated with root morphological and physiological adaptive strategies need to be explored further for utilization of this extremely valuable nonrenewable resource judiciously. The main objective of this review is to assess the role of phosphorus in fertilizers, their uptake along with other elements and signaling during P starvation.
Collapse
Affiliation(s)
- D K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, D-30419 Hannover, Germany.
| | - S Chatterjee
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - S Datta
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - V Veer
- Defence Research Laboratory, DRDO, Post Bag 2, Tezpur 784001, Assam, India
| | - C Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, D-30419 Hannover, Germany
| |
Collapse
|
44
|
Karthikeyan AS, Jain A, Nagarajan VK, Sinilal B, Sahi SV, Raghothama KG. Arabidopsis thaliana mutant lpsi reveals impairment in the root responses to local phosphate availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:60-72. [PMID: 24561248 DOI: 10.1016/j.plaphy.2013.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/16/2013] [Indexed: 05/08/2023]
Abstract
Phosphate (Pi) deficiency triggers local Pi sensing-mediated inhibition of primary root growth and development of root hairs in Arabidopsis (Arabidopsis thaliana). Generation of activation-tagged T-DNA insertion pools of Arabidopsis expressing the luciferase gene (LUC) under high-affinity Pi transporter (Pht1;4) promoter, is an efficient approach for inducing genetic variations that are amenable for visual screening of aberrations in Pi deficiency responses. Putative mutants showing altered LUC expression during Pi deficiency were identified and screened for impairment in local Pi deficiency-mediated inhibition of primary root growth. An isolated mutant was analyzed for growth response, effects of Pi deprivation on Pi content, primary root growth, root hair development, and relative expression levels of Pi starvation-responsive (PSR) genes, and those implicated in starch metabolism and Fe and Zn homeostasis. Pi deprived local phosphate sensing impaired (lpsi) mutant showed impaired primary root growth and attenuated root hair development. Although relative expression levels of PSR genes were comparable, there were significant increases in relative expression levels of IRT1, BAM3 and BAM5 in Pi deprived roots of lpsi compared to those of the wild-type. Better understanding of molecular responses of plants to Pi deficiency or excess will help to develop suitable remediation strategies for soils with excess Pi, which has become an environmental concern. Hence, lpsi mutant will serve as a valuable tool in identifying molecular mechanisms governing adaptation of plants to Pi deficiency.
Collapse
Affiliation(s)
| | - Ajay Jain
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vinay K Nagarajan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA
| | - Bhaskaran Sinilal
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA
| | - Shivendra V Sahi
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101-1080, USA
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA.
| |
Collapse
|
45
|
Gao Y, Tian Q, Zhang WH. Systemic regulation of sulfur homeostasis in Medicago truncatula. PLANTA 2014; 239:79-96. [PMID: 24068299 DOI: 10.1007/s00425-013-1958-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Sulfur (S) is an essential macronutrient for plants, and deficiency in soil S availability limits plant growth. Adaptive strategies have been evolved by plants to respond to S deficiency by coordinating systemic regulatory mechanism. A split-root experiment using legume model plant Medicago truncatula Gaertn. was conducted to investigate the systemic response to S deficiency. Plant growth, root morphology and S contents under varying conditions of S supply were determined, and the expression of genes encoding sulfate transporter (MtSULTRs) and MtAPR1 encoding an enzyme involved in S assimilation was monitored. Our results demonstrated that there was an apparent systemic response of M. truncatula to heterogeneous S supply in terms of root length, S contents, and S uptake and assimilation at the transcriptional level. When exposed to heterogeneous S supply, M. truncatula plants showed proliferation of lateral roots in S-rich medium and reduction in investment to S-depleted roots. Growth was stimulated with half-part of roots exposed to S-deficient medium. There were different expression patterns of MtSULTRs and MtAPR1 in response to heterogeneous S supply both in roots and shoots of M. truncatula. Expression of MtSULTR1.1 and MtSULTR1.3 was systemically responsive to S deficiency, leading to an enhancement of S uptake in roots exposed to S-sufficient medium. In addition, the response of S-deprived seedlings to re-supply of sulfate and Cys was also analyzed. It was shown that sulfate, but not Cys, may serve as a systemic signal to regulate the expression of genes associated with S absorption and assimilation in M. truncatula. These findings provide a comprehensive picture of systemic responses to S deficiency in leguminous species.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | | | | |
Collapse
|
46
|
Rubio-Asensio JS, López-Berenguer C, García-de la Garma J, Burger M, Bloom AJ. Root Strategies for Nitrate Assimilation. SOIL BIOLOGY 2014. [DOI: 10.1007/978-3-642-54276-3_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. ANNALS OF BOTANY 2013; 112:391-408. [PMID: 23267006 PMCID: PMC3698383 DOI: 10.1093/aob/mcs285] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/14/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources. SCOPE This review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots. CONCLUSIONS The role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.
Collapse
Affiliation(s)
- Yao Fang Niu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru Shan Chai
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gu Lei Jin
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huan Wang
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Xian Tang
- Centre for AgriBioscience/Department of Agricultural Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
48
|
Volpe V, Dell'Aglio E, Bonfante P. The Lotus japonicus MAMI gene links root development, arbuscular mycorrhizal symbiosis and phosphate availability. PLANT SIGNALING & BEHAVIOR 2013; 8:e23414. [PMID: 23333966 PMCID: PMC3676508 DOI: 10.4161/psb.23414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The arbuscular mycorrhizal-induced LjMAMI gene is phylogenetically related to GARP transcription factors involved in Pi-starvation responses such as AtPHR1. The gene is strongly upregulated in arbusculated cells from mycorrhizal plants and in root meristems, irrespectively of the fungal presence. A further expression analysis revealed a similar expression pattern for LjPT4, considered a marker gene for mycorrhizal functionality. Here we show that the LjPT4 promoter contains two conserved cis-acting elements typically found in Pi-starvation induced Pi transporters. One of these is strongly related to the binding site of AtPHR1, suggesting a direct regulation of LjPT4 by LjMAMI. The expression of both genes in non-mycorrhizal tissues leads to the hypothesis that these symbiosis-inducible genes are also involved in Pi starvation responses in root meristems in an AM-independent manner.
Collapse
|
49
|
Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ. Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:362-73. [PMID: 23154535 PMCID: PMC3532267 DOI: 10.1104/pp.112.205922] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/12/2012] [Indexed: 05/18/2023]
Abstract
Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.
Collapse
Affiliation(s)
| | | | | | - Songhwa Kang
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Hyeong Cheol Park
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Gilok Shin
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Jiyoung Park
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Mingzhe Shen
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Doh Hoon Kim
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Ray A. Bressan
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | - Hans J. Bohnert
- Division of Applied Life Science (BK21 Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660–701, Korea (D.B., M.C.K., H.J.C., S.K., H.C.P., G.S., J.P., M.S., H.H., W.-Y.K., S.Y.L., D.-J.Y.)
- College of Life Science and Natural Resources, Dong-A University, Busan 604–714, Korea (D.H.K.)
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (R.A.B.)
- Department of Plant Biology and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (H.J.B.)
- College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (R.A.B., H.J.B.)
| | | |
Collapse
|
50
|
Cerutti T, Delatorre CA. Nitrogen and phosphorus interaction and cytokinin: responses of the primary root of Arabidopsis thaliana and the pdr1 mutant. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199690 DOI: 10.1016/j.plantsci.2012.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) and phosphorus (P) are the two most limiting nutrients for plant yield. Plants modify their metabolism and growth to cope with resources availability, consequently the integration of diverse signals is required. There is mounting evidence of N and P interaction, however, the sharing components of their signaling pathways have not been revealed yet. The pdr1 mutant has proved potentially useful in understanding the responses to nitrate (Ni), P and cytokinin. The mutation conferred pdr1 reduced root length in response to Ni under P deficiency and no effect of low cytokinin concentration. High N availability and high cytokinin caused strong root growth inhibition by different paths in wild type. Cytokinin repressed cell division, exhausted the quiescent center, caused changes in the pattern of AtPT1 expression and reduced AtACP5 expression. On the contrary, high N induced cell division as well as increased the expression of AtPT1 and AtACP5 even at high P availability. The data indicated interaction in the root modulation by N and P; and PDR1 is probably a signaling component of the nutritional status in Arabidopsis thaliana that modulates the response to N and P only partially mediated by cytokinin.
Collapse
Affiliation(s)
- Taiguer Cerutti
- Departamento de Plantas de Lavoura, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil; Programa de Pós-graduação em Fitotecnia, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | | |
Collapse
|