1
|
David JJ, Kannan B, Pandi C, Jayaseelan VP, Vasagam JM, Arumugam P. Increased SEC14L2 expression is associated with clinicopathological features and worse prognosis in oral squamous cell carcinoma. Odontology 2024; 112:1326-1334. [PMID: 38575815 DOI: 10.1007/s10266-024-00929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Abnormal expression of SEC14L2 has been implicated in many human cancers. However, the role of SEC14L2 in oral squamous cell carcinoma (OSCC) remains unclear. Therefore, this study aimed to evaluate the expression and prognostic roles of SEC14L2 in OSCC. OSCC tumors and adjacent non-tumors were collected from OSCC patients and used for SEC14L2 mRNA expression by quantitative reverse transcription PCR (RT-qPCR). Additionally, the expression of SEC14L2 was further analyzed using The Cancer Genome Atlas-Head Neck Squamous Cell Carcinoma (TCGA-HNSCC) dataset to identify its relationship with HNSCC clinical characteristics. The Kaplan-Meier plot was used to assess survival rates, and the Tumor Immune Estimation Resource (TIMER) database was used to examine the correlation between SEC14L2 expression and tumor immune cell infiltration. In silico tools also looked at SEC14L2 involvement in cancer pathways through its protein network. The mRNA and protein levels of SEC14L2 are notably higher in both OSCC and HNSCC tissues compared to adjacent normal tissues. Upregulation of SEC14L2 was associated with advanced tumor stages, grades, metastasis, HPV-negative, and TP53 mutations in cancer patients. In addition, the high expression of SEC14L2 was negatively correlated with the poor survival of cancer patients and the infiltration of diverse immune cells in cancer patients. According to the findings of this investigation, SEC14L2 is significantly elevated in OSCC/HNSCC patients and associated with a worse prognosis. More investigation and clinical studies are required to completely understand the therapeutic potential of SEC14L2 in HNSCC and convert these findings into better patient outcomes.
Collapse
Affiliation(s)
- Jonah Justin David
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Chandra Pandi
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Jeevitha Manicka Vasagam
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
2
|
Liu C, Mentzelopoulou A, Papagavriil F, Ramachandran P, Perraki A, Claus L, Barg S, Dörmann P, Jaillais Y, Johnen P, Russinova E, Gizeli E, Schaaf G, Moschou PN. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis. PLoS Biol 2023; 21:e3002305. [PMID: 37721949 PMCID: PMC10538751 DOI: 10.1371/journal.pbio.3002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/28/2023] [Accepted: 08/20/2023] [Indexed: 09/20/2023] Open
Abstract
Protein function can be modulated by phase transitions in their material properties, which can range from liquid- to solid-like; yet, the mechanisms that drive these transitions and whether they are important for physiology are still unknown. In the model plant Arabidopsis, we show that developmental robustness is reinforced by phase transitions of the plasma membrane-bound lipid-binding protein SEC14-like. Using imaging, genetics, and in vitro reconstitution experiments, we show that SEC14-like undergoes liquid-like phase separation in the root stem cells. Outside the stem cell niche, SEC14-like associates with the caspase-like protease separase and conserved microtubule motors at unique polar plasma membrane interfaces. In these interfaces, SEC14-like undergoes processing by separase, which promotes its liquid-to-solid transition. This transition is important for root development, as lines expressing an uncleavable SEC14-like variant or mutants of separase and associated microtubule motors show similar developmental phenotypes. Furthermore, the processed and solidified but not the liquid form of SEC14-like interacts with and regulates the polarity of the auxin efflux carrier PINFORMED2. This work demonstrates that robust development can involve liquid-to-solid transitions mediated by proteolysis at unique plasma membrane interfaces.
Collapse
Affiliation(s)
- Chen Liu
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Andriani Mentzelopoulou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Fotini Papagavriil
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Prashanth Ramachandran
- Department of Organismal Biology, Physiological Botany, Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Artemis Perraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lucas Claus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, Lyon, France
| | - Philipp Johnen
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Ghent, Belgium
| | - Electra Gizeli
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Panagiotis Nikolaou Moschou
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
3
|
Pei M, Xie X, Peng B, Chen X, Chen Y, Li Y, Wang Z, Lu G. Identification and Expression Analysis of Phosphatidylinositol Transfer Proteins Genes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112122. [PMID: 37299101 DOI: 10.3390/plants12112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The family of phosphatidylinositol transfer proteins (PITPs) is able to bind specific lipids to carry out various biological functions throughout different stages of plant life. But the function of PITPs in rice plant is unclear. In this study, 30 PITPs were identified from rice genome, which showed differences in physicochemical properties, gene structure, conservation domains, and subcellular localization. The promoter region of the OsPITPs genes included at least one type of hormone response element, such as methyl jasmonate (Me JA) and salicylic acid (SA). Furthermore, the expression level of OsML-1, OsSEC14-3, OsSEC14-4, OsSEC14-15, and OsSEC14-19 genes were significantly affected by infection of rice blast fungus Magnaporthe oryzae. Based on these findings, it is possible that OsPITPs may be involved in rice innate immunity in response to M. oryzae infection through the Me JA and SA pathway.
Collapse
Affiliation(s)
- Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinchi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|
5
|
Samarina L, Wang S, Malyukova L, Bobrovskikh A, Doroshkov A, Koninskaya N, Shkhalakhova R, Matskiv A, Fedorina J, Fizikova A, Manakhova K, Loshkaryova S, Tutberidze T, Ryndin A, Khlestkina E. Long-term cold, freezing and drought: overlapping and specific regulatory mechanisms and signal transduction in tea plant ( Camellia sinensis (L.) Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1145793. [PMID: 37235017 PMCID: PMC10206121 DOI: 10.3389/fpls.2023.1145793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
Introduction Low temperatures and drought are two main environmental constraints reducing the yield and geographical distribution of horticultural crops worldwide. Understanding the genetic crosstalk between stress responses has potential importance for crop improvement. Methods In this study, Illumina RNA-seq and Pac-Bio genome resequencing were used to annotate genes and analyze transcriptome dynamics in tea plants under long-term cold, freezing, and drought. Results The highest number of differentially expressed genes (DEGs) was identified under long-term cold (7,896) and freezing (7,915), with 3,532 and 3,780 upregulated genes, respectively. The lowest number of DEGs was observed under 3-day drought (47) and 9-day drought (220), with five and 112 genes upregulated, respectively. The recovery after the cold had 6.5 times greater DEG numbers as compared to the drought recovery. Only 17.9% of cold-induced genes were upregulated by drought. In total, 1,492 transcription factor genes related to 57 families were identified. However, only 20 transcription factor genes were commonly upregulated by cold, freezing, and drought. Among the 232 common upregulated DEGs, most were related to signal transduction, cell wall remodeling, and lipid metabolism. Co-expression analysis and network reconstruction showed 19 genes with the highest co-expression connectivity: seven genes are related to cell wall remodeling (GATL7, UXS4, PRP-F1, 4CL, UEL-1, UDP-Arap, and TBL32), four genes are related to calcium-signaling (PXL1, Strap, CRT, and CIPK6), three genes are related to photo-perception (GIL1, CHUP1, and DnaJ11), two genes are related to hormone signaling (TTL3 and GID1C-like), two genes are involved in ROS signaling (ERO1 and CXE11), and one gene is related to the phenylpropanoid pathway (GALT6). Discussion Based on our results, several important overlapping mechanisms of long-term stress responses include cell wall remodeling through lignin biosynthesis, o-acetylation of polysaccharides, pectin biosynthesis and branching, and xyloglucan and arabinogalactan biosynthesis. This study provides new insight into long-term stress responses in woody crops, and a set of new target candidate genes were identified for molecular breeding aimed at tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Songbo Wang
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Lyudmila Malyukova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexandr Bobrovskikh
- Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexey Doroshkov
- Institute of Cytology and Genetics Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Koninskaya
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Ruset Shkhalakhova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexandra Matskiv
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Jaroslava Fedorina
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Anastasia Fizikova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Karina Manakhova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
| | - Svetlana Loshkaryova
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Tsiala Tutberidze
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Alexey Ryndin
- Federal Research Centre the Subtropical Scientific Centre, Russian Academy of Sciences, Sochi, Russia
| | - Elena Khlestkina
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius, Russia
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), Saint Petersburg, Russia
| |
Collapse
|
6
|
Hornbergs J, Montag K, Loschwitz J, Mohr I, Poschmann G, Schnake A, Gratz R, Brumbarova T, Eutebach M, Angrand K, Fink-Straube C, Stühler K, Zeier J, Hartmann L, Strodel B, Ivanov R, Bauer P. SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. PLANT PHYSIOLOGY 2023; 192:504-526. [PMID: 36493393 PMCID: PMC10152663 DOI: 10.1093/plphys/kiac563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Organisms require micronutrients, and Arabidopsis (Arabidopsis thaliana) IRON-REGULATED TRANSPORTER1 (IRT1) is essential for iron (Fe2+) acquisition into root cells. Uptake of reactive Fe2+ exposes cells to the risk of membrane lipid peroxidation. Surprisingly little is known about how this is avoided. IRT1 activity is controlled by an intracellular variable region (IRT1vr) that acts as a regulatory protein interaction platform. Here, we describe that IRT1vr interacted with peripheral plasma membrane SEC14-Golgi dynamics (SEC14-GOLD) protein PATELLIN2 (PATL2). SEC14 proteins bind lipophilic substrates and transport or present them at the membrane. To date, no direct roles have been attributed to SEC14 proteins in Fe import. PATL2 affected root Fe acquisition responses, interacted with ROS response proteins in roots, and alleviated root lipid peroxidation. PATL2 had high affinity in vitro for the major lipophilic antioxidant vitamin E compound α-tocopherol. Molecular dynamics simulations provided insight into energetic constraints and the orientation and stability of the PATL2-ligand interaction in atomic detail. Hence, this work highlights a compelling mechanism connecting vitamin E with root metal ion transport at the plasma membrane with the participation of an IRT1-interacting and α-tocopherol-binding SEC14 protein.
Collapse
Affiliation(s)
- Jannik Hornbergs
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Inga Mohr
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Anika Schnake
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | | | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Kalina Angrand
- Department of Biosciences-Plant Biology, Saarland University, Campus A2.4, D-66123 Saarbrücken, Germany
| | | | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Molecular Proteomics Laboratory, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Laura Hartmann
- Institute of Macromolecular Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Birgit Strodel
- Institute of Theoretical Chemistry and Computer Chemistry, Heinrich Heine University, Düsseldorf 40225, Germany
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
7
|
Wege S, Ugalde JM. Metal health: PATELLIN2 reduces iron-induced toxicity in Arabidopsis. PLANT PHYSIOLOGY 2023; 192:15-16. [PMID: 36789501 PMCID: PMC10152643 DOI: 10.1093/plphys/kiad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Stefanie Wege
- Plant Physiology, American Society of Plant Biologists, Rockville, MD, USA
| | - José Manuel Ugalde
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
- Institute of Crop Science and Resource Conservation (INRES)-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| |
Collapse
|
8
|
Wang Y, Samarina L, Mallano AI, Tong W, Xia E. Recent progress and perspectives on physiological and molecular mechanisms underlying cold tolerance of tea plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145609. [PMID: 36866358 PMCID: PMC9971632 DOI: 10.3389/fpls.2023.1145609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Tea is one of the most consumed and widely planted beverage plant worldwide, which contains many important economic, healthy, and cultural values. Low temperature inflicts serious damage to tea yields and quality. To cope with cold stress, tea plants have evolved a cascade of physiological and molecular mechanisms to rescue the metabolic disorders in plant cells caused by the cold stress; this includes physiological, biochemical changes and molecular regulation of genes and associated pathways. Understanding the physiological and molecular mechanisms underlying how tea plants perceive and respond to cold stress is of great significance to breed new varieties with improved quality and stress resistance. In this review, we summarized the putative cold signal sensors and molecular regulation of the CBF cascade pathway in cold acclimation. We also broadly reviewed the functions and potential regulation networks of 128 cold-responsive gene families of tea plants reported in the literature, including those particularly regulated by light, phytohormone, and glycometabolism. We discussed exogenous treatments, including ABA, MeJA, melatonin, GABA, spermidine and airborne nerolidol that have been reported as effective ways to improve cold resistance in tea plants. We also present perspectives and possible challenges for functional genomic studies on cold tolerance of tea plants in the future.
Collapse
Affiliation(s)
- Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Lidia Samarina
- Federal Research Centre the Subtropical Scientific Centre, The Russian Academy of Sciences, Sochi, Russia
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
9
|
Structure of the Sec14 domain of Kalirin reveals a distinct class of lipid-binding module in RhoGEFs. Nat Commun 2023; 14:96. [PMID: 36609407 PMCID: PMC9823006 DOI: 10.1038/s41467-022-35678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Gated entry of lipophilic ligands into the enclosed hydrophobic pocket in stand-alone Sec14 domain proteins often links lipid metabolism to membrane trafficking. Similar domains occur in multidomain mammalian proteins that activate small GTPases and regulate actin dynamics. The neuronal RhoGEF Kalirin, a central regulator of cytoskeletal dynamics, contains a Sec14 domain (KalbSec14) followed by multiple spectrin-like repeats and catalytic domains. Previous studies demonstrated that Kalirin lacking its Sec14 domain fails to maintain cell morphology or dendritic spine length, yet whether and how KalbSec14 interacts with lipids remain unknown. Here, we report the structural and biochemical characterization of KalbSec14. KalbSec14 adopts a closed conformation, sealing off the canonical ligand entry site, and instead employs a surface groove to bind a limited set of lysophospholipids. The low-affinity interactions of KalbSec14 with lysolipids are expected to serve as a general model for the regulation of Rho signaling by other Sec14-containing Rho activators.
Collapse
|
10
|
Leomil FSC, Zoccoler M, Dimova R, Riske KA. PoET: automated approach for measuring pore edge tension in giant unilamellar vesicles. BIOINFORMATICS ADVANCES 2021; 1:vbab037. [PMID: 36700098 PMCID: PMC9710609 DOI: 10.1093/bioadv/vbab037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/28/2023]
Abstract
Motivation A reliable characterization of the membrane pore edge tension of single giant unilamellar vesicles (GUVs) requires the measurement of micrometer sized pores in hundreds to thousands of images. When manually performed, this procedure has shown to be extremely time-consuming and to generate inconsistent results among different users and imaging systems. A user-friendly software for such analysis allowing quick processing and generation of reproducible data had not yet been reported. Results We have developed a software (PoET) for automatic pore edge tension measurements on GUVs. The required image processing steps and the characterization of the pore dynamics are performed automatically within the software and its use allowed for a 30-fold reduction in the analysis time. We demonstrate the applicability of the software by comparing the pore edge tension of GUVs of different membrane compositions and surface charges. The approach was applied to electroporated GUVs but is applicable to other means of pore formation. Availability and implementation The complete software is implemented in Python and available for Windows at https://dx.doi.org/10.17617/3.7h. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Fernanda S C Leomil
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 043039-032, Brazil,Department of Theory and Bio Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Marcelo Zoccoler
- DFG Cluster of Excellence “Physics of Life”, Technical University of Dresden, Dresden 01307, Germany
| | - Rumiana Dimova
- Department of Theory and Bio Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany,To whom correspondence should be addressed. or
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 043039-032, Brazil,To whom correspondence should be addressed. or
| |
Collapse
|
11
|
Liu L, Jiang LG, Luo JH, Xia AA, Chen LQ, He Y. Genome-wide association study reveals the genetic architecture of root hair length in maize. BMC Genomics 2021; 22:664. [PMID: 34521344 PMCID: PMC8442424 DOI: 10.1186/s12864-021-07961-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background Root hair, a special type of tubular-shaped cell, outgrows from root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stress. Although many genes involved in root hair development have been identified, genetic basis of natural variation in root hair growth has never been explored. Results Here, we utilized a maize association panel including 281 inbred lines with tropical, subtropical, and temperate origins to decipher the phenotypic diversity and genetic basis of root hair length. We demonstrated significant associations of root hair length with many metabolic pathways and other agronomic traits. Combining root hair phenotypes with 1.25 million single nucleotide polymorphisms (SNPs) via genome-wide association study (GWAS) revealed several candidate genes implicated in cellular signaling, polar growth, disease resistance and various metabolic pathways. Conclusions These results illustrate the genetic basis of root hair length in maize, offering a list of candidate genes predictably contributing to root hair growth, which are invaluable resource for the future functional investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07961-z.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lu-Guang Jiang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jin-Hong Luo
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Ai-Ai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Wu Q, Fu J, Sun J, Wang X, Tang X, Lu W, Tan C, Li L, Deng X, Xu Q. A plant CitPITP1 protein-coding exon sequence serves as a promoter in bacteria. J Biotechnol 2021; 339:1-13. [PMID: 34298024 DOI: 10.1016/j.jbiotec.2021.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
Genetic manipulation of plant genes in prokaryotes has been widely used in molecular biology, but the function of a DNA sequence is far from being fully known. Here, we discovered that a plant protein-coding gene containing the CRAL_TRIO domain serves as a promoter in bacteria. We firstly characterized CitPITP1 from Citrus, which contains the CRAL_TRIO domain, and identified a 64-bp sequence (key64) that is critical for prokaryotic promoter activity. In vitro experiments indicated that the bacterial RNA polymerase subunit RpoD specifically binds to key64. We then expanded our research to fungi, plant and animal species to identify key64-like sequences. Five such prokaryotic promoters were isolated from Amborella, Rice, Arabidopsis and Citrus. Two conserved motifs were identified, and mutation analysis indicated that the nucleotides at positions 7, 29 and 30 are crucial for key64-like transcription activity. We detected full-length recombinant CitPITP1 from E. coli, and visualized a CitPITP1-GFP fusion protein in plant cells, supporting the idea that CitPITP1 encodes a protein. However, although exon 4 of CitPITP1 contained key64, it did not demonstrate promoter activity in plants. Our study describes a new basal promoter, provides evidence for neofunction of gene elements across different kingdoms, and provides new knowledge for the modular design of promoters.
Collapse
Affiliation(s)
- Qingjiang Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Juan Sun
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430000, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA; Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430000, China.
| |
Collapse
|
13
|
de Jong F, Munnik T. Attracted to membranes: lipid-binding domains in plants. PLANT PHYSIOLOGY 2021; 185:707-723. [PMID: 33793907 PMCID: PMC8133573 DOI: 10.1093/plphys/kiaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 05/18/2023]
Abstract
Membranes are essential for cells and organelles to function. As membranes are impermeable to most polar and charged molecules, they provide electrochemical energy to transport molecules across and create compartmentalized microenvironments for specific enzymatic and cellular processes. Membranes are also responsible for guided transport of cargoes between organelles and during endo- and exocytosis. In addition, membranes play key roles in cell signaling by hosting receptors and signal transducers and as substrates and products of lipid second messengers. Anionic lipids and their specific interaction with target proteins play an essential role in these processes, which are facilitated by specific lipid-binding domains. Protein crystallography, lipid-binding studies, subcellular localization analyses, and computer modeling have greatly advanced our knowledge over the years of how these domains achieve precision binding and what their function is in signaling and membrane trafficking, as well as in plant development and stress acclimation.
Collapse
Affiliation(s)
- Femke de Jong
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Teun Munnik
- Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Dubois GA, Jaillais Y. Anionic phospholipid gradients: an uncharacterized frontier of the plant endomembrane network. PLANT PHYSIOLOGY 2021; 185:577-592. [PMID: 33793905 PMCID: PMC8133617 DOI: 10.1093/plphys/kiaa056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 05/19/2023]
Abstract
Anionic phospholipids include phosphatidic acid (PA), phosphatidylserine (PS), phosphatidylinositol (PI), and its phosphorylated derivatives the phosphoinositides (e.g. phosphatidylinositol-4-phosphate [PI4P] and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]). Although anionic phospholipids are low-abundant lipids, they are particularly important for membrane functions. In particular, anionic lipids act as biochemical and biophysical landmarks that contribute to the establishment of membrane identity, signaling activities, and compartment morphodynamics. Each anionic lipid accumulates in different endomembranes according to a unique subcellular pattern, where they locally provide docking platforms for proteins. As such, they are mostly believed to act in the compartments in which they accumulate. However, mounting evidence throughout eukaryotes suggests that anionic lipids are not as compartment-specific as initially thought and that they are instead organized as concentration gradients across different organelles. In this update, we review the evidence for the existence of anionic lipid gradients in plants. We then discuss the possible implication of these gradients in lipid dynamics and homeostasis, and also in coordinating subcellular activities. Finally, we introduce the notion that anionic lipid gradients at the cellular scale may translate into gradients at the tissue level, which could have implications for plant development.
Collapse
Affiliation(s)
- Gwennogan A Dubois
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
- Author for communication:
| |
Collapse
|
15
|
Laha D, Kamleitner M, Johnen P, Schaaf G. Analyses of Inositol Phosphates and Phosphoinositides by Strong Anion Exchange (SAX)-HPLC. Methods Mol Biol 2021; 2295:365-378. [PMID: 34047987 DOI: 10.1007/978-1-0716-1362-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The phosphate esters of myo-inositol (Ins) occur ubiquitously in biology. These molecules exist as soluble or membrane-resident derivatives and regulate a plethora of cellular functions including phosphate homeostasis, DNA repair, vesicle trafficking, metabolism, cell polarity, tip-directed growth, and membrane morphogenesis. Phosphorylation of all inositol hydroxyl groups generates phytic acid (InsP6), the most abundant inositol phosphate present in eukaryotic cells. However, phytic acid is not the most highly phosphorylated naturally occurring inositol phosphate. Specialized small molecule kinases catalyze the formation of the so-called myo-inositol pyrophosphates (PP-InsPs), such as InsP7 and InsP8. These molecules are characterized by one or several "high-energy" diphosphate moieties and are ubiquitous in eukaryotic cells. In plants, PP-InsPs play critical roles in immune responses and nutrient sensing. The detection of inositol derivatives in plants is challenging. This is particularly the case for inositol pyrophosphates because diphospho bonds are labile in plant cell extracts due to high amounts of acid phosphatase activity. We present two steady-state inositol labeling-based techniques coupled with strong anion exchange (SAX)-HPLC analyses that allow robust detection and quantification of soluble and membrane-resident inositol polyphosphates in plant extracts. These techniques will be instrumental to uncover the cellular and physiological processes controlled by these intriguing regulatory molecules in plants.
Collapse
Affiliation(s)
- Debabrata Laha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Philipp Johnen
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.,BASF SE, Limburgerhof, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.
| |
Collapse
|
16
|
Montag K, Hornbergs J, Ivanov R, Bauer P. Phylogenetic analysis of plant multi-domain SEC14-like phosphatidylinositol transfer proteins and structure-function properties of PATELLIN2. PLANT MOLECULAR BIOLOGY 2020; 104:665-678. [PMID: 32915352 PMCID: PMC7674337 DOI: 10.1007/s11103-020-01067-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
SEC14L-PITPs guide membrane recognition and signaling. An increasingly complex modular structure of SEC14L-PITPs evolved in land plants compared to green algae. SEC14/CRAL-TRIO and GOLD domains govern membrane binding specificity. SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs) provide cues for membrane identity by exchanging lipophilic substrates, ultimately governing membrane signaling. Flowering plant SEC14L-PITPs often have modular structure and are associated with cell division, development, and stress responses. Yet, structure-function relationships for biochemical-cellular interactions of SEC14L-PITPs are rather enigmatic. Here, we evaluate the phylogenetic relationships of the SEC14L-PITP superfamily in the green lineage. Compared to green algae, land plants have an extended set of SEC14L-PITPs with increasingly complex modular structure. SEC14-GOLD PITPs, present in land plants but not Chara, diverged to three functional subgroups, represented by the six PATELLIN (PATL) proteins in Arabidopsis. Based on the example of Arabidopsis PATL2, we dissect the functional domains for in vitro binding to phosphoinositides and liposomes and for plant cell membrane association. While the SEC14 domain and its CRAL-TRIO-N-terminal extension serve general membrane attachment of the protein, the C-terminal GOLD domain directs it to the plasma membrane by recognizing specific phosphoinositides. We discuss that the different domains of SEC14L-PITPs integrate developmental and environmental signals to control SEC14L-PITP-mediated membrane identity, important to initiate dynamic membrane events.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Jannik Hornbergs
- Institute of Botany, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
17
|
Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3-GENES GENOMES GENETICS 2020; 10:1671-1683. [PMID: 32184371 PMCID: PMC7202004 DOI: 10.1534/g3.119.400884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
Collapse
|
18
|
Abstract
Anionic phospholipids, which include phosphatidic acid, phosphatidylserine, and phosphoinositides, represent a small percentage of membrane lipids. They are able to modulate the physical properties of membranes, such as their surface charges, curvature, or clustering of proteins. Moreover, by mediating interactions with numerous membrane-associated proteins, they are key components in the establishment of organelle identity and dynamics. Finally, anionic lipids also act as signaling molecules, as they are rapidly produced or interconverted by a set of dedicated enzymes. As such, anionic lipids are major regulators of many fundamental cellular processes, including cell signaling, cell division, membrane trafficking, cell growth, and gene expression. In this review, we describe the functions of anionic lipids from a cellular perspective. Using the localization of each anionic lipid and its related metabolic enzymes as starting points, we summarize their roles within the different compartments of the endomembrane system and address their associated developmental and physiological consequences.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure (ENS) de Lyon, L'Université Claude Bernard (UCB) Lyon 1, CNRS, INRAE, 69342 Lyon, France; ,
| |
Collapse
|
19
|
|
20
|
Engelsdorf T, Kjaer L, Gigli-Bisceglia N, Vaahtera L, Bauer S, Miedes E, Wormit A, James L, Chairam I, Molina A, Hamann T. Functional characterization of genes mediating cell wall metabolism and responses to plant cell wall integrity impairment. BMC PLANT BIOLOGY 2019; 19:320. [PMID: 31319813 PMCID: PMC6637594 DOI: 10.1186/s12870-019-1934-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/10/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant cell walls participate in all plant-environment interactions. Maintaining cell wall integrity (CWI) during these interactions is essential. This realization led to increased interest in CWI and resulted in knowledge regarding early perception and signalling mechanisms active during CWI maintenance. By contrast, knowledge regarding processes mediating changes in cell wall metabolism upon CWI impairment is very limited. RESULTS To identify genes involved and to investigate their contributions to the processes we selected 23 genes with altered expression in response to CWI impairment and characterized the impact of T-DNA insertions in these genes on cell wall composition using Fourier-Transform Infrared Spectroscopy (FTIR) in Arabidopsis thaliana seedlings. Insertions in 14 genes led to cell wall phenotypes detectable by FTIR. A detailed analysis of four genes found that their altered expression upon CWI impairment is dependent on THE1 activity, a key component of CWI maintenance. Phenotypic characterizations of insertion lines suggest that the four genes are required for particular aspects of CWI maintenance, cell wall composition or resistance to Plectosphaerella cucumerina infection in adult plants. CONCLUSION Taken together, the results implicate the genes in responses to CWI impairment, cell wall metabolism and/or pathogen defence, thus identifying new molecular components and processes relevant for CWI maintenance.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Present address: Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043 Marburg, Germany
| | - Lars Kjaer
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: Sjælland erhvervsakademi, Breddahlsgade 1b, 4200 Slagelse, Zealand Denmark
| | - Nora Gigli-Bisceglia
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Present address: Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Lauri Vaahtera
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
| | - Stefan Bauer
- Energy Biosciences Institute, University of California, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94720-5230 USA
- Present address: Zymergen, Inc, 5980 Horton St, Suite 105, Emeryville, CA 94608 USA
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo- UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Alexandra Wormit
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: RWTH Aachen, Institute for Biology I, Worringerweg 3, D-52056 Aachen, Germany
| | - Lucinda James
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: ADAS, Battlegate Road, Boxworth, Cambridge, CB23 4NN UK
| | - Issariya Chairam
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
- Present address: ADAS, Battlegate Road, Boxworth, Cambridge, CB23 4NN UK
- Present address: Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo- UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491 Trondheim, Norway
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ UK
| |
Collapse
|
21
|
Zhou H, Duan H, Liu Y, Sun X, Zhao J, Lin H. Patellin protein family functions in plant development and stress response. JOURNAL OF PLANT PHYSIOLOGY 2019; 234-235:94-97. [PMID: 30690193 DOI: 10.1016/j.jplph.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 05/24/2023]
Abstract
The plant patellin (PATL) proteins are yeast Sec14 protein (Sec14p)-like phosphatidylinositol transfer proteins (PITPs), which are widely distributed across the plant kingdom. The model plant Arabidopsis has six PATL members (designated as PATL1-PATL6). Accumulated evidence has indicated the involvement of Arabidopsis PATLs in various biological processes. This mini-review briefly summarizes our current knowledge on individual PATLs regarding their roles in plant development and stress tolerance regulation. The elucidation of PATLs' biological function in plants will provide new insights on plant membrane trafficking and its regulatory roles in either plant growth or environmental stress response signaling networks.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| | - Hongqin Duan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yunhong Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xia Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
22
|
In Vitro Measurement of Sphingolipid Intermembrane Transport Illustrated by GLTP Superfamily Members. Methods Mol Biol 2019; 1949:237-256. [PMID: 30790260 DOI: 10.1007/978-1-4939-9136-5_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we describe methodological approaches for measuring in vitro transfer of sphingolipids (SLs) between membranes. The approaches rely on direct tracking of the lipid. Typically, direct tracking involves lipid labeling via attachment of fluorophores or introduction of radioactivity. Members of the GlycoLipid Transfer Protein (GLTP) superfamily are used to illustrate two broadly applicable methods for direct lipid tracking. One method relies on Förster resonance energy transfer (FRET) that enables continuous assessment of fluorophore-labeled SL transfer in real time between lipid donor and acceptor vesicles. The second method relies on tracking of radiolabeled SL transfer by separation of lipid donor and acceptor vesicles at discrete time points. The assays are readily adjustable for assessing lipid transfer (1) between various model membrane assemblies (vesicles, micelles, bicelles, nanodiscs), (2) involving other lipid types by other lipid transfer proteins, (3) with protein preparations that are either crudely or highly purified, and (4) that is spontaneous and occurs in the absence of protein.
Collapse
|
23
|
Ankati S, Rani TS, Podile AR. Partner-triggered proteome changes in the cell wall of Bacillus sonorensis and roots of groundnut benefit each other. Microbiol Res 2018; 217:91-100. [DOI: 10.1016/j.micres.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023]
|