1
|
Yagi H, Hara-Nishimura I, Ueda H. Quantitative analysis of the root posture of Arabidopsis thaliana mutants with wavy roots. QUANTITATIVE PLANT BIOLOGY 2024; 5:e9. [PMID: 39777035 PMCID: PMC11706685 DOI: 10.1017/qpb.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025]
Abstract
Plant postures are affected by environmental stimuli. When the gravitational direction changes, the Arabidopsis thaliana mutants myosin xif xik (xif xik) and atp-binding cassette b19 (abcb19) exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown. We characterized the primary root postures of these mutants. Their roots exhibited enhanced gravitropic bending with the same root-tip angles. The wavy roots of vertically grown plants were quantitatively evaluated using four indices. The straightness index (root base-to-tip length to total root-length ratio) was similar for xif xik and abcb19, and it slightly decreased for xif xik abcb19. The curvature index was similar for abcb19 and xif xik abcb19, but it decreased for xif xik, suggesting the ABCB19 deficiency caused the roots to curve more sharply. Combination of these indices for quantitative analyses of root postures may distinguish between similar wavy-root phenotypes and clarify genetic relationships.
Collapse
Affiliation(s)
- Hiroki Yagi
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
| | | | - Haruko Ueda
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe658-8501, Japan
| |
Collapse
|
2
|
Li YB, Liu C, Shen N, Zhu S, Deng X, Liu Z, Han LB, Tang D. The actin motor protein OsMYA1 associates with OsExo70H1 and contributes to rice secretory defense by modulating OsSyp121 distribution. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2058-2075. [PMID: 39041957 DOI: 10.1111/jipb.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Magnaporthe oryzae (M. oryzae) is a devastating hemibiotrophic pathogen. Its biotrophic invasive hyphae (IH) are enclosed in the extrainvasive hyphal membrane produced by plant cells, thus generating a front line of the battlefield between the pathogen and the host plants. In plants, defense-related complexes such as proteins, callose-rich materials and vesicles, are directionally secreted to this interface to confer defense responses, but the underlying molecular mechanism is poorly understood. In this study, we found that a Myosin gene, Myosin A1 (OsMYA1), contributed to rice defense. The OsMYA1 knockout mutant exhibited decreased resistance to M. oryzae infection. OsMYA1 localizes to the actin cytoskeleton and surrounds the IH of M. oryzae. OsMYA1 interacts with an exocyst subunit, OsExo70H1, and regulates its accumulation at the plasma membrane (PM) and pathogen-plant interface. Furthermore, OsExo70H1 interacted with the rice syntaxin of the plants121 protein (OsSyp121), and the distribution of OsSyp121 to the PM or the pathogen-plant interface was disrupted in both the OsMYA1 and OsExo70H1 mutants. Overall, these results not only reveal a new function of OsMYA1 in rice blast resistance, but also uncover a molecular mechanism by which plants regulate defense against M. oryzae by OsMYA1-initiated vesicle secretory pathway, which originates from the actin cytoskeleton to the PM.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Nielsen ME. Vesicle trafficking pathways in defence-related cell wall modifications: papillae and encasements. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3700-3712. [PMID: 38606692 DOI: 10.1093/jxb/erae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- University of Copenhagen, Faculty of Science, CPSC, Department of Plant and Environmental Sciences, 1871 Frederiksberg C, Denmark
| |
Collapse
|
4
|
Koenig AM, Liu B, Hu J. Visualizing the dynamics of plant energy organelles. Biochem Soc Trans 2023; 51:2029-2040. [PMID: 37975429 PMCID: PMC10754284 DOI: 10.1042/bst20221093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response.
Collapse
Affiliation(s)
- Amanda M. Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, U.S.A
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
5
|
Musetti R, Pagliari L, Mian G, De Oliveira Cantao FR, Bernardini C, Santi S, van Bel AJE. The sieve-element endoplasmic reticulum: A focal point of phytoplasma-host plant interaction? Front Microbiol 2023; 14:1030414. [PMID: 36819061 PMCID: PMC9932721 DOI: 10.3389/fmicb.2023.1030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive responses to biotic stresses due to an increased demand for de novo synthesis of immunity-related proteins and signaling components. In nucleate cells, disturbance of r-ER integrity and functionality leads to the "unfolded protein response" (UPR), which is an important component of innate plant immune signalling. In contrast to an abundance of reports on r-ER responses to biotic challenges, sieve-element endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not been investigated. We found that morphological SE-ER changes, associated with phytoplasma infection, are accompanied by differential expression of genes encoding proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent differential expression of UPR-related genes. The modified expression patterns seem to reflect a trade-off between survival of host cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve element and companion cell may provide a corridor for transfer of phytoplasma effectors inducing UPR-related gene expression in companion cells.
Collapse
Affiliation(s)
- Rita Musetti
- Department of Land, Environment, Agriculture and Forestry (TESAF), Università di Padova, via dell' Università, Legnaro, Italy,*Correspondence: Rita Musetti,
| | - Laura Pagliari
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Giovanni Mian
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Fernando R. De Oliveira Cantao
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Chiara Bernardini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze, Udine, Italy
| | | |
Collapse
|
6
|
Ahmad HM, Alafari HA, Fiaz S, Alshaya DS, Toor S, Ijaz M, Rasool N, Attia KA, Zaynab M, Azmat S, Abushady AM, Chen Y. Genome-wide comparison and identification of myosin gene family in Arabidopsis thaliana and Helianthus annuus. Heliyon 2022; 8:e12070. [PMID: 36561675 PMCID: PMC9763749 DOI: 10.1016/j.heliyon.2022.e12070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Myosins are essential components of organelle trafficking in all the eukaryotic cells. Myosin driven movement plays a vital role in the development of pollen tubes, root hairs and root tips of flowering plants. The present research characterized the myosin genes in Arabidopsis thaliana and Helianthus annuus by using different computational tools. We discovered a total of 50 myosin genes and their splice variants in both pant species. Phylogenetic analysis indicated that myosin genes were divided into four subclasses. Chromosomal location revealed that myosin genes were located on all five chromosomes in A. thaliana, whereas they were present on nine chromosomes in H. annuus. Conserved motifs showed that conserved regions were closely similar within subgroups. Gene structure analysis showed that Atmyosin2.2 and Atmyosin2.3 had the highest number of introns/exons. Gene ontology analysis indicated that myosin genes were involved in vesicle transport along actin filament and cytoskeleton trafficking. Expression analysis showed that expression of myosin genes was higher during the flowering stage as compared to the seedling and budding stages. Tissue specific expression indicated that HanMYOSIN11.2, HanMYOSIN16.2 were highly expressed in stamen, whereas HanMYOSIN 2.2, HanMYOSIN 12.1 and HanMYOSIN 17.1 showed higher expression in nectary. This study enhance our understanding the function of myosins in plant development, and forms the basis for future research about the comparative genomics of plant myosin in other crop plants.
Collapse
Affiliation(s)
- Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan,Corresponding author.
| | - Hayat Ali Alafari
- Deparment of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Pakistan,Corresponding author.
| | - Dalal S. Alshaya
- Deparment of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sidra Toor
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nouman Rasool
- Department of Plant Breeding and Genetics, University of Haripur, Haripur 22620, Pakistan
| | - Kotb A. Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455-11451, Riyadh 11451, Saudi Arabia,Department of Rice Biotechnology, RRTC, Institute of Field Crops, ARC, Sakha, 33177, Kafrelsheikh, Egypt
| | - Madiha Zaynab
- College of Life Science & Oceanography, Shenzhen University, China
| | - Saira Azmat
- Agriculture Extension and Adaptive Research, Agriculture Department, Government of Punjab, Pakistan
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt,Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Yinglong Chen
- School of Earth and Environment and UWA Institute of Agriculture, University of Western Australia, Australia
| |
Collapse
|
7
|
Hong WJ, Kim EJ, Yoon J, Silva J, Moon S, Min CW, Cho LH, Kim ST, Park SK, Kim YJ, Jung KH. A myosin XI adaptor, TAPE, is essential for pollen tube elongation in rice. PLANT PHYSIOLOGY 2022; 190:562-575. [PMID: 35736513 PMCID: PMC9434255 DOI: 10.1093/plphys/kiac299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.
Collapse
Affiliation(s)
- Woo-Jong Hong
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeniffer Silva
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Green-Bio Science & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yu-Jin Kim
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| | - Ki-Hong Jung
- Authors for correspondence: (Y.-J.K.); (K.-H.J.)
| |
Collapse
|
8
|
Moulia B, Badel E, Bastien R, Duchemin L, Eloy C. The shaping of plant axes and crowns through tropisms and elasticity: an example of morphogenetic plasticity beyond the shoot apical meristem. THE NEW PHYTOLOGIST 2022; 233:2354-2379. [PMID: 34890051 DOI: 10.1111/nph.17913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Shoot morphogenetic plasticity is crucial to the adaptation of plants to their fluctuating environments. Major insights into shoot morphogenesis have been compiled studying meristems, especially the shoot apical meristem (SAM), through a methodological effort in multiscale systems biology and biophysics. However, morphogenesis at the SAM is robust to environmental changes. Plasticity emerges later on during post-SAM development. The purpose of this review is to show that multiscale systems biology and biophysics is insightful for the shaping of the whole plant as well. More specifically, we review the shaping of axes and crowns through tropisms and elasticity, combining the recent advances in morphogenetic control using physical cues and by genes. We focus mostly on land angiosperms, but with growth habits ranging from small herbs to big trees. We show that generic (universal) morphogenetic processes have been identified, revealing feedforward and feedback effects of global shape on the local morphogenetic process. In parallel, major advances have been made in the analysis of the major genes involved in shaping axes and crowns, revealing conserved genic networks among angiosperms. Then, we show that these two approaches are now starting to converge, revealing exciting perspectives.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Eric Badel
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
| | - Renaud Bastien
- Université Clermont Auvergne, INRAE, PIAF, F-63000, Clermont-Ferrand, France
- INSERM U1284, Center for Research and Interdisciplinarity (CRI), Université de Paris, F-75004, Paris, France
| | - Laurent Duchemin
- Physique et Mécanique des Milieux Hétérogenes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Christophe Eloy
- Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13013, Marseille, France
| |
Collapse
|
9
|
Tian X, Wang X, Li Y. Myosin XI-B is involved in the transport of vesicles and organelles in pollen tubes of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1145-1161. [PMID: 34559914 DOI: 10.1111/tpj.15505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The movement of organelles and vesicles in pollen tubes depends on F-actin. However, the molecular mechanism through which plant myosin XI drives the movement of organelles is still controversial, and the relationship between myosin XI and vesicle movement in pollen tubes is also unclear. In this study, we found that the siliques of the myosin xi-b/e mutant were obviously shorter than those of the wild-type (WT) and that the seed set of the mutant was severely deficient. The pollen tube growth of myosin xi-b/e was significantly inhibited both in vitro and in vivo. Fluorescence recovery after photobleaching showed that the velocity of vesicle movement in the pollen tube tip of the myosin xi-b/e mutant was lower than that of the WT. It was also found that peroxisome movement was significantly inhibited in the pollen tubes of the myosin xi-b/e mutant, while the velocities of the Golgi stack and mitochondrial movement decreased relatively less in the pollen tubes of the mutant. The endoplasmic reticulum streaming in the pollen tube shanks was not significantly different between the WT and the myosin xi-b/e mutant. In addition, we found that myosin XI-B-GFP colocalized obviously with vesicles and peroxisomes in the pollen tubes of Arabidopsis. Taken together, these results indicate that myosin XI-B may bind mainly to vesicles and peroxisomes, and drive their movement in pollen tubes. These results also suggest that the mechanism by which myosin XI drives organelle movement in plant cells may be evolutionarily conserved compared with other eukaryotic cells.
Collapse
Affiliation(s)
- Xiulin Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xingjuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Zhang W, Huang L, Zhang C, Staiger CJ. Arabidopsis myosin XIK interacts with the exocyst complex to facilitate vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2454-2478. [PMID: 33871640 PMCID: PMC8364239 DOI: 10.1093/plcell/koab116] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/13/2021] [Indexed: 05/17/2023]
Abstract
Myosin motors are essential players in secretory vesicle trafficking and exocytosis in yeast and mammalian cells; however, similar roles in plants remain a matter for debate, at least for diffusely growing cells. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) myosin XIK, via its globular tail domain (GTD), participates in the vesicle tethering step of exocytosis through direct interactions with the exocyst complex. Specifically, myosin XIK GTD bound directly to several exocyst subunits in vitro and functional fluorescently tagged XIK colocalized with multiple exocyst subunits at plasma membrane (PM)-associated stationary foci. Moreover, genetic and pharmacological inhibition of myosin XI activity reduced the rate of appearance and lifetime of stationary exocyst complexes at the PM. By tracking single exocytosis events of cellulose synthase (CESA) complexes with high spatiotemporal resolution imaging and pair-wise colocalization of myosin XIK, exocyst subunits, and CESA6, we demonstrated that XIK associates with secretory vesicles earlier than exocyst and is required for the efficient localization and normal dynamic behavior of exocyst complex at the PM tethering site. This study reveals an important functional role for myosin XI in secretion and provides insights about the dynamic regulation of exocytosis in plants.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
- Center for Plant Biology, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, USA
- Author for correspondence:
| |
Collapse
|
11
|
Cai Y. Leading the way out: how a plant myosin facilitates vesicle tethering during exocytosis. THE PLANT CELL 2021; 33:2104-2105. [PMID: 35233601 PMCID: PMC8364227 DOI: 10.1093/plcell/koab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Yingqi Cai
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
12
|
Moulia B, Douady S, Hamant O. Fluctuations shape plants through proprioception. Science 2021; 372:372/6540/eabc6868. [PMID: 33888615 DOI: 10.1126/science.abc6868] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plants constantly experience fluctuating internal and external mechanical cues, ranging from nanoscale deformation of wall components, cell growth variability, nutating stems, and fluttering leaves to stem flexion under tree weight and wind drag. Developing plants use such fluctuations to monitor and channel their own shape and growth through a form of proprioception. Fluctuations in mechanical cues may also be actively enhanced, producing oscillating behaviors in tissues. For example, proprioception through leaf nastic movements may promote organ flattening. We propose that fluctuation-enhanced proprioception allows plant organs to sense their own shapes and behave like active materials with adaptable outputs to face variable environments, whether internal or external. Because certain shapes are more amenable to fluctuations, proprioception may also help plant shapes to reach self-organized criticality to support such adaptability.
Collapse
Affiliation(s)
- Bruno Moulia
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France.
| | - Stéphane Douady
- Laboratoire Matières et Systèmes Complexes (MSC), Université de Paris, CNRS, 75205 Paris Cedex 13, France.
| | - Olivier Hamant
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69007 Lyon, France.
| |
Collapse
|
13
|
Ruan H, Li J, Wang T, Ren H. Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth. Front Cell Dev Biol 2021; 8:615447. [PMID: 33553150 PMCID: PMC7859277 DOI: 10.3389/fcell.2020.615447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Pollen germination and pollen tube growth are important biological events in the sexual reproduction of higher plants, during which a large number of vesicle trafficking and membrane fusion events occur. When secretory vesicles are transported via the F-actin network in proximity to the apex of the pollen tube, the secretory vesicles are tethered and fused to the plasma membrane by tethering factors and SNARE proteins, respectively. The coupling and uncoupling between the vesicle membrane and plasma membrane are also regulated by dynamic cytoskeleton, proteins, and signaling molecules, including small G proteins, calcium, and PIP2. In this review, we focus on the current knowledge regarding secretory vesicle delivery, tethering, and fusion during pollen germination and tube growth and summarize the progress in research on how regulators and signaling molecules participate in the above processes.
Collapse
Affiliation(s)
- Huaqiang Ruan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Jiang Li
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| |
Collapse
|
14
|
Wang X, Sheng X, Tian X, Zhang Y, Li Y. Organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana depend on class XI myosins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1685-1697. [PMID: 33067901 DOI: 10.1111/tpj.15030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
F-actin and myosin XI play important roles in plant organelle movement. A few myosin XI genes in the genome of Arabidopsis are mainly expressed in mature pollen, which suggests that they may play a crucial role in pollen germination and pollen tube tip growth. In this study, a genetic complementation assay was conducted in a myosin xi-c (myo11c1) myosin xi-e (myo11c2) double mutant, and fluorescence labeling combined with microscopic observation was applied. We found that myosin XI-E (Myo11C2)-green fluorescent protein (GFP) restored the slow pollen tube growth and seed deficiency phenotypes of the myo11c1 myo11c2 double mutant and Myo11C2-GFP partially colocalized with mitochondria, peroxisomes and Golgi stacks. Furthermore, decreased mitochondrial movement and subapical accumulation were detected in myo11c1 myo11c2 double mutant pollen tubes. Fluorescence recovery after photobleaching experiments showed that the fluorescence recoveries of GFP-RabA4d and AtPRK1-GFP at the pollen tube tip of the myo11c1 myo11c2 double mutant were lower than those of the wild type were after photobleaching. These results suggest that Myo11C2 may be associated with mitochondria, peroxisomes and Golgi stacks, and play a crucial role in organelle movement and apical accumulation of secretory vesicles in pollen tubes of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xingjuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaojing Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiulin Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Duan Z, Tanaka M, Kanazawa T, Haraguchi T, Takyu A, Era A, Ueda T, Ito K, Tominaga M. Characterization of ancestral myosin XI from Marchantia polymorpha by heterologous expression in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:460-473. [PMID: 32717107 PMCID: PMC7689712 DOI: 10.1111/tpj.14937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2020] [Indexed: 05/30/2023]
Abstract
Previous studies have revealed duplications and diversification of myosin XI genes between angiosperms and bryophytes; however, the functional differentiation and conservation of myosin XI between them remain unclear. Here, we identified a single myosin XI gene from the liverwort Marchantia polymorpha (Mp). The molecular properties of Mp myosin XI are similar to those of Arabidopsis myosin XIs responsible for cytoplasmic streaming, suggesting that the motor function of myosin XI is able to generate cytoplasmic streaming. In cultured Arabidopsis cells, transiently expressed green fluorescent protein (GFP)-fused Mp myosin XI was observed as some intracellular structures moving along the F-actin. These intracellular structures were co-localized with motile endoplasmic reticulum (ER) strands, suggesting that Mp myosin XI binds to the ER and generates intracellular transport in Arabidopsis cells. The tail domain of Mp myosin XI was co-localized with that of Arabidopsis myosin XI-2 and XI-K, suggesting that all these myosin XIs bind to common cargoes. Furthermore, expression of GFP-fused Mp myosin XI rescued the defects of growth, cytoplasmic streaming and actin organization in Arabidopsis multiple myosin XI knockout mutants. The heterologous expression experiments demonstrated the cellular and physiological competence of Mp myosin XI in Arabidopsis. However, the average velocity of organelle transport in Marchantia rhizoids was 0.04 ± 0.01 μm s-1 , which is approximately one-hundredth of that in Arabidopsis cells. Taken together, our results suggest that the molecular properties of myosin XI are conserved, but myosin XI-driven intracellular transport in vivo would be differentiated from bryophytes to angiosperms.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and SciencesWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| | - Misato Tanaka
- Graduate School of Science and EngineeringWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| | - Takehiko Kanazawa
- Division of Cellular DynamicsNational Institute for Basic BiologyNishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
- Department of Basic BiologySOKENDAINishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
| | - Takeshi Haraguchi
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Akiko Takyu
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Atsuko Era
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Takashi Ueda
- Division of Cellular DynamicsNational Institute for Basic BiologyNishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
- Department of Basic BiologySOKENDAINishigonaka 38, MyodaijiOkazakiAichi444‐8585Japan
| | - Kohji Ito
- Department of BiologyGraduate School of ScienceChiba UniversityInage‐kuChiba263‐8522Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and SciencesWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
- Graduate School of Science and EngineeringWaseda University2‐2 Wakamatsu‐cho, Shinjuku‐kuTokyo162‐8480Japan
| |
Collapse
|
16
|
Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun 2019; 10:984. [PMID: 30816109 PMCID: PMC6395764 DOI: 10.1038/s41467-019-08893-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic polygonal membrane network composed of interconnected tubules and sheets (cisternae) that forms the first compartment in the secretory pathway involved in protein translocation, folding, glycosylation, quality control, lipid synthesis, calcium signalling, and metabolon formation. Despite its central role in this plethora of biosynthetic, metabolic and physiological processes, there is little quantitative information on ER structure, morphology or dynamics. Here we describe a software package (AnalyzER) to automatically extract ER tubules and cisternae from multi-dimensional fluorescence images of plant ER. The structure, topology, protein-localisation patterns, and dynamics are automatically quantified using spatial, intensity and graph-theoretic metrics. We validate the method against manually-traced ground-truth networks, and calibrate the sub-resolution width estimates against ER profiles identified in serial block-face SEM images. We apply the approach to quantify the effects on ER morphology of drug treatments, abiotic stress and over-expression of ER tubule-shaping and cisternal-modifying proteins.
Collapse
Affiliation(s)
- Charlotte Pain
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Maike Kittelmann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Mark Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
17
|
How to Investigate the Role of the Actin-Myosin Cytoskeleton in Organ Straightening. Methods Mol Biol 2019. [PMID: 30694479 DOI: 10.1007/978-1-4939-9015-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Although plant organ segments bend in response to environmental stimuli such as gravity and light, they stop bending and subsequently straighten during the course of tropic responses. The straightening phenomenon can clearly be observed by setting the bent organs under microgravity and dark conditions. It has recently become clear that the straightening mechanism requires the activity of the actin-myosin XI cytoskeleton. A clinostat device makes it possible to simulate microgravity conditions by counteracting the Earth's unilateral gravitational pull. Here, we describe a method for assessing the straightening ability of organs by clinostat analysis using Arabidopsis thaliana inflorescence stems of actin and myosin xi mutants as examples.
Collapse
|
18
|
Baluška F, Mancuso S. Actin Cytoskeleton and Action Potentials: Forgotten Connections. THE CYTOSKELETON 2019. [DOI: 10.1007/978-3-030-33528-1_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018. [PMID: 30552321 DOI: 10.1038/s41467-018-07662-7664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Renna L, Stefano G, Slabaugh E, Wormsbaecher C, Sulpizio A, Zienkiewicz K, Brandizzi F. TGNap1 is required for microtubule-dependent homeostasis of a subpopulation of the plant trans-Golgi network. Nat Commun 2018; 9:5313. [PMID: 30552321 PMCID: PMC6294250 DOI: 10.1038/s41467-018-07662-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Defining convergent and divergent mechanisms underlying the biogenesis and function of endomembrane organelles is fundamentally important in cell biology. In all eukaryotes, the Trans-Golgi Network (TGN) is the hub where the exocytic and endocytic pathways converge. To gain knowledge in the mechanisms underlying TGN biogenesis and function, we characterized TGNap1, a protein encoded by a plant gene of unknown function conserved with metazoans. We demonstrate that TGNap1 is a TGN protein required for the homeostasis of biosynthetic and endocytic traffic pathways. We also show that TGNap1 binds Rab6, YIP4 and microtubules. Finally, we establish that TGNap1 contributes to microtubule-dependent biogenesis, tracking and function of a TGN subset, likely through interaction with Rab6 and YIP4. Our results identify an important trafficking determinant at the plant TGN and reveal an unexpected reliance of post-Golgi traffic homeostasis and organelle biogenesis on microtubules in plants.
Collapse
Affiliation(s)
- Luciana Renna
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
| | - Giovanni Stefano
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Slabaugh
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Clarissa Wormsbaecher
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Alan Sulpizio
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Krzysztof Zienkiewicz
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37073, Göttingen, Germany
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Nebenführ A, Dixit R. Kinesins and Myosins: Molecular Motors that Coordinate Cellular Functions in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:329-361. [PMID: 29489391 PMCID: PMC6653565 DOI: 10.1146/annurev-arplant-042817-040024] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Kinesins and myosins are motor proteins that can move actively along microtubules and actin filaments, respectively. Plants have evolved a unique set of motors that function as regulators and organizers of the cytoskeleton and as drivers of long-distance transport of various cellular components. Recent progress has established the full complement of motors encoded in plant genomes and has revealed valuable insights into the cellular functions of many kinesin and myosin isoforms. Interestingly, several of the motors were found to functionally connect the two cytoskeletal systems and thereby to coordinate their activities. In this review, we discuss the available genetic, cell biological, and biochemical data for each of the plant kinesin and myosin families from the context of their subcellular mechanism of action as well as their physiological function in the whole plant. We particularly emphasize work that illustrates mechanisms by which kinesins and myosins coordinate the activities of the cytoskeletal system.
Collapse
Affiliation(s)
- Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA;
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University, St. Louis, Missouri 63130-4899, USA;
| |
Collapse
|
22
|
Abstract
ABSTRACT
Plants are sessile and require diverse strategies to adapt to fluctuations in the surrounding light conditions. Consequently, the photorelocation movement of chloroplasts is essential to prevent damages that are induced by intense light (avoidance response) and to ensure efficient photosynthetic activities under weak light conditions (accumulation response). The mechanisms that underlie chloroplast movements have been revealed through analysis of the behavior of individual chloroplasts and it has been found that these organelles can move in any direction without turning. This implies that any part of the chloroplast periphery can function as the leading or trailing edge during movement. This ability is mediated by a special structure, which consists of short actin filaments that are polymerized at the leading edge of moving chloroplasts and are specifically localized in the space between the chloroplast and the plasma membrane, and is called chloroplast-actin. In addition, several of the genes that encode proteins that are involved in chloroplast-actin polymerization or maintenance have been identified. In this Review, we discuss the mechanisms that regulate chloroplast movements through polymerization of the chloroplast-actin and propose a model for actin-driven chloroplast photorelocation movement.
Collapse
Affiliation(s)
- Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sam-Geun Kong
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudaehak-ro Gongju-si, Chungcheongnam-do 32588, Republic of Korea
| |
Collapse
|
23
|
Tang G, Chen Y, Xu JR, Kistler HC, Ma Z. The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathog 2018; 14:e1006827. [PMID: 29357387 PMCID: PMC5794197 DOI: 10.1371/journal.ppat.1006827] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/01/2018] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi. The mycotoxin deoxynivalenol (DON) is the most frequently detected secondary metabolite produced by Fusarium graminearum and other Fusarium spp. To date, relatively few studies have addressed how mycotoxin biosynthesis occurs in fungal cells. Here we found that myosin I governs translation of DON biosynthetic enzyme Tri1 via interacting with the ribosome-associated protein FgAsc1. Moreover, the key DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to the toxisomes derived from endoplasmic reticulum under toxin inducing conditions. We further found that the FgMyo1-actin cytoskeleton was involved in toxisome formation but not for the biosynthesis of another secondary metabolite tested. Taken together, these results indicate for the first time that myosin I plays critical roles in mycotoxin biosynthesis.
Collapse
Affiliation(s)
- Guangfei Tang
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yun Chen
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - H. Corby Kistler
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Zhonghua Ma
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
24
|
Duan Z, Tominaga M. Actin-myosin XI: an intracellular control network in plants. Biochem Biophys Res Commun 2018; 506:403-408. [PMID: 29307817 DOI: 10.1016/j.bbrc.2017.12.169] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 11/29/2022]
Abstract
Actin is one of the three major cytoskeletal components in eukaryotic cells. Myosin XI is an actin-based motor protein in plant cells. Organelles are attached to myosin XI and translocated along the actin filaments. This dynamic actin-myosin XI system plays a major role in subcellular organelle transport and cytoplasmic streaming. Previous studies have revealed that myosin-driven transport and the actin cytoskeleton play essential roles in plant cell growth. Recent data have indicated that the actin-myosin XI cytoskeleton is essential for not only cell growth but also reproductive processes and responses to the environment. In this review, we have summarized previous reports regarding the role of the actin-myosin XI cytoskeleton in cytoplasmic streaming and plant development and recent advances in the understanding of the functions of actin-myosin XI cytoskeleton in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhongrui Duan
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
25
|
Paez-Garcia A, Sparks JA, de Bang L, Blancaflor EB. Plant Actin Cytoskeleton: New Functions from Old Scaffold. PLANT CELL MONOGRAPHS 2018. [DOI: 10.1007/978-3-319-69944-8_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Zhang HM, Colyvas K, Patrick JW, Offler CE. A Ca2+-dependent remodelled actin network directs vesicle trafficking to build wall ingrowth papillae in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4749-4764. [PMID: 29048561 PMCID: PMC5853249 DOI: 10.1093/jxb/erx315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/02/2017] [Indexed: 05/18/2023]
Abstract
The transport function of transfer cells is conferred by an enlarged plasma membrane area, enriched in nutrient transporters, that is supported on a scaffold of wall ingrowth (WI) papillae. Polarized plumes of elevated cytosolic Ca2+ define loci at which WI papillae form in developing adaxial epidermal transfer cells of Vicia faba cotyledons that are induced to trans-differentiate when the cotyledons are placed on culture medium. We evaluated the hypothesis that vesicle trafficking along a Ca2+-regulated remodelled actin network is the mechanism that underpins this outcome. Polarized to the outer periclinal cytoplasm, a Ca2+-dependent remodelling of long actin bundles into short, thin bundles was found to be essential for assembling WI papillae but not the underlying uniform wall layer. The remodelled actin network directed polarized vesicle trafficking to sites of WI papillae construction, and a pharmacological study indicated that both exo- and endocytosis contributed to assembly of the papillae. Potential candidates responsible for the Ca2+-dependent actin remodelling, along with those underpinning polarized exo- and endocyotosis, were identified in a transcriptome RNAseq database generated from the trans-differentiating epidermal cells. Of most significance, endocytosis was controlled by up-regulated expression of a dynamin-like isoform. How a cycle of localized exo- and endocytosis, regulated by Ca2+-dependent actin remodelling, assembles WI papillae is discussed.
Collapse
Affiliation(s)
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle NSW, Australia
| | - John W Patrick
- School of Environmental and Life Sciences
- Correspondence: or
| | | |
Collapse
|
27
|
Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. J Cell Biol 2017; 216:1705-1714. [PMID: 28442535 PMCID: PMC5461021 DOI: 10.1083/jcb.201610065] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/05/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Minus end-directed cargo transport along microtubules (MTs) is exclusively driven by the molecular motor dynein in a wide variety of cell types. Interestingly, during evolution, plants have lost the genes encoding dynein; the MT motors that compensate for dynein function are unknown. Here, we show that two members of the kinesin-14 family drive minus end-directed transport in plants. Gene knockout analyses of the moss Physcomitrella patens revealed that the plant-specific class VI kinesin-14, KCBP, is required for minus end-directed transport of the nucleus and chloroplasts. Purified KCBP directly bound to acidic phospholipids and unidirectionally transported phospholipid liposomes along MTs in vitro. Thus, minus end-directed transport of membranous cargoes might be driven by their direct interaction with this motor protein. Newly nucleated cytoplasmic MTs represent another known cargo exhibiting minus end-directed motility, and we identified the conserved class I kinesin-14 (ATK) as the motor involved. These results suggest that kinesin-14 motors were duplicated and developed as alternative MT-based minus end-directed transporters in land plants.
Collapse
Affiliation(s)
- Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yohko Tanaka-Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Masahito Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
28
|
Donze-Reiner T, Palmer NA, Scully ED, Prochaska TJ, Koch KG, Heng-Moss T, Bradshaw JD, Twigg P, Amundsen K, Sattler SE, Sarath G. Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC PLANT BIOLOGY 2017; 17:46. [PMID: 28209137 PMCID: PMC5314684 DOI: 10.1186/s12870-017-0998-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level. RESULTS The global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation. CONCLUSIONS Extensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.
Collapse
Affiliation(s)
- Teresa Donze-Reiner
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA 19383 USA
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| | - Erin D. Scully
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
- Stored Product Insect and Engineering Research Unit, USDA-ARS, Manhattan, KS 66502 USA
| | - Travis J. Prochaska
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
- Present address: North Central Research Extension Center, North Dakota State University, South Minot, ND 58701 USA
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849 USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915 USA
| | - Scott E. Sattler
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| |
Collapse
|
29
|
Abstract
We investigate the myosin XI-driven transport network in Arabidopsis using protein-protein interaction, subcellular localization, gene knockout, and bioinformatics analyses. The two major groups of nodes in this network are myosins XI and their membrane-anchored receptors (MyoB) that, together, drive endomembrane trafficking and cytoplasmic streaming in the plant cells. The network shows high node connectivity and is dominated by generalists, with a smaller fraction of more specialized myosins and receptors. We show that interaction with myosins and association with motile vesicles are common properties of the MyoB family receptors. We identify previously uncharacterized myosin-binding proteins, putative myosin adaptors that belong to two unrelated families, with four members each (MadA and MadB). Surprisingly, MadA1 localizes to the nucleus and is rapidly transported to the cytoplasm, suggesting the existence of myosin XI-driven nucleocytoplasmic trafficking. In contrast, MadA2 and MadA3, as well as MadB1, partition between the cytosolic pools of motile endomembrane vesicles that colocalize with myosin XI-K and diffuse material that does not. Gene knockout analysis shows that MadB1-4 contribute to polarized root hair growth, phenocopying myosins, whereas MadA1-4 are redundant for this process. Phylogenetic analysis reveals congruent evolutionary histories of the myosin XI, MyoB, MadA, and MadB families. All these gene families emerged in green algae and show concurrent expansions via serial duplication in flowering plants. Thus, the myosin XI transport network increased in complexity and robustness concomitantly with the land colonization by flowering plants and, by inference, could have been a major contributor to this process.
Collapse
|
30
|
Cao P, Renna L, Stefano G, Brandizzi F. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis. Curr Biol 2016; 26:3245-3254. [DOI: 10.1016/j.cub.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/08/2023]
|
31
|
Oikawa K, Mano S, Hosokawa Y, Nishimura M. Analysis of physical interaction between peroxisomes and chloroplast induced by dynamic morphological changes of peroxisomes using femtosecond laser impulsive force. ACTA ACUST UNITED AC 2016. [DOI: 10.5685/plmorphol.28.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazusato Oikawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University
- Department of Cell Biology, National Institute for Basic Biology
| | - Shoji Mano
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies)
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science and Technology
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology
| |
Collapse
|
32
|
Saberianfar R, Sattarzadeh A, Joensuu JJ, Kohalmi SE, Menassa R. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum. FRONTIERS IN PLANT SCIENCE 2016; 7:693. [PMID: 27242885 PMCID: PMC4876836 DOI: 10.3389/fpls.2016.00693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/05/2016] [Indexed: 05/22/2023]
Abstract
Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles.
Collapse
Affiliation(s)
- Reza Saberianfar
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Amirali Sattarzadeh
- Department of Molecular Biology and Genetics, Cornell UniversityIthaca, NY, USA
| | | | | | - Rima Menassa
- Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
- *Correspondence: Rima Menassa
| |
Collapse
|