1
|
Swain A, Azevedo-Schmidt LE, Maccracken SA, Currano ED, Meineke EK, Pierce NE, Fagan WF, Labandeira CC. Interactive Effects of Temperature, Aridity, and Plant Stoichiometry on Insect Herbivory: Past and Present. Am Nat 2024; 204:416-431. [PMID: 39326060 DOI: 10.1086/731995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractThe influence of climate on deep-time plant-insect interactions is becoming increasingly well known, with temperature, CO2 increases (and associated stoichiometric changes in plants), and aridity likely playing a critical role. In our modern climate, all three factors are shifting at an unprecedented rate, with uncertain consequences for biodiversity. To investigate effects of temperature, stoichiometry (specifically that of nitrogen), and aridity on insect herbivory, we explored insect herbivory in three modern floral assemblages and in 39 fossil floras, especially focusing on eight floras around a past hyperthermal event (the Paleocene-Eocene Thermal Maximum) from Bighorn Basin (BB). We find that higher temperatures were associated with increased herbivory in the past, especially among BB sites. In these BB sites, non-N2-fixing plants experienced a lower richness but higher frequency of herbivory damage than N2-fixing plants. Herbivory frequency but not richness was greater in BB sites compared with contemporaneous, nearby, but less arid sites from Hanna Basin. Compared with deep-time environments, herbivory frequency and richness are higher in modern sites, suggesting that current accelerated warming uniquely impacts plant-insect interactions. Overall, our work addresses multiple aspects of climate change using fossil data while also contextualizing the impact of modern anthropogenic change on Earth's most diverse interactions.
Collapse
|
2
|
Santos Filho EBD, Brum AS, Souza GADE, Figueiredo RG, Usma CD, Ricetti JHZ, Trevisan C, Leppe M, Sayão JM, Lima FJ, Oliveira GR, Kellner AWA. First record of insect-plant interaction in Late Cretaceous fossils from Nelson Island (South Shetland Islands Archipelago), Antarctica. AN ACAD BRAS CIENC 2023; 95:e20231268. [PMID: 38088643 DOI: 10.1590/0001-3765202320231268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Despite the enormous paleobotanical record on different islands of the Antarctic Peninsula, the evidence of insect activity associated with fossilized plants is scarce. Here we report the first evidence of insect-plant interaction from Cretaceous deposits, more precisely from a new locality at the Rip Point area, Nelson Island (Antarctic Peninsula). The macrofossil assemblage includes isolated Nothofagus sp. leaf impressions, a common component of the Antarctic paleoflora. Two hundred leaves were examined, of which 15 showed evidence of insect activity, displaying variations in size, shape, and preservation. Two types of interaction damage, galls and mines, were identified. A single specimen retained a circular scar recognized as galling scar, while meandering tracks were considered mines. These traces of herbivore insect activity, correspond to the oldest known record of this type of interaction of West Antarctica and the oldest record of insect-plant interaction in Nothofagus sp. reported so far.
Collapse
Affiliation(s)
- Edilson B Dos Santos Filho
- Programa de Pós-Graduação em Geociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Arthur S Brum
- Programa de Pós-Graduação em Zoologia, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
- Museu Nacional/ Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia, Laboratório de Paleobiologia e Paleogeografia Antártica, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Geovane A DE Souza
- Programa de Pós-Graduação em Zoologia, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
- Museu Nacional/ Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia, Laboratório de Paleobiologia e Paleogeografia Antártica, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Rodrigo G Figueiredo
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Alto Universitário, s/n, Guararema, 29500-000 Alegre, ES, Brazil
| | - Cristian D Usma
- Universidade Federal de Pernambuco, Núcleo de Estudos Geoquímicos, Laboratório de Isótopos Estáveis, NEG-LABISE/CTG, Av. Acadêmico Hélio Ramos, s/n, 50740-530 Recife, PE, Brazil
| | - João Henrique Z Ricetti
- Programa de Pós-Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Av. Bento Gonçalves, 9500, 91509-900 Porto Alegre, RS, Brazil
- Universidade do Contestado, Centro de Pesquisas Paleontológicas, Av. Pres. Nereu Ramos, 1071, 89304-076 Mafra, SC, Brazil
| | - Cristine Trevisan
- Antarctic and Patagonia Paleobiology Laboratory, Chilean Antarctic Institute-INACH, Lautaro Navarro 1245, Punta Arenas, Chile
| | - Marcelo Leppe
- Antarctic and Patagonia Paleobiology Laboratory, Chilean Antarctic Institute-INACH, Lautaro Navarro 1245, Punta Arenas, Chile
| | - Juliana M Sayão
- Museu Nacional/ Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia, Laboratório de Paleobiologia e Paleogeografia Antártica, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Flaviana J Lima
- Universidade Federal de Pernambuco, Laboratório de Plantas do Gondwana, Centro Acadêmico de Vitória, Rua do Alto Reservatório, s/n, Bela Vista, 55608-680 Vitória de Santo Antão, PE, Brazil
| | - Gustavo R Oliveira
- Universidade Federal Rural de Pernambuco, Departamento de Biologia, Laboratório de Paleontologia e Sistemática, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Alexander W A Kellner
- Museu Nacional/ Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia, Laboratório de Paleobiologia e Paleogeografia Antártica, Quinta da Boa Vista, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
- Museu Nacional/Universidade Federal do Rio de Janeiro, Departamento de Geologia e Paleontologia, Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Quinta da Boa Vista, s/n, São Cristóvão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Chinsamy A. Palaeoecological deductions from osteohistology. Biol Lett 2023; 19:20230245. [PMID: 37607578 PMCID: PMC10444344 DOI: 10.1098/rsbl.2023.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Palaeoecological deductions are vital for understanding the evolution and diversification of species within prehistoric environments. This review highlights the multitude of ways in which the microanatomy and microscopic structure of bones enables palaeoecological deductions. The occurrence of growth marks in bones is discussed, and their usefulness in deducing the ontogenetic status and age of individuals is considered, as well as how such marks in bones permit the assessment of the growth dynamics of individuals and species. Here osteohistology is shown to provide insight into the structure of past populations, as well as ecological relationships between individuals. In addition, the response of bones to trauma, disease and moulting is considered. Finally, I explore how osteohistology can give insight into ecomorphological adaptations, such as filter feeding, probe feeding and saltatorial locomotion. Methodological advances in three-dimensional microtomography and synchrotron scanning bodes well for future studies in osteohistology and despite some compromises in terms of tissue identity, circumvents the crucial issue of destructive analyses.
Collapse
Affiliation(s)
- Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, John Day Building, University Avenue, Rondebosch 7700, South Africa
| |
Collapse
|
4
|
Chen W, Amir MB, Liao Y, Yu H, He W, Lu Z. New Insights into the Plutella xylostella Detoxifying Enzymes: Sequence Evolution, Structural Similarity, Functional Diversity, and Application Prospects of Glucosinolate Sulfatases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:10952-10969. [PMID: 37462091 PMCID: PMC10375594 DOI: 10.1021/acs.jafc.3c03246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Brassica plants have glucosinolate (GLs)-myrosinase defense mechanisms to deter herbivores. However, Plutella xylostella specifically feeds on Brassica vegetables. The larvae possess three glucosinolate sulfatases (PxGSS1-3) that compete with plant myrosinase for shared GLs substrates and produce nontoxic desulfo-GLs (deGLs). Although PxGSSs are considered potential targets for pest control, the lack of a comprehensive review has hindered the development of PxGSSs-targeted pest control methods. Recent advances in integrative multi-omics analysis, substrate-enzyme kinetics, and molecular biological techniques have elucidated the evolutionary origin and functional diversity of these three PxGSSs. This review summarizes research progress on PxGSSs over the past 20 years, covering sequence properties, evolution, protein modification, enzyme activity, structural variation, substrate specificity, and interaction scenarios based on functional diversity. Finally, we discussed the potential applications of PxGSSs-targeted pest control technologies driven by artificial intelligence, including CRISPR/Cas9-mediated gene drive, transgenic plant-mediated RNAi, small-molecule inhibitors, and peptide inhibitors. These technologies have the potential to overcome current management challenges and promote the development and field application of PxGSSs-targeted pest control.
Collapse
Affiliation(s)
- Wei Chen
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Muhammad Bilal Amir
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
- South
China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuan Liao
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Haizhong Yu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Weiyi He
- State
Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops,
International Joint Research Laboratory of Ecological Pest Control, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanjun Lu
- Ganzhou
Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
5
|
Chi X, Wang Z, Wang Y, Liu Z, Wang H, Xu B. Cross-Kingdom Regulation of Plant-Derived miRNAs in Modulating Insect Development. Int J Mol Sci 2023; 24:ijms24097978. [PMID: 37175684 PMCID: PMC10178792 DOI: 10.3390/ijms24097978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding small RNAs, are crucial regulatory factors in plants and animals at the post-transcriptional level. These tiny molecules suppress gene expression by complementary oligonucleotide binding to sites in the target messenger. Recently, the discovery of plant-derived miRNAs with cross-kingdom abilities to regulate gene expression in insects has promoted exciting discussion, although some controversies exist regarding the modulation of insect development by plant-derived miRNAs. Here, we review current knowledge about the mechanisms of miRNA biogenesis, the roles of miRNAs in coevolution between insects and plants, the regulation of insect development by plant-derived miRNAs, the cross-kingdom transport mechanisms of plant-derived miRNAs, and cross-kingdom regulation. In addition, the controversy regarding the modulation of insect development by plant-derived miRNAs also was discussed. Our review provides new insights for understanding complex plant-insect interactions and discovering new strategies for pest management and even crop genetic improvement.
Collapse
Affiliation(s)
- Xuepeng Chi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenguo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Hongfang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Baohua Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Santos AA, Sender LM, Wappler T, Diez JB. Plant-Insect Interactions on Aquatic and Terrestrial Angiosperms from the Latest Albian (Early Cretaceous) of Estercuel (Northeastern Spain) and Their Paleoenvironmental Implications. PLANTS (BASEL, SWITZERLAND) 2023; 12:508. [PMID: 36771593 PMCID: PMC9919284 DOI: 10.3390/plants12030508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Fossils of plant-insect interactions are direct evidence of paleoecological relationships between these two dominant groups in terrestrial ecosystems. We present a variety of plant-insect interactions from the late Early Cretaceous (latest Albian) in the Estercuel locality in northeastern Spain (Iberian Peninsula), affecting two types of terrestrial angiosperms and the basal eudicot Klitzschophyllites, which is one of the oldest putative members of aquatic Ranunculales found to date. The study of these interactions revealed 23 different damage types belonging to eight functional feeding groups (hole feeding, margin feeding, skeletonization, surface feeding, piercing and sucking, mining, oviposition and galling), suggesting these angiosperms were an important source of food and lodging for insects in the Iberian ecosystems during the late Early Cretaceous. Notably, the diversity of damage in the leaves of angiosperms suggests a diverse community of herbivorous insects and a variety of strategies of interactions with plants at the end of the Early Cretaceous in the southwestern Tethys realm.
Collapse
Affiliation(s)
- Artai A. Santos
- Departamento de Xeociencias Mariñas e Ordenación do Territorio, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), 36310 Vigo, Spain
| | - Luis M. Sender
- Fundación Conjunto Paleontológico de Teruel-Dinópolis/Museo Aragonés de Paleontología, 44002 Teruel, Spain
| | - Torsten Wappler
- Department of Natural History, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - José B. Diez
- Departamento de Xeociencias Mariñas e Ordenación do Territorio, Facultade de Ciencias do Mar, Universidade de Vigo, 36310 Vigo, Spain
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVIGO), 36310 Vigo, Spain
| |
Collapse
|
7
|
Spatially associated or composite life traces from Holocene paleosols and dune sands provide evidence for past biotic interactions. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:9. [PMID: 36809360 PMCID: PMC9944729 DOI: 10.1007/s00114-023-01837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Biotic interactions (e.g., predation, competition, commensalism) where organisms directly or indirectly influenced one another are of great interest to those studying the history of life but have been difficult to ascertain from fossils. Considering the usual caveats about the temporal resolution of paleontological data, traces and trace fossils in the sedimentary record can record co-occurrences of organisms or their behaviours with relatively high spatial fidelity in a location. Neoichnological studies and studies on recently buried traces, where direct trophic links or other connections between tracemakers are well-known, may help interpret when and where overlapping traces represented true biotic interactions. Examples from Holocene paleosols and other buried continental sediments in Poland include the tight association between mole and earthworm burrows, forming an ichnofabric representing a predator-prey relationship, and that of intersecting insect and root traces demonstrating the impact of trees as both ecosystem engineers and the basis for food chains. Trampling by ungulates, which leaves hoofprints and other sedimentary disturbances, may result in amensal or commensal effects on some biota in the short term and create heterogeneity that later trace-making organisms, such as invertebrate burrowers, can also respond to in turn, though such modified or composite traces may be challenging to interpret.
Collapse
|
8
|
Jouault C, Nel A, Perrichot V, Legendre F, Condamine FL. Multiple drivers and lineage-specific insect extinctions during the Permo-Triassic. Nat Commun 2022; 13:7512. [PMID: 36473862 PMCID: PMC9726944 DOI: 10.1038/s41467-022-35284-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
The Permo-Triassic interval encompasses three extinction events including the most dramatic biological crisis of the Phanerozoic, the latest Permian mass extinction. However, their drivers and outcomes are poorly quantified and understood for terrestrial invertebrates, which we assess here for insects. We find a pattern with three extinctions: the Roadian/Wordian (≈266.9 Ma; extinction of 64.5% insect genera), the Permian/Triassic (≈252 Ma; extinction of 82.6% insect genera), and the Ladinian/Carnian boundaries (≈237 Ma; extinction of 74.8% insect genera). We also unveil a heterogeneous effect of these extinction events across the major insect clades. Because extinction events have impacted Permo-Triassic ecosystems, we investigate the influence of abiotic and biotic factors on insect diversification dynamics and find that changes in floral assemblages are likely the strongest drivers of insects' responses throughout the Permo-Triassic. We also assess the effect of diversity dependence between three insect guilds; an effect ubiquitously found in current ecosystems. We find that herbivores held a central position in the Permo-Triassic interaction network. Our study reveals high levels of insect extinction that profoundly shaped the evolutionary history of the most diverse non-microbial lineage.
Collapse
Affiliation(s)
- Corentin Jouault
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France ,grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - André Nel
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Perrichot
- grid.462934.e0000 0001 1482 4447Univ. Rennes, CNRS, Géosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Frédéric Legendre
- grid.462844.80000 0001 2308 1657Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, 75005 Paris, France
| | - Fabien L. Condamine
- grid.4444.00000 0001 2112 9282CNRS, UMR 5554 Institut des Sciences de l’Évolution de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| |
Collapse
|
9
|
Feng Z, Wan S, Sui Q, Labandeira C, Guo Y, Chen J. A Triassic tritrophic triad documents an early food-web cascade. Curr Biol 2022; 32:5165-5171.e2. [PMID: 36351435 DOI: 10.1016/j.cub.2022.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
Endophytic oviposition behavior, the insertion of eggs into plant tissues, represents a sophisticated reproductive strategy of insects.1 This process is accomplished by employing a specialized egg-laying device, the ovipositor, that effectively protects eggs through plant tissue concealment.2,3 Endophytic oviposition behavior is currently common in many lineages of several major, extant insect orders, principally Odonata (dragonflies and damselflies), Orthoptera (katydids and grasshoppers), Hemiptera (cicadas, aphids, scale insects, whiteflies, leafhoppers, and bugs), Coleoptera (beetles), Lepidoptera (moths), and Hymenoptera (sawflies).3,4 Based on the occurrences of egg insertion damage and associated scar tissue expressed in fossil plant stems and leaves, endophytic ovipositional behavior is presumed to have emerged as early as the Early Pennsylvanian Period.5 However, for impression fossils, egg morphology and surrounding scar tissue can be difficult to discern on plants, often resulting in ovipositional damage that may be assigned to exophytic (eggs laid on plant surfaces) or to endophytic behavior.6,7,8,9 This ambiguity is due to the spatial relationships and histological mingling of ovipositional damage and enveloping scars with adjoining plant-host tissues. Here, we describe body fossils of insect eggs within ginkgophyte leaves from the Upper Triassic of China. Feeding damage from an egg-predatory insect commonly occurs on these eggs, as some eggs bear up to several feeding punctures. We provide exceptional body-fossil evidence for resource use of a host plant by an ovipositing insect and unravel the earliest-known tritrophic cascade of a host plant, an ovipositing insect, and an egg-predatory insect.
Collapse
Affiliation(s)
- Zhuo Feng
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China.
| | - Sui Wan
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Qun Sui
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Conrad Labandeira
- Department of Paleobiology, Smithsonian Institution, Washington, DC 20013, USA; Department of Entomology, University of Maryland, College Park, MD 20742, USA; College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China
| | - Yun Guo
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| | - Jianbo Chen
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan Key Laboratory for Palaeobiology, MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650500, China
| |
Collapse
|
10
|
Wang B. Evolution: Unveiling a hidden tripartite relationship. Curr Biol 2022; 32:R1311-R1313. [PMID: 36473441 DOI: 10.1016/j.cub.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endophytic oviposition is one of the most intricate insect reproductive behaviors. A new study characterizes Triassic insect eggs within ginkgophyte leaves, revealing the earliest known tritrophic association of a host plant, ovipositing insect, and egg-predating insect.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
11
|
Chen W, Saqib HSA, Xu X, Dong Y, Zheng L, Lai Y, Jing X, Lu Z, Sun L, You M, He W. Glucosinolate Sulfatases-Sulfatase-Modifying Factors System Enables a Crucifer-Specialized Moth To Pre-detoxify Defensive Glucosinolate of the Host Plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11179-11191. [PMID: 36043275 DOI: 10.1021/acs.jafc.2c03929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Numerous herbivores orally secrete defense compounds to detoxify plant toxins. However, little is known about the role of orally secreted enzymes by a specialized pest, Plutella xylostella, in the detoxification of plant defense compounds. Three glucosinolate sulfatases (GSSs) or two sulfatase-modifying factors (SUMF1s) mutant strains were established on the basis of CRISPR/Cas9 technology to validate the existence of a species-specific GSSs-SUMF1s system. In comparison to the bioassay data from mutant strains of GSS1/GSS2 or SUMF1a/SUMF1b, GSS3 had a minimal role because no significant change was found in GSS3-/- under different feeding contexts. Antibody-based technologies were used to examine GSSs-related deficient strains, and the results showed that the GSS1 protein was primarily released through larval oral secretion. On the basis of high-performance liquid chromatography, we found that GSS1 was secreted to pre-desulfate the typical plant defensive glucosinolates known as 4-(methylsulfinyl)butyl glucosinolate (4MSOB-GL) to suppress the production of the toxic substance, which is referred to as pre-detoxification strategy. These findings highlighted that the GSSs-SUMF1s system is the key factor for counteradaptation of P. xylostella to cruciferous plants, which strengthens the concept that herbivores deploy pre-detoxification strategies to disrupt the plant chemical defenses to facilitate the colonization process.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Hafiz Sohaib Ahmed Saqib
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Guangdong Provincial Key Laboratory of Marine Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Xuejiao Xu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yuhong Dong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Ling Zheng
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Yingfang Lai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiaodong Jing
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Zhanjun Lu
- Ganzhou Key Laboratory of Greenhouse Vegetable, School of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China
| | - Linyang Sun
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
12
|
Xiao L, Labandeira CC, Dilcher DL, Ren D. Data, metrics, and methods for arthropod and fungal herbivory at the dawn of angiosperm diversification: The Rose Creek plant assemblage of Nebraska, U.S.A. Data Brief 2022; 42:108170. [PMID: 35510258 PMCID: PMC9058965 DOI: 10.1016/j.dib.2022.108170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
The data presented in this article are related to the research article titled “Arthropod and fungal herbivory at the dawn of angiosperm diversification: The Rose Creek plant assemblage of Nebraska, U.S.A.” (Xiao et al., 2021). These data correspond to an examination of arthropod and fungal herbivory on 2084 plant specimens from the Early Cretaceous (late Albian) Rose Creek locality of southeastern Nebraska, USA. Ten datasets have been assembled to describe and contextualize the diversity and intensity of herbivory at Rose Creek, as documented in Appendices of the online supplementary material. Appendices S4 and S5 provide a list and the frequency distributions by major clade and species/morphotype of all plant taxa examined. Appendix S6 outlines general procedures for documenting herbivory on plants and how the data was acquired. Appendix S9a and S9b provide rarefaction analyses for plant taxa to demonstrate sampling sufficiency, which is paralleled by rarefaction analyses of Appendix S9c and S9d that indicate sampling of damage types are robust. The comprehensive dataset of Appendix S12 lists plant taxa horizontally by major clade/group and species/morphotype versus vertically listed feeding classes, functional feeding groups (FFGs) and damage types (DTs). The basic metrics of DTs, feeding event occurrences, DT host-plant specialization, and number of matrix cells are displayed, with data subtotals and totals. This data matrix serves as the central source of data for the study, and records the six metrics of DT richness, DT frequency, DT host-plant specialization, percent of area herbivorized, and feeding event occurrences. Three of these metrics are used for establishing component community structure of the three most herbivorized taxa (Figs 8–10), and the relationships among plant hosts and FFGs in the non-metric multidimensional scaling analysis (Fig. 11) (Xiao et al., 2021). Appendix S15 is a list DTs, with their assigned host-plant specialization of 1 for generalized, 2 for intermediate specificity, and 3 for specialized. Appendix S16 is a table that provides plant surface areas (cm2) and their percentages that have been removed due to herbivory. Appendix S18 provides descriptions and ancillary data for 14 new DTs described from Rose Creek. A listing of the herbivory index (herbivorized surface area divided by total surface area) of plant assemblages and individual plant species in Appendix S19 provides comparisons among Rose Creek, other fossil, and modern plant assemblages. Lastly, Appendix S23 lists from the literature of arthropod species forming the well-documented herbivore component communities of five modern plant species to the three most herbivorized taxa at Rose Creek shown in Fig. 12. Some of the metrics used to quantitatively measure the diversity and intensity of herbivory are recent, such as feeding event occurrences, whereas others such as herbivorized surface area and host-plant specialization values have had a longer use in plant–arthropod studies.
Collapse
|
13
|
Settling moths are the vital component of pollination in Himalayan ecosystem of North-East India, pollen transfer network approach revealed. Sci Rep 2022; 12:2716. [PMID: 35177694 PMCID: PMC8854426 DOI: 10.1038/s41598-022-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
Majority of the pollination related studies are based on the diurnal pollinators, and the nocturnal pollinators received less scientific attention. We reveal the significance of settling moths in pollination of angiosperm families in Himalayan ecosystem of North-East India. The refined and novel method of pollen extraction from the proboscides provides a more robust assessment of the pollen carrying capacity. The study is based on one of the largest data sets (140 pollen transporter moth species (PTMS)), with interpretation based on seasonal as well as altitudinal data. In the present study about 65% moths (91 species) carried sufficient quantities of pollen grains to be considered as potential pollinators (PPMS). Teliphasa sp. (Crambidae) and Cuculia sp. (Noctuidae) are found to carry the highest quantity of pollen. We found pollen grains of 21 plant families and the abundant pollen are from Betulaceae, Fabaceae, Rosaceae and Ericaceae. Species composition of PTMS and PPMS in pre-monsoon, monsoon, and post-monsoon revealed the dominance of Geometridae. Maximum diversity of PTMS and PPMS is found from 2000 to 2500 m altitude. The nocturnal pollen transfer network matrices exhibited high degree of selectivity (H2' = 0.86).
Collapse
|
14
|
Moiseeva MG, Kodrul TM, Tekleva MV, Maslova NP, Wu X, Jin J. Fossil Leaves of Meliosma (Sabiaceae) With Associated Pollen and a Eupodid Mite From the Eocene of Maoming Basin, South China. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.770687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A first occurrence of the genus Meliosma (Sabiaceae) is reported from the upper Eocene of the Maoming Basin of South China. This fossil is one of the oldest reliable records of the genus within its modern center of diversity. Fossil leaves are assigned to a new species, Meliosma eosinica sp. nov. based on leaf morphology and epidermal characters. The leaf epidermal anatomy of fossil Meliosma is illustrated for the first time. We also provide the first SEM observation of pollen grains associated with Meliosma. This study also documents an occurrence of mites within the leaf domatia previously unknown from the fossil record. We presume that the studied mite belongs to the superfamily Eupodoidea (Arthropoda), and probably the family Eupodidae, which comprises very small soft-bodied cosmopolitan mites occupying a wide range of terrestrial habitats. Additionally, we analyze the damage types on the fossil leaves of Meliosma. They exhibit exclusively external foliage feeding damage caused by arthropods and traces of probable fungal infection. A review of currently known fossil occurrences of leaves, fruits, and wood of Meliosma provides evidence for the geological and geographical distribution of the genus.
Collapse
|
15
|
Li J, Qian HM, Pan LL, Wang QM, Liu SS. Performance of two species of whiteflies is unaffected by glucosinolate profile in Brassica plants. PEST MANAGEMENT SCIENCE 2021; 77:4313-4320. [PMID: 33942969 DOI: 10.1002/ps.6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND While plant glucosinolates are known to impart resistance to many insects, their role in the interactions between plants and many phloem-feeding insects such as whiteflies are poorly understood. The whitefly Bemisia tabaci complex comprises many cryptic species that differ in the ability to utilize Brassica plants. However, whether Brassica plants-specific traits such as glucosinolates determine differences of whiteflies in colonizing Brassica plants remains in question. RESULTS We first observed performance of two whitefly species MEAM1 and Asia II 3, which differ obviously in their ability to colonize Brassica plants, on four cultivars of three Brassica species that vary in glucosinolate profile. We found that the life history characteristics of each of the two whitefly species seems to be only marginally affected by cultivar. We next used wild-type Arabidopsis plants and mutants defective in glucosinolate biosynthesis or hydrolysis to explore the effects of glucosinolates on the whitefly. We found that fecundity and development of immature stages of neither of the two whitefly species differ significantly between wild-type and mutants. CONCLUSION The data suggest that glucosinolates may have little effect on the oviposition by adults and the survival and development of immature stages of MEAM1 and Asia II 3 whiteflies. The marked differences in colonizing Brassica crops between the two whitefly species are likely due to plant traits other than glucosinolates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Mei Qian
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Mei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Labandeira CC. Ecology and Evolution of Gall-Inducing Arthropods: The Pattern From the Terrestrial Fossil Record. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.632449] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Insect and mite galls on land plants have a spotty but periodically rich and abundant fossil record of damage types (DTs), ichnotaxa, and informally described gall morphotypes. The earliest gall is on a liverwort of the Middle Devonian Period at 385 million years ago (Ma). A 70-million-year-long absence of documented gall activity ensues. Gall activity resumes during the Pennsylvanian Period (315 Ma) on vegetative and reproductive axial organs of horsetails, ferns, and probably conifers, followed by extensive diversification of small, early hemipteroid galler lineages on seed-plant foliage during the Permian Period. The end-Permian (P-Tr) evolutionary and ecological crisis extinguished most gall lineages; survivors diversified whose herbivore component communities surpassed pre-P-Tr levels within 10 million years in the mid-to late Triassic (242 Ma). During the late Triassic and Jurassic Period, new groups of galling insects colonized Ginkgoales, Bennettitales, Pinales, Gnetales, and other gymnosperms, but data are sparse. Diversifying mid-Cretaceous (125–90 Ma) angiosperms hosted a major expansion of 24 gall DTs organized as herbivore component communities, each in overlapping Venn-diagram fashion on early lineages of Austrobaileyales, Laurales, Chloranthales, and Eurosidae for the Dakota Fm (103 Ma). Gall diversification continued into the Ora Fm (92 Ma) of Israel with another 25 gall morphotypes, but as ichnospecies on a different spectrum of plant hosts alongside the earliest occurrence of parasitoid attack. The End-Cretaceous (K-Pg) extinction event (66 Ma) almost extinguished host–specialist DTs; surviving gall lineages expanded to a pre-K-Pg level 10 million years later at the Paleocene-Eocene Thermal Maximum (PETM) (56 Ma), at which time a dramatic increase of land surface temperatures and multiplying of atmospheric pCO2 levels induced a significant level of increased herbivory, although gall diversity increased only after the PETM excursion and during the Early Eocene Climatic Optimum (EECO). After the EECO, modern (or structurally convergent) gall morphotypes originate in the mid-Paleogene (49–40 Ma), evidenced by the Republic, Messel, and Eckfeld floras on hosts different from their modern analogs. During subsequent global aridification, the early Neogene (20 Ma) Most flora of the Czech Republic records several modern associations with gallers and plant hosts congeneric with their modern analogs. Except for 21 gall DTs in New Zealand flora, the gall record decreases in richness, although an early Pleistocene (3 Ma) study in France documents the same plant surviving as an endemic northern Iran but with decreasing associational, including gall, host specificity.
Collapse
|
17
|
Crossley MS, Snyder WE, Hardy NB. Insect-plant relationships predict the speed of insecticide adaptation. Evol Appl 2021; 14:290-296. [PMID: 33664776 PMCID: PMC7896708 DOI: 10.1111/eva.13089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/27/2022] Open
Abstract
Herbivorous insects must circumvent the chemical defenses of their host plants and, in cropping systems, must also circumvent synthetic insecticides. The pre-adaptation hypothesis posits that when herbivorous insects evolve resistance to insecticides, they co-opt adaptations against host plant defenses. Despite its intuitive appeal, few predictions of this hypothesis have been tested systematically. Here, with survival analysis of more than 17,000 herbivore-insecticide interactions, we show that resistance evolution tends to be faster when herbivorous insect diets are broad (but not too broad) and when insecticides and plant defensive chemicals are similar (but not too similar). These general relations suggest a complex interplay between macro-evolutionary contingencies and contemporary population genetic processes, and provide a predictive framework to forecast which pest species are most likely to develop resistance to particular insecticide chemistries.
Collapse
Affiliation(s)
| | | | - Nate B. Hardy
- Department of Entomology and Plant PathologyAuburn UniversityAuburnALUSA
| |
Collapse
|
18
|
Gao T, Shih C, Ren D. Behaviors and Interactions of Insects in Mid-Mesozoic Ecosystems of Northeastern China. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:337-354. [PMID: 32916066 DOI: 10.1146/annurev-ento-072720-095043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the past 20 years, more than 1,600 species of well-preserved fossil insects, including members of over 270 families within 24 orders, have been described from the Middle Jurassic Yanliao Entomofauna and Early Cretaceous Jehol Entomofauna in Northeastern China. Diversified fossil insects not only document the origin, systematics, and early evolution of many lineages, but also reveal these lineages' behaviors and interactions with coexisting plants, vertebrates, and other insects in their ecosystems. Fossil evidence has been documented, for example, regarding insects' feeding and pollination mutualism with gymnosperms; ectoparasitic feeding on blood of vertebrates; camouflage, mimicry of gymnosperm plants, and eyespot warning; sound stridulation for attracting potential mates; and sexual display, mating, egg-laying, and parental care. In this article, we review the diverse taxonomy of mid-Mesozoic insects of Northeastern China and elucidate their behaviors and interactions within their ecosystems, which have impacted their early evolution and development into extant insects.
Collapse
Affiliation(s)
- Taiping Gao
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China; ,
| | - Chungkun Shih
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China; ,
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA;
| | - Dong Ren
- College of Life Sciences and Academy for Multidisciplinary Studies, Capital Normal University, Beijing 100048, China; ,
| |
Collapse
|
19
|
Morozov SY, Lazareva EA, Solovyev AG. Sequence Relationships of RNA Helicases and Other Proteins Encoded by Blunervirus RNAs Highlight Recombinant Evolutionary Origin of Kitaviral Genomes. Front Microbiol 2020; 11:561092. [PMID: 33193144 PMCID: PMC7658314 DOI: 10.3389/fmicb.2020.561092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Department of Virology, Biological Faculty, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
20
|
Tamiru A, Paliwal R, Manthi SJ, Odeny DA, Midega CAO, Khan ZR, Pickett JA, Bruce TJA. Genome wide association analysis of a stemborer egg induced "call-for-help" defence trait in maize. Sci Rep 2020; 10:11205. [PMID: 32641801 PMCID: PMC7343780 DOI: 10.1038/s41598-020-68075-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
Tritrophic interactions allow plants to recruit natural enemies for protection against herbivory. Here we investigated genetic variability in induced responses to stemborer egg-laying in maize Zea mays (L.) (Poaceae). We conducted a genome wide association study (GWAS) of 146 maize genotypes comprising of landraces, inbred lines and commercial hybrids. Plants were phenotyped in bioassays measuring parasitic wasp Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) attraction to volatiles collected from plants exposed to stemborer Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) eggs. Genotyping-by-sequencing was used to generate maize germplasm SNP data for GWAS. The egg-induced parasitoid attraction trait was more common in landraces than in improved inbred lines and hybrids. GWAS identified 101 marker-trait associations (MTAs), some of which were adjacent to genes involved in the JA-defence pathway (opr7, aos1, 2, 3), terpene biosynthesis (fps3, tps2, 3, 4, 5, 7, 9, 10), benzoxazinone synthesis (bx7, 9) and known resistance genes (e.g. maize insect resistance 1, mir1). Intriguingly, there was also association with a transmembrane protein kinase that may function as a receptor for the egg elicitor and other genes implicated in early plant defence signalling. We report maize genomic regions associated with indirect defence and provide a valuable resource for future studies of tritrophic interactions in maize. The markers identified may facilitate selection of indirect defence by maize breeders.
Collapse
Affiliation(s)
- Amanuel Tamiru
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Rajneesh Paliwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P.O. Box 39063-00623, Nairobi, Kenya.,International Institute of Tropical Agriculture (IITA), 5320, Ibadan, Nigeria
| | - Samuel J Manthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P.O. Box 39063-00623, Nairobi, Kenya
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), P.O. Box 39063-00623, Nairobi, Kenya
| | - Charles A O Midega
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - Zeyaur R Khan
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100, Nairobi, Kenya
| | - John A Pickett
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Toby J A Bruce
- School of Life Sciences, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
21
|
Mángano MG, Buatois LA. The rise and early evolution of animals: where do we stand from a trace-fossil perspective? Interface Focus 2020; 10:20190103. [PMID: 32642049 DOI: 10.1098/rsfs.2019.0103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 01/10/2023] Open
Abstract
The trace-fossil record provides a wealth of information to track the rise and early evolution of animals. It comprises the activity of both hard- and soft-bodied organisms, is continuous through the Ediacaran (635-539 Ma)- Cambrian (539-485 Ma) transition, yields insights into animal behaviour and their role as ecosystem engineers, and allows for a more refined characterization of palaeoenvironmental context. In order to unravel macroevolutionary signals from the trace-fossil record, a variety of approaches is available, including not only estimation of degree of bioturbation, but also analysis of ichnodiversity and ichnodisparity trajectories, and evaluation of the occupation of infaunal ecospace and styles of ecosystem engineering. Analysis of the trace-fossil record demonstrates the presence of motile benthic bilaterians in the Ediacaran, mostly feeding from biofilms. Although Ediacaran trace fossils are simple and emplaced at or immediately below the sediment surface, an increase in ichnofossil complexity, predation pressure, sediment disturbance and penetration depth is apparent during the terminal Ediacaran. Regardless of this increase, a dramatic rise in trace fossil diversity and disparity took place during the earliest Cambrian, underscoring that the novelty of the Fortunian (539-529 Ma) cannot be underestimated. The Fortunian still shows the persistence of an Ediacaran-style matground ecology, but is fundamentally characterized by the appearance of new trace-fossil architectural plans reflecting novel ways of interacting with the substrate. The appearance of Phanerozoic-style benthic ecosystems attests to an increased length and connectivity of the food web and improved efficiency in organic carbon transfer and nutrient recycling. A profound reorganization of the infaunal ecospace is recorded in both high-energy sand-dominated nearshore areas and low-energy mud-dominated offshore environments, during the early Cambrian, starting approximately during Cambrian Age 2 (529-521 Ma), but continuing during the rest of the early Cambrian. A model comprising four evolutionary phases is proposed to synthetize information from the Ediacaran-Cambrian trace-fossil record. The use of a rich ichnological toolbox; critical, systematic and comprehensive evaluation of the Ediacaran-Cambrian trace-fossil record; and high-resolution integration of the ichnological dataset and sedimentological information show that the advent of biogenic mixing was an important factor in fully marine environments at the dawn of the Phanerozoic.
Collapse
Affiliation(s)
- M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| |
Collapse
|
22
|
High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem. PLoS One 2020; 15:e0233115. [PMID: 32459808 PMCID: PMC7252595 DOI: 10.1371/journal.pone.0233115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Bite marks provide direct evidence for trophic interactions and competition in the fossil record. However, variations in paleoecological dynamics, such as trophic relationships, feeding behavior, and food availability, govern the frequency of these traces. Theropod bite marks are particularly rare, suggesting that members of this clade might not often focus on bone as a resource, instead preferentially targeting softer tissues. Here, we present an unusually large sample of theropod bite marks from the Upper Jurassic Mygatt-Moore Quarry (MMQ). We surveyed 2,368 vertebrate fossils from MMQ in this analysis, with 684 specimens (28.885% of the sample) preserving at least one theropod bite mark. This is substantially higher than in other dinosaur-dominated assemblages, including contemporaneous localities from the Morrison Formation. Observed bite marks include punctures, scores, furrows, pits, and striations. Striated marks are particularly useful, diagnostic traces generated by the denticles of ziphodont teeth, because the spacing of these features can be used to provide minimum estimates of trace maker size. In the MMQ assemblage, most of the striations are consistent with denticles of the two largest predators known from the site: Allosaurus and Ceratosaurus. One of the bite marks suggests that a substantially larger theropod was possibly present at the site and are consistent with large theropods known from other Morrison Formation assemblages (either an unusually large Allosaurus or a separate, large-bodied taxon such as Saurophaganax or Torvosaurus). The distribution of the bite marks on skeletal elements, particularly those found on other theropods, suggest that they potentially preserve evidence of scavenging, rather than active predation. Given the relative abundances of the MMQ carnivores, partnered with the size-estimates based on the striated bite marks, the feeding trace assemblage likely preserves the first evidence of cannibalism in Allosaurus.
Collapse
|
23
|
Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 2019; 85:AEM.01761-19. [PMID: 31444202 PMCID: PMC6803314 DOI: 10.1128/aem.01761-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques. Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.
Collapse
|
24
|
Size, weapons, and armor as predictors of competitive outcomes in fossil and contemporary marine communities. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Zagrobelny M, de Castro ÉCP, Møller BL, Bak S. Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. INSECTS 2018; 9:E51. [PMID: 29751568 PMCID: PMC6023451 DOI: 10.3390/insects9020051] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/16/2022]
Abstract
Chemical defences are key components in insect⁻plant interactions, as insects continuously learn to overcome plant defence systems by, e.g., detoxification, excretion or sequestration. Cyanogenic glucosides are natural products widespread in the plant kingdom, and also known to be present in arthropods. They are stabilised by a glucoside linkage, which is hydrolysed by the action of β-glucosidase enzymes, resulting in the release of toxic hydrogen cyanide and deterrent aldehydes or ketones. Such a binary system of components that are chemically inert when spatially separated provides an immediate defence against predators that cause tissue damage. Further roles in nitrogen metabolism and inter- and intraspecific communication has also been suggested for cyanogenic glucosides. In arthropods, cyanogenic glucosides are found in millipedes, centipedes, mites, beetles and bugs, and particularly within butterflies and moths. Cyanogenic glucosides may be even more widespread since many arthropod taxa have not yet been analysed for the presence of this class of natural products. In many instances, arthropods sequester cyanogenic glucosides or their precursors from food plants, thereby avoiding the demand for de novo biosynthesis and minimising the energy spent for defence. Nevertheless, several species of butterflies, moths and millipedes have been shown to biosynthesise cyanogenic glucosides de novo, and even more species have been hypothesised to do so. As for higher plant species, the specific steps in the pathway is catalysed by three enzymes, two cytochromes P450, a glycosyl transferase, and a general P450 oxidoreductase providing electrons to the P450s. The pathway for biosynthesis of cyanogenic glucosides in arthropods has most likely been assembled by recruitment of enzymes, which could most easily be adapted to acquire the required catalytic properties for manufacturing these compounds. The scattered phylogenetic distribution of cyanogenic glucosides in arthropods indicates that the ability to biosynthesise this class of natural products has evolved independently several times. This is corroborated by the characterised enzymes from the pathway in moths and millipedes. Since the biosynthetic pathway is hypothesised to have evolved convergently in plants as well, this would suggest that there is only one universal series of unique intermediates by which amino acids are efficiently converted into CNglcs in different Kingdoms of Life. For arthropods to handle ingestion of cyanogenic glucosides, an effective detoxification system is required. In butterflies and moths, hydrogen cyanide released from hydrolysis of cyanogenic glucosides is mainly detoxified by β-cyanoalanine synthase, while other arthropods use the enzyme rhodanese. The storage of cyanogenic glucosides and spatially separated hydrolytic enzymes (β-glucosidases and α-hydroxynitrile lyases) are important for an effective hydrogen cyanide release for defensive purposes. Accordingly, such hydrolytic enzymes are also present in many cyanogenic arthropods, and spatial separation has been shown in a few species. Although much knowledge regarding presence, biosynthesis, hydrolysis and detoxification of cyanogenic glucosides in arthropods has emerged in recent years, many exciting unanswered questions remain regarding the distribution, roles apart from defence, and convergent evolution of the metabolic pathways involved.
Collapse
Affiliation(s)
- Mika Zagrobelny
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | | | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
- VILLUM Center for Plant Plasticity, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| | - Søren Bak
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ. The timescale of early land plant evolution. Proc Natl Acad Sci U S A 2018; 115:E2274-E2283. [PMID: 29463716 PMCID: PMC5877938 DOI: 10.1073/pnas.1719588115] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte-tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian-Early Ordovician, origin.
Collapse
Affiliation(s)
- Jennifer L Morris
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Mark N Puttick
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - James W Clark
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10, United Kingdom
| | - Paul Kenrick
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
| | - Charles H Wellman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
- Radclie Institute for Advanced Studies, Harvard University, Cambridge, MA 02138
| | - Harald Schneider
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
- Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom;
| |
Collapse
|
27
|
Becher PG, Hagman A, Verschut V, Chakraborty A, Rozpędowska E, Lebreton S, Bengtsson M, Flick G, Witzgall P, Piškur J. Chemical signaling and insect attraction is a conserved trait in yeasts. Ecol Evol 2018; 8:2962-2974. [PMID: 29531709 PMCID: PMC5838033 DOI: 10.1002/ece3.3905] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/22/2017] [Accepted: 01/07/2018] [Indexed: 01/24/2023] Open
Abstract
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect-associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co-occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y-tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect-yeast communication evolved prior to the emergence of flowering plants. Co-occurrence of the same attractant signals in yeast and flowers suggests that yeast-insect communication may have contributed to the evolution of insect-mediated pollination in flowers.
Collapse
Affiliation(s)
- Paul G. Becher
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Arne Hagman
- Department of BiologyLund UniversityLundSweden
| | - Vasiliki Verschut
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Amrita Chakraborty
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Elżbieta Rozpędowska
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Sébastien Lebreton
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Marie Bengtsson
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Gerhard Flick
- Department of Agriculture and Food ScienceUniversity of Applied SciencesNeubrandenburgGermany
| | - Peter Witzgall
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Jure Piškur
- Department of BiologyLund UniversityLundSweden
| |
Collapse
|
28
|
Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall. TOPICS IN GEOBIOLOGY 2018. [DOI: 10.1007/978-3-319-68009-5_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Alyokhin A, Chen YH. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2017; 21:33-38. [PMID: 28822486 DOI: 10.1016/j.cois.2017.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods.
Collapse
Affiliation(s)
- Andrei Alyokhin
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, United States.
| | - Yolanda H Chen
- Department of Plant and Soil Science, 63 Carrigan Dr., University of Vermont, Burlington, VT 05405, United States
| |
Collapse
|
30
|
Borges RM, Somanathan H, Kelber A. Patterns and Processes in Nocturnal and Crepuscular Pollination Services. QUARTERLY REVIEW OF BIOLOGY 2016; 91:389-418. [DOI: 10.1086/689481] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Cingel A, Savić J, Lazarević J, Ćosić T, Raspor M, Smigocki A, Ninković S. Extraordinary Adaptive Plasticity of Colorado Potato Beetle: "Ten-Striped Spearman" in the Era of Biotechnological Warfare. Int J Mol Sci 2016; 17:ijms17091538. [PMID: 27649141 PMCID: PMC5037813 DOI: 10.3390/ijms17091538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say), has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and capability to detoxify or tolerate toxins make this insect appear to be virtually “indestructible”. With increasing advances in molecular biology, tools of biotechnological warfare were deployed to combat CPB. In the last three decades, genetically modified potato has created a new challenge for the beetle. After reviewing hundreds of scientific papers dealing with CPB control, it became clear that even biotechnological means of control, if used alone, would not defeat the Colorado potato beetle. This control measure once again appears to be provoking the potato beetle to exhibit its remarkable adaptability. Nonetheless, the potential for adaptation to these techniques has increased our knowledge of this pest and thus opened possibilities for devising more sustainable CPB management programs.
Collapse
Affiliation(s)
- Aleksandar Cingel
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelena Savić
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Jelica Lazarević
- Insect Physiology and Biochemistry Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Tatjana Ćosić
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Martin Raspor
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Ann Smigocki
- Molecular Plant Pathology Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | - Slavica Ninković
- Plant Physiology Department, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
32
|
Shinya T, Hojo Y, Desaki Y, Christeller JT, Okada K, Shibuya N, Galis I. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice. Sci Rep 2016; 6:32537. [PMID: 27581373 PMCID: PMC5007475 DOI: 10.1038/srep32537] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature.
Collapse
Affiliation(s)
- Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Yoshitake Desaki
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - John T. Christeller
- The New Zealand Institute for Plant & Food Research, Palmerston North 4442, New Zealand
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoto Shibuya
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
33
|
The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Sci Rep 2016; 6:27259. [PMID: 27251635 PMCID: PMC4890112 DOI: 10.1038/srep27259] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 02/04/2023] Open
Abstract
The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108–90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.
Collapse
|
34
|
Huang DY, Bechly G, Nel P, Engel MS, Prokop J, Azar D, Cai CY, van de Kamp T, Staniczek AH, Garrouste R, Krogmann L, dos Santos Rolo T, Baumbach T, Ohlhoff R, Shmakov AS, Bourgoin T, Nel A. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci Rep 2016; 6:23004. [PMID: 26961785 PMCID: PMC4785345 DOI: 10.1038/srep23004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/26/2016] [Indexed: 11/12/2022] Open
Abstract
With nearly 100,000 species, the Acercaria (lice, plant lices, thrips, bugs) including number of economically important species is one of the most successful insect lineages. However, its phylogeny and evolution of mouthparts among other issues remain debatable. Here new methods of preparation permitted the comprehensive anatomical description of insect inclusions from mid-Cretaceous Burmese amber in astonishing detail. These "missing links" fossils, attributed to a new order Permopsocida, provide crucial evidence for reconstructing the phylogenetic relationships in the Acercaria, supporting its monophyly, and questioning the position of Psocodea as sister group of holometabolans in the most recent phylogenomic study. Permopsocida resolves as sister group of Thripida + Hemiptera and represents an evolutionary link documenting the transition from chewing to piercing mouthparts in relation to suction feeding. Identification of gut contents as angiosperm pollen documents an ecological role of Permopsocida as early pollen feeders with relatively unspecialized mouthparts. This group existed for 185 million years, but has never been diverse and was superseded by new pollenivorous pollinators during the Cretaceous co-evolution of insects and flowers. The key innovation of suction feeding with piercing mouthparts is identified as main event that triggered the huge post-Carboniferous radiation of hemipterans, and facilitated the spreading of pathogenic vectors.
Collapse
Affiliation(s)
- Di-Ying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Günter Bechly
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Patricia Nel
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
- AgroParisTech, Paris, France
| | - Michael S. Engel
- Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Jakub Prokop
- Charles University, Faculty of Science, Department of Zoology, Prague, Czech Republic
| | - Dany Azar
- Lebanese University, Faculty of Sciences II, Department of Biology, Beirut, Lebanon
| | - Chen-Yang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, People’s Republic of China
| | - Thomas van de Kamp
- ANKA/ Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Romain Garrouste
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
| | - Lars Krogmann
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Tomy dos Santos Rolo
- ANKA/ Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Tilo Baumbach
- ANKA/ Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | - Alexey S. Shmakov
- Arthropoda Laboratory, Palaeontological Institute, Russian Academy of Sciences, Moscow, Russia
| | - Thierry Bourgoin
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
| | - André Nel
- Institut de Systématique, Évolution, Biodiversité, Muséum national d’Histoire naturelle, Paris, France
| |
Collapse
|
35
|
Mishra M, Lomate PR, Joshi RS, Punekar SA, Gupta VS, Giri AP. Ecological turmoil in evolutionary dynamics of plant-insect interactions: defense to offence. PLANTA 2015; 242:761-771. [PMID: 26159435 DOI: 10.1007/s00425-015-2364-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO₂ and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their interference in native plant-insect interactions are needed to maintain natural balance between the existence of plants and insects.
Collapse
Affiliation(s)
- Manasi Mishra
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, MS, India
| | | | | | | | | | | |
Collapse
|
36
|
Tamiru A, Khan ZR, Bruce TJ. New directions for improving crop resistance to insects by breeding for egg induced defence. CURRENT OPINION IN INSECT SCIENCE 2015; 9:51-55. [PMID: 32846708 DOI: 10.1016/j.cois.2015.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/20/2015] [Indexed: 06/11/2023]
Abstract
Plant defence responses to insect oviposition, including tritrophic interactions with natural enemies of herbivores, have rarely been targeted in crop breeding programmes. Emission of herbivore induced plant volatiles (HIPVs) that attract natural enemies early on at the egg-laying stage of herbivore attack could provide timely biological control of pests and deter subsequent oviposition. This is needed in an agroecological context where the third trophic level often does not keep pace with the growth rate of pests. Our very recent data, using maize as an example, show that herbivore egg induced volatile emission is very rare in commercial hybrids but common in farmer selected landraces. Strategies for crop genetic improvement to enhance such responses to insect attack are considered.
Collapse
|
37
|
Bruce TJA. Interplay between insects and plants: dynamic and complex interactions that have coevolved over millions of years but act in milliseconds. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:455-65. [PMID: 25271259 DOI: 10.1093/jxb/eru391] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In an environment with changing availability and quality of host plants, phytophagous insects are under selection pressure to find quality hosts. They need to maximize their fitness by locating suitable plants and avoiding unsuitable ones. Thus, they have evolved a finely tuned sensory system, for detection of host cues, and a nervous system, capable of integrating inputs from sensory neurons with a high level of spatio-temporal resolution. Insect responses to cues are not fixed but depend on the context in which they are perceived, the physiological state of the insect, and prior learning experiences. However, there are examples of insects making 'mistakes' and being attracted to poor quality hosts. While insects have evolved ways of finding hosts, plants have been under selection pressure to do precisely the opposite and evade detection or defend themselves when attacked. Once on the plant, insect-associated molecules may trigger or suppress defence depending on whether the plant or the insect is ahead in evolutionary terms. Plant volatile emission is influenced by defence responses induced by insect feeding or oviposition which can attract natural enemies but repel herbivores. Conversely, plant reproductive fitness is increased by attraction of pollinators. Interactions can be altered by other organisms associated with the plant such as other insects, plant pathogens, or mycorrhizal fungi. Plant phenotype is plastic and can be changed by epigenetic factors in adaptation to periods of biotic stress. Space and time play crucial roles in influencing the outcome of interactions between insects and plants.
Collapse
|
38
|
Nagler C, Haug JT. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts. ADVANCES IN PARASITOLOGY 2015; 90:137-200. [PMID: 26597067 DOI: 10.1016/bs.apar.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species.
Collapse
|
39
|
Kergoat GJ, Bouchard P, Clamens AL, Abbate JL, Jourdan H, Jabbour-Zahab R, Genson G, Soldati L, Condamine FL. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol Biol 2014; 14:220. [PMID: 25331733 PMCID: PMC4210489 DOI: 10.1186/s12862-014-0220-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Background As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses. Results Age estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates. Conclusions We hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0220-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gael J Kergoat
- INRA - UMR 1062 CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Campus de Baillarguet, Montferrier-sur-Lez, 34988, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang M, Béthoux O, Bradler S, Jacques FMB, Cui Y, Ren D. Under cover at pre-angiosperm times: a cloaked phasmatodean insect from the Early Cretaceous Jehol biota. PLoS One 2014; 9:e91290. [PMID: 24646906 PMCID: PMC3960115 DOI: 10.1371/journal.pone.0091290] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/13/2014] [Indexed: 11/21/2022] Open
Abstract
Background Fossil species that can be conclusively identified as stem-relatives of stick- and leaf-insects (Phasmatodea) are extremely rare, especially for the Mesozoic era. This dearth in the paleontological record makes assessments on the origin and age of the group problematic and impedes investigations of evolutionary key aspects, such as wing development, sexual size dimorphism and plant mimicry. Methodology/Principal Findings A new fossil insect species, Cretophasmomima melanogramma Wang, Béthoux and Ren sp. nov., is described on the basis of one female and two male specimens recovered from the Yixian Formation (Early Cretaceous, ca. 126±4 mya; Inner Mongolia, NE China; known as ‘Jehol biota’). The occurrence of a female abdominal operculum and of a characteristic ‘shoulder pad’ in the forewing allows for the interpretation of a true stem-Phasmatodea. In contrast to the situation in extant forms, sexual size dimorphism is only weakly female-biased in this species. The peculiar wing coloration, viz. dark longitudinal veins, suggests that the leaf-shaped plant organ from the contemporaneous ‘gymnosperm’ Membranifolia admirabilis was used as model for crypsis. Conclusions/Significance As early as in the Early Cretaceous, some stem-Phasmatodea achieved effective leaf mimicry, although additional refinements characteristic of recent forms, such as curved fore femora, were still lacking. The diversification of small-sized arboreal insectivore birds and mammals might have triggered the acquisition of such primary defenses.
Collapse
Affiliation(s)
- Maomin Wang
- Key Laboratory of Insect Evolution and Environmental Changes, Capital Normal University, Beijing, P. R. China
| | - Olivier Béthoux
- Sorbonne Universités - CR2P - MNHN, CNRS, UPMC-Paris6, Paris, France
| | - Sven Bradler
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Frédéric M. B. Jacques
- Laboratory of Palaeoecology, Xishuangbanna Tropical Botanical Garden, CAS, Menglun, Mengla, Xishuangbanna, Yunnan, P. R. China
| | - Yingying Cui
- Key Laboratory of Insect Evolution and Environmental Changes, Capital Normal University, Beijing, P. R. China
- Institute of Geology, Department of Palaeontology, Technical University Bergakademie Freiberg, Freiberg, Germany
| | - Dong Ren
- Key Laboratory of Insect Evolution and Environmental Changes, Capital Normal University, Beijing, P. R. China
- * E-mail:
| |
Collapse
|