1
|
Orach H, Qianling S, Arthur AA, Ankrah Twumasi M, Zhang S. Impacts of carbon dioxide emissions on agricultural production indicators in Sub-Saharan African countries: new perspectives from static and dynamic panel models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1247-1271. [PMID: 39718693 DOI: 10.1007/s11356-024-35769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
Agricultural productivity remains pivotal to the sustenance of the economies and livelihoods of Sub-Saharan African (SSA) countries. However, the emerging threat of climate change poses a significant challenge to these agricultural-dependent economies. Sub-Saharan African countries are at risk of experiencing the severe effects of climate change on their agricultural productivity. This paper examines the impact of climate change, as proxied by CO2 emissions, on the agricultural production index in Sub-Saharan Africa. The agricultural production index consists of the Crop and Livestock Production Index. Data for the study were extracted from the World Development Indicator, covering the period 1996-2021. The analysis utilized the Panel GMM estimation technique. The study revealed that the effects of climate change vary on crop production and livestock production indices. While climate change has a positive and significant effect on the crop production index, it exhibits a negative and significant impact on the livestock production index. Factors such as technological development, arable land size, and renewable energy use play a significant role in enhancing agricultural productivity in Sub-Saharan Africa. Conversely, government effectiveness and labor force exhibit a negative influence on the crop production index. In contrast to the crop production index, climate change has a detrimental effect on livestock productivity. Additionally, technological progress, renewable energy use, and arable land size have a negative impact on livestock productivity. The study recommends that African governments implement policies to promote technological progress, improve institutional quality, and increase renewable energy use in the agricultural sector to achieve sustainable agricultural growth. Policymakers and governments are also encouraged to address the challenges of communal land ownership and unclear property rights.
Collapse
Affiliation(s)
- Henry Orach
- College of Management Science, Chengdu University of Technology, Chengdu, 600059, China.
| | - Shen Qianling
- College of Management Science, Chengdu University of Technology, Chengdu, 600059, China
| | - Anita Afra Arthur
- School of Management, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Shemei Zhang
- School of Management, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Wang Z, Hao J, Shi X, Wang Q, Zhang W, Li F, Mur LAJ, Han Y, Hou S, Han J, Sun Z. Integrating dynamic high-throughput phenotyping and genetic analysis to monitor growth variation in foxtail millet. PLANT METHODS 2024; 20:168. [PMID: 39497091 PMCID: PMC11536594 DOI: 10.1186/s13007-024-01295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Foxtail millet [Setaria italica (L.) Beauv] is a C4 graminoid crop cultivated mainly in the arid and semiarid regions of China for more than 7000 years. Its grain highly nutritious and is rich in starch, protein, essential vitamins such as carotenoids, folate, and minerals. To expand the utilisation of foxtail millet, efficient and precise methods for dynamic phenotyping of its growth stages are needed. Traditional foxtail millet monitoring methods have high labour costs and are inefficient and inaccurate, impeding the precise evaluation of foxtail millet genotypic variation. RESULTS This study introduces a high-throughput imaging system (HIS) with advanced image processing techniques to enhance monitoring efficiency and data quality. The HIS can accurately extract a range of key growth feature parameters, such as plant height (PH), convex hull area (CHA), side projected area (SPA) and colour distribution, from foxtail millet images. Compared with traditional manual measurements, this HIS improved data quality and phenotyping of the key foxtail millet growth traits. High-throughput phenotyping combined with a genome-wide association study (GWAS) revealed genetic loci associated with dynamic growth traits, particularly plant height (PH), in foxtail millet. The loci were linked to genes involved in the gibberellic acid (GA) synthesis pathway related to PH. CONCLUSION The HIS developed in this study enables the efficient and dynamic monitoring of foxtail millet phenotypic traits. It significantly improves the quality of data obtained for phenotyping key growth traits. The integration of high-throughput phenotyping with GWAS provides new insights into the genetic underpinnings of dynamic growth traits, particularly plant height, by identifying associated genetic loci in the GA synthesis pathway. This methodological advancement opens new avenues for the precise phenotyping and exploration of genetic resources in foxtail millet, potentially enhancing its utilisation.
Collapse
Affiliation(s)
- Zhenyu Wang
- College of Agricultural, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- College of Software, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiongyu Hao
- College of Agricultural, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaofan Shi
- College of Software, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Qiaoqiao Wang
- College of Software, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Wuping Zhang
- College of Software, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Fuzhong Li
- College of Software, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Luis A J Mur
- Department of Life Science, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Yuanhuai Han
- College of Agricultural, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- Innovation Centre of Shnxi Foxtail Millet Industry, Qinxian, Shanxi, 046400, China
| | - Siyu Hou
- College of Agricultural, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Jiwan Han
- College of Software, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Zhaoxia Sun
- College of Agricultural, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
3
|
Guo Z, Xu Z, Li L, Xu KW. Species-Specific miRNAs Contribute to the Divergence between Deciduous and Evergreen Species in Ilex. PLANTS (BASEL, SWITZERLAND) 2024; 13:1429. [PMID: 38891238 PMCID: PMC11174832 DOI: 10.3390/plants13111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression, playing crucial roles in plant developmental processes and environmental responses. However, the function of miRNAs in influencing deciduous traits has been little explored. Here, we utilized sRNA-seq on two deciduous species, Ilex polyneura (Hand.-Mazz.) S. Y. Hu and Ilex asprella Champ. ex Benth., along with an evergreen species, Ilex latifolia Thunb., to identify and annotate miRNAs within these species. Our analysis revealed 162 species-specific miRNAs (termed SS-miRNAs) from 120 families, underscoring the fundamental roles and potential influence of SS-miRNAs on plant phenotypic diversity and adaptation. Notably, three SS-miRNAs in I. latifolia were found to target crucial genes within the abscission signaling pathway. Analysis of cis-regulatory elements suggested a novel regulatory relationship that may contribute to the evergreen phenotype of I. latifolia by modulating the abscission process in a light-independent manner. These findings propose a potential mechanism by which SS-miRNAs can influence the conserved abscission pathway, contributing to the phenotypic divergence between deciduous and evergreen species within the genus Ilex.
Collapse
Affiliation(s)
- Zhonglong Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| | - Zhenxiu Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Ke-Wang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.G.); (Z.X.)
| |
Collapse
|
4
|
Pugliese M, Gilardi G, Garibaldi A, Gullino ML. The Impact of Climate Change on Vegetable Crop Diseases and Their Management: The Value of Phytotron Studies for the Agricultural Industry and Associated Stakeholders. PHYTOPATHOLOGY 2024; 114:843-854. [PMID: 38648074 DOI: 10.1094/phyto-08-23-0284-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Climate change is having a significant impact on global agriculture, particularly on vegetable crops, which play a critical role in global nutrition. Recently, increasing research has concentrated on the impact of climate change on vegetable crop diseases, with several studies being conducted in phytotrons, which have been used to explore the effects of increased temperatures and CO2 concentrations to simulate future scenarios. This review focuses on the combined effects of temperature and carbon dioxide increases on foliar and soilborne vegetable diseases, as evaluated under phytotron conditions. The influence of climate change on mycotoxin production and disease management strategies is also explored through case studies. The results offer valuable information that can be used to guide both seed and agrochemical industries, as well as to develop disease-resistant varieties and innovative control measures, including biocontrol agents, considering the diseases that are likely to become prevalent under future climatic scenarios. Recommendations on how to manage vegetable diseases under ongoing climate change are proposed to facilitate plants' adaptation to and enhanced against the changing conditions. A proactive and comprehensive response to climate-induced challenges in vegetable farming is imperative to ensure food security and sustainability.
Collapse
|
5
|
Malikouski RG, Ferreira FM, Chaves SFDS, Couto EGDO, Dias KODG, Bhering LL. Recommendation of Tahiti acid lime cultivars through Bayesian probability models. PLoS One 2024; 19:e0299290. [PMID: 38442106 PMCID: PMC10914267 DOI: 10.1371/journal.pone.0299290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Probabilistic models enhance breeding, especially for the Tahiti acid lime, a fruit essential to fresh markets and industry. These models identify superior and persistent individuals using probability theory, providing a measure of uncertainty that can aid the recommendation. The objective of our study was to evaluate the use of a Bayesian probabilistic model for the recommendation of superior and persistent genotypes of Tahiti acid lime evaluated in 12 harvests. Leveraging the Monte Carlo Hamiltonian sampling algorithm, we calculated the probability of superior performance (superior genotypic value), and the probability of superior stability (reduced variance of the genotype-by-harvests interaction) of each genotype. The probability of superior stability was compared to a measure of persistence estimated from genotypic values predicted using a frequentist model. Our results demonstrated the applicability and advantages of the Bayesian probabilistic model, yielding similar parameters to those of the frequentist model, while providing further information about the probabilities associated with genotype performance and stability. Genotypes G15, G4, G18, and G11 emerged as the most superior in performance, whereas G24, G7, G13, and G3 were identified as the most stable. This study highlights the usefulness of Bayesian probabilistic models in the fruit trees cultivars recommendation.
Collapse
Affiliation(s)
- Renan Garcia Malikouski
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Filipe Manoel Ferreira
- Department of Crop Science—College of Agricultural Sciences, São Paulo State University, Botucatu, São Paulo, Brazil
| | | | | | | | - Leonardo Lopes Bhering
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Singh S, Singh R, Priyadarsini S, Ola AL. Genomics empowering conservation action and improvement of celery in the face of climate change. PLANTA 2024; 259:42. [PMID: 38270699 DOI: 10.1007/s00425-023-04321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/23/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION Integration of genomic approaches like whole genome sequencing, functional genomics, evolutionary genomics, and CRISPR/Cas9-based genome editing has accelerated the improvement of crop plants including leafy vegetables like celery in the face of climate change. The anthropogenic climate change is a real peril to the existence of life forms on our planet, including human and plant life. Climate change is predicted to be a significant threat to biodiversity and food security in the coming decades and is rapidly transforming global farming systems. To avoid the ghastly future in the face of climate change, the elucidation of shifts in the geographical range of plant species, species adaptation, and evolution is necessary for plant scientists to develop climate-resilient strategies. In the post-genomics era, the increasing availability of genomic resources and integration of multifaceted genomics elements is empowering biodiversity conservation action, restoration efforts, and identification of genomic regions adaptive to climate change. Genomics has accelerated the true characterization of crop wild relatives, genomic variations, and the development of climate-resilient varieties to ensure food security for 10 billion people by 2050. In this review, we have summarized the applications of multifaceted genomic tools, like conservation genomics, whole genome sequencing, functional genomics, genome editing, pangenomics, in the conservation and adaptation of plant species with a focus on celery, an aromatic and medicinal Apiaceae vegetable. We focus on how conservation scientists can utilize genomics and genomic data in conservation and improvement.
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India.
| | - Rajender Singh
- Division of Crop Improvement and Seed Technology, ICAR-Central Potato Research Institute (CPRI), Shimla, India
| | - Srija Priyadarsini
- Institute of Agricultural Sciences, SOA (Deemed to be University), Bhubaneswar, 751029, India
| | - Arjun Lal Ola
- Department of Vegetable Science, Rani Lakshmi Bai Central Agricultural University, Jhansi, UP, 284003, India
| |
Collapse
|
7
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
8
|
Saripalli G, Adhikari L, Amos C, Kibriya A, Ahmed HI, Heuberger M, Raupp J, Athiyannan N, Wicker T, Abrouk M, Wallace S, Hosseinirad S, Chhuneja P, Livesay J, Rawat N, Krattinger SG, Poland J, Tiwari V. Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits. Commun Biol 2023; 6:835. [PMID: 37573415 PMCID: PMC10423216 DOI: 10.1038/s42003-023-05189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2023] [Indexed: 08/14/2023] Open
Abstract
Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.
Collapse
Affiliation(s)
- Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Laxman Adhikari
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Cameron Amos
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Ashraf Kibriya
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sydney Wallace
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Seyedali Hosseinirad
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Janelle Livesay
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Vijay Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20783, USA.
| |
Collapse
|
9
|
Korpelainen H. The Role of Home Gardens in Promoting Biodiversity and Food Security. PLANTS (BASEL, SWITZERLAND) 2023; 12:2473. [PMID: 37447034 DOI: 10.3390/plants12132473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Plant genetic resources provide the basis for sustainable agricultural production, adaptation to climate change, and economic development. Many present crop plants are endangered due to extreme environmental conditions induced by climate change or due to the use of a limited selection of plant materials. Changing environmental conditions are a challenge for plant production and food security, emphasizing the urgent need for access to a wider range of plant genetic resources than what are utilized today, for breeding novel crop varieties capable of resilience and adaptation to climate change and other environmental challenges. Besides large-scale agricultural production, it is important to recognize that home gardens have been an integral component of family farming and local food systems for centuries. It is remarkable how home gardens have allowed the adaptation and domestication of plants to extreme or specific ecological conditions, thus contributing to the diversification of cultivated plants. Home gardens can help in reducing hunger and malnutrition and improve food security. In addition, they provide opportunities to broaden the base of cultivated plant materials by harboring underutilized crop plants and crop wild relative species. Crop wild relatives contain a wide range of genetic diversity not available in cultivated crops. Although the importance of home gardens in conserving plant genetic resources is well recognized, there is a risk that local genetic diversity will be lost if traditional plant materials are replaced by high-yielding modern cultivars. This paper provides an overview of home gardens and their present role and future potential in conserving and utilizing plant genetic resources and enhancing food and nutritional security under global challenges.
Collapse
Affiliation(s)
- Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| |
Collapse
|
10
|
Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Witaszak N. Global Proteome Profiling Revealed the Adaptive Reprogramming of Barley Flag Leaf to Drought and Elevated Temperature. Cells 2023; 12:1685. [PMID: 37443719 PMCID: PMC10340373 DOI: 10.3390/cells12131685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.
Collapse
Affiliation(s)
- Krzysztof Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (A.K.); (P.K.); (M.K.); (N.W.)
| | | | | | | | | |
Collapse
|
11
|
Larson ER, Armstrong EM, Harper H, Knapp S, Edwards KJ, Grierson D, Poppy G, Chase MW, Jones JDG, Bastow R, Jellis G, Barnes S, Temple P, Clarke M, Oldroyd G, Grierson CS. One hundred important questions for plant science - reflecting on a decade of plant research. THE NEW PHYTOLOGIST 2023; 238:464-469. [PMID: 36924326 DOI: 10.1111/nph.18663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Emily R Larson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Emily May Armstrong
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Helen Harper
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Sandra Knapp
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Keith J Edwards
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, nr Loughborough, LE12 5RD, UK
| | - Guy Poppy
- Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Perth, WA, 6845, Australia
- Royal Botanic Gardens Kew, Richmond, London, TW9 3AE, UK
| | | | - Ruth Bastow
- Crop Health and Protection Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Graham Jellis
- Agrifood Charities Partnership, The Bullock Building, University Way, Cranfield, Bedford, MK43 OGH, UK
| | | | - Paul Temple
- Wold Farm, Driffield, East Yorkshire, YO25 3BB, UK
| | - Matthew Clarke
- Bayer - Crop Science, Monsanto UK Ltd, 230 Science Park, Cambridge, CB4 0WB, UK
| | - Giles Oldroyd
- Crop Science Centre, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Claire S Grierson
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
12
|
Mikołajczak K, Kuczyńska A, Krajewski P, Kempa M, Nuc M. Transcriptome profiling disclosed the effect of single and combined drought and heat stress on reprogramming of genes expression in barley flag leaf. FRONTIERS IN PLANT SCIENCE 2023; 13:1096685. [PMID: 36726667 PMCID: PMC9885109 DOI: 10.3389/fpls.2022.1096685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Despite numerous studies aimed at unraveling the genetic background of barley's response to abiotic stress, the modulation of the transcriptome induced by combinatorial drought and increased temperature remains largely unrecognized. Very limited studies were done, especially on the flag leaf, which plays an important role in grain filling in cereals. In the present study, transcriptome profiles, along with chlorophyll fluorescence parameters and yield components, were compared between barley genotypes with different flag leaf sizes under single and combined drought and heat stress. High-throughput mRNA sequencing revealed 2,457 differentially expressed genes, which were functionally interpreted using Gene Ontology term enrichment analysis. The transcriptomic signature under double stress was more similar to effects caused by drought than by elevated temperature; it was also manifested at phenotypic and chlorophyll fluorescence levels. Both common and stress-specific changes in transcript abundance were identified. Genes regulated commonly across stress treatments, determining universal stress responses, were associated, among others, with responses to drought, heat, and oxidative stress. In addition, changes specific to the size of the flag leaf blade were found. Our study allowed us to identify sets of genes assigned to various processes underlying the response to drought and heat, including photosynthesis, the abscisic acid pathway, and lipid transport. Genes encoding LEA proteins, including dehydrins and heat shock proteins, were especially induced by stress treatments. Some association between genetic composition and flag leaf size was confirmed. However, there was no general coincidence between SNP polymorphism of genotypes and differential expression of genes induced by stress factors. This research provided novel insight into the molecular mechanisms of barley flag leaf that determine drought and heat response, as well as their co-occurrence.
Collapse
|
13
|
Xiong W, Reynolds M, Xu Y. Climate change challenges plant breeding. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102308. [PMID: 36279790 DOI: 10.1016/j.pbi.2022.102308] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Plant breeding is important to cope with climate change impacts, complementing crop management and policy interventions to ensure global food production. However, changes in environmental factors also affect the objectives, efficiency, and genetic gains of the current plant breeding system. In this review, we summarize the challenges prompted by climate change to breeding climate-resilient crops and the limitations of the next-generation breeding approach in addressing climate change. It is anticipated that the integration of multi-disciplines and technologies into three schemes of genotyping, phenotyping, and envirotyping will result in the delivery of climate change-ready crops in less time.
Collapse
Affiliation(s)
- Wei Xiong
- CIMMYT-Henan Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China; International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico.
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
15
|
Wambulwa MC, Fan PZ, Milne R, Wu ZY, Luo YH, Wang YH, Wang H, Gao LM, Xiahou ZY, Jin YC, Ye LJ, Xu ZC, Yang ZC, Li DZ, Liu J. Genetic analysis of walnut cultivars from southwest China: Implications for germplasm improvement. PLANT DIVERSITY 2022; 44:530-541. [PMID: 36540707 PMCID: PMC9751080 DOI: 10.1016/j.pld.2021.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 05/19/2023]
Abstract
Walnuts are highly valued for their rich nutritional profile and wide medicinal applications. This demand has led to the intensification of breeding activities in major walnut production areas such as southwest China, in order to develop more superior cultivars. With the increasing number of cultivars, accurate identification becomes fundamental to selecting the right cultivar for grafting, industrial processing or development of new cultivars. To ensure proper identification of cultivars and understand the genetic structure of wild and cultivated material, we genotyped 362 cultivated and wild individuals of walnut trees from southwest China (with two additional populations from Xinjiang, plus three cultivars from Canada, France and Belgium) using 36 polymorphic microsatellite loci. We found relatively low indices of genetic diversity (H O = 0.570, H E = 0.404, N A = 2.345) as well as a high level of clonality (>85% of cultivars), indicating reliance on genetically narrow sources of parental material for breeding. Our STRUCTURE and PCoA analyses generally delineated the two species, though considerable levels of introgression were also evident. More significantly, we detected a distinct genetic group of cultivated Juglans sigillata, which mainly comprised individuals of the popular 'Yangbidapao' landrace. Finally, a core set of 18 SSR loci was selected, which was capable of identifying 32 cultivars. In a nutshell, our results call for more utilization of genetically disparate material, including wild walnut trees, as parental sources to breed for more cultivars. The data reported herein will significantly contribute towards the genetic improvement and conservation of the walnut germplasm in southwest China.
Collapse
Affiliation(s)
- Moses C. Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Department of Life Sciences, South Eastern Kenya University, 170-90200, Kitui, Kenya
| | - Peng-Zhen Fan
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yue-Hua Wang
- School of School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zuo-Ying Xiahou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ye-Chuan Jin
- School of School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lin-Jiang Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zu-Chang Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Zhi-Chun Yang
- Yangbi Forestry and Grassland Administration, Dali, 672500, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Corresponding author. Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Corresponding author. CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
16
|
Goldshmidt A, Ziegler T, Zhou D, Brower‐Toland B, Preuss S, Slewinski T. Tuning of meristem maturation rate increases yield in multiple Triticum aestivum cultivars. PLANT DIRECT 2022; 6:e459. [PMID: 36447652 PMCID: PMC9694431 DOI: 10.1002/pld3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/02/2020] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Breeding programs aim to improve crop yield and environmental stability for enhanced food security. The principal methodology in breeding for stable yield gain relies on the indirect selection of beneficial genetics by yield evaluation across diverse environmental conditions. This methodology requires substantial resources while delivering a slow pace of yield gain and environmental adaptation. Alternative methods are required to accelerate gain and adaptation, becoming even more imperative in a changing climate. New molecular tools and approaches can enable accelerated creation and deployment of multiple alleles of genes identified to control key traits. With the advent of tools that enable breeding by targeted allelic selection, identifying gene targets associated with an improved crop performance ideotype will become crucial. Previous studies have shown that altered photoperiod regimes increase yield in wheat (Triticum aestivum). In the current study, we have employed such treatments to study the resulting yield ideotype in five spring wheat cultivars. We found that the photoperiod treatment creates a yield ideotype arising from delayed spike establishment rates that are accompanied by increased early shoot expression of TARGET OF EAT1 (TaTOE1) genes. Genes identified in this way could be used for ideotype-based improve crop performance through targeted allele creation and selection in relevant environments.
Collapse
Affiliation(s)
- Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMissouriUSA
- Present address:
The Volcani Agriculture InstituteRishon LeZionIsrael
| | | | | | | | | | | |
Collapse
|
17
|
Faralli M, Bontempo L, Bianchedi PL, Moser C, Bertamini M, Lawson T, Camin F, Stefanini M, Varotto C. Natural variation in stomatal dynamics drives divergence in heat stress tolerance and contributes to seasonal intrinsic water-use efficiency in Vitis vinifera (subsp. sativa and sylvestris). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3238-3250. [PMID: 34929033 DOI: 10.1093/jxb/erab552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 05/20/2023]
Abstract
Stomata control CO2 uptake for photosynthesis and water loss through transpiration, thus playing a key role in leaf thermoregulation, water-use efficiency (iWUE), and plant productivity. In this work, we investigated the relationship between several leaf traits and hypothesized that stomatal behavior to fast (i.e. minutes) environmental changes co-determines, along with steady-state traits, the physiological response of grapevine to the surrounding fluctuating environment over the growing season. No relationship between iWUE, heat stress tolerance, and stomatal traits was observed in field-grown grapevine, suggesting that other physiological mechanisms are involved in determining leaf evaporative cooling capacity and the seasonal ratio of CO2 uptake (A) to stomatal conductance (gs). Indeed, cultivars that in the field had an unexpected combination of high iWUE but low sensitivity to thermal stress displayed a quick stomatal closure to light, but a sluggish closure to increased vapor pressure deficit (VPD) levels. This strategy, aiming both at conserving water under a high to low light transition and in prioritizing evaporative cooling under a low to high VPD transition, was mainly observed in the cultivars Regina and Syrah. Moreover, cultivars with different known responses to soil moisture deficit or high air VPD (isohydric versus anisohydric) had opposite behavior under fluctuating environments, with the isohydric cultivar showing slow stomatal closure to reduced light intensity but quick temporal responses to VPD manipulation. We propose that stomatal behavior to fast environmental fluctuations can play a critical role in leaf thermoregulation and water conservation under natural field conditions in grapevine.
Collapse
Affiliation(s)
- Michele Faralli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 38098 San Michele all'Adige (TN), Italy
| | - Luana Bontempo
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
| | - Pier Luigi Bianchedi
- Technology Transfer Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
| | - Claudio Moser
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
| | - Massimo Bertamini
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 38098 San Michele all'Adige (TN), Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Federica Camin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via Mach 1, 38098 San Michele all'Adige (TN), Italy
- International Atomic Energy Agency, Vienna International Centre, PO Box 100, A-1400 Vienna, Austria
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, 38098 San Michele all'Adige (TN), Italy
| |
Collapse
|
18
|
Tomczyk PP, Kiedrzyński M, Forma E, Zielińska KM, Kiedrzyńska E. Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids. Sci Rep 2022; 12:8322. [PMID: 35585117 PMCID: PMC9117213 DOI: 10.1038/s41598-022-12125-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Polyploidization drives the evolution of grasses and can result in epigenetic changes, which may have a role in the creation of new evolutionary lineages and ecological speciation. As such changes may be inherited, they can also influence adaptation to the environment. Populations from different regions and climates may also differ epigenetically; however, this phenomenon is poorly understood. The present study analyzes the effect of climatic stress on global DNA methylation based on a garden collection of two related mountain grasses (the narrow endemic diploid Festuca tatrae and the more widely distributed mixed-ploidy F. amethystina) with different geographic ranges and ecological niches. A lower level of DNA methylation was observed for F. tatrae, while a higher mean level was obtained for the diploid and tetraploid of F. amethystina; with the tetraploids having a higher level of global methylated DNA than the diploids. The weather conditions (especially insolation) measured 24 h prior to sampling appeared to have a closer relationship with global DNA methylation level than those observed seven days before sampling. Our findings suggest that the level of methylation during stress conditions (drought, high temperature and high insolation) may be significantly influenced by the ploidy level and bioclimatic provenance of specimens; however an important role may also be played by the intensity of stress conditions in a given year.
Collapse
Affiliation(s)
- Przemysław P Tomczyk
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237, Lodz, Poland. .,The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland.
| | - Marcin Kiedrzyński
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237, Lodz, Poland
| | - Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Katarzyna M Zielińska
- Department of Biogeography, Paleoecology and Nature Conservation, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 1/3, 90-237, Lodz, Poland
| | - Edyta Kiedrzyńska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland.,UNESCO Chair On Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
19
|
Gutaker RM, Chater CCC, Brinton J, Castillo-Lorenzo E, Breman E, Pironon S. Scaling up neodomestication for climate-ready crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102169. [PMID: 35065528 DOI: 10.1016/j.pbi.2021.102169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
We can increase the stability of our food systems against environmental variability and climate change by following the footsteps of our ancestors and domesticating edible wild plants. Reinforced by recent advances in comparative genomics and gene editing technologies, neodomestication opens possibilities for a rapid generation of new crops. By starting the candidate selection pipeline with climatic parameters, we orient neodomestication efforts to increase food security against climate change. We highlight the fact that the edible species conservation and characterization will be key in this process. Utilization of genetic resources, entrusted to conservationists and researchers by local communities, has to be conducted with highest ethical standards and benefit-sharing in mind.
Collapse
Affiliation(s)
- Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Jemima Brinton
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Samuel Pironon
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| |
Collapse
|
20
|
Juzoń K, Warchoł M, Dziurka K, Czyczyło-Mysza IM, Marcińska I, Skrzypek E. The effect of 2,4-dichlorophenoxyacetic acid on the production of oat ( Avena sativa L.) doubled haploid lines through wide hybridization. PeerJ 2022; 10:e12854. [PMID: 35178299 PMCID: PMC8812298 DOI: 10.7717/peerj.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Development of new cultivars is one of the vital options for adapting agriculture to climate change, and the production of doubled haploid (DH) plants can make a significant contribution to accelerating the breeding process. Oat is one of the cereals with particular health benefits, but it unfortunately still remains recalcitrant to haploidization. Our previous studies have clearly demonstrated that post-pollination with hormone treatment is a key step in haploid production through wide hybridization and indicated it as the most effective method for this species. Therefore, we subsequently addressed the problem of the influence of 2,4-dichlorophenoxyacetic acid (2,4-D) concentration on consecutive stages of DH production. METHODS Twenty-nine genotypes were tested, 9,465 florets were pollinated with maize pollen 2 days after emasculation and then treated with 2,4-D at 50 mg/L and 100 mg/L. RESULTS The applied treatments did not reveal any differences in the number of obtained haploid embryos. However, almost twice as many haploid plants formed on MS medium after applying a higher auxin concentration and 20% more successfully acclimatized. Moreover, 100 mg/L 2,4-D treatment resulted in twice as many DH lines that produced almost three times more seeds compared to 50 mg/L treatment. Nevertheless, the results have confirmed the existence of strong genotypic variation, which may significantly limit the development of an effective and economically feasible method that could be incorporated into breeding programs.
Collapse
Affiliation(s)
- Katarzyna Juzoń
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Marzena Warchoł
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Kinga Dziurka
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | | | - Izabela Marcińska
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| | - Edyta Skrzypek
- Instytut Fizjologii Roślin im. Franciszka Górskiego PAN, Kraków, Polska
| |
Collapse
|
21
|
Zhang Y, Chen H, Li S, Li Y, Kanwar MK, Li B, Bai L, Xu J, Shi Y. Comparative Physiological and Proteomic Analyses Reveal the Mechanisms of Brassinolide-Mediated Tolerance to Calcium Nitrate Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:724288. [PMID: 34868110 PMCID: PMC8636057 DOI: 10.3389/fpls.2021.724288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/11/2021] [Indexed: 05/21/2023]
Abstract
Secondary salinization caused by the overaccumulation of calcium nitrate [Ca(NO3)2] in soils due to excessive fertilization has become one of the major handicaps of protected vegetable production. Brassinolide, a bioactive plant steroid hormone, plays an important role in improving abiotic stress tolerance in plants. However, whether and how brassinolide (BR) can alleviate Ca(NO3)2 stress remains elusive. Here, we investigated the effects of exogenous BR on hydroponically grown tomato (Solanum lycopersicum L.) plants under Ca(NO3)2 stress through proteomics combined with physiological studies. Proteomics analysis revealed that Ca(NO3)2 stress affected the accumulation of proteins involved in photosynthesis, stress responses, and antioxidant defense, however, exogenous BR increased the accumulation of proteins involved in chlorophyll metabolism and altered the osmotic stress responses in tomatoes under Ca(NO3)2 stress. Further physiological studies supported the results of proteomics and showed that the exogenous BR-induced alleviation of Ca(NO3)2 stress was associated with the improvement of photosynthetic efficiency, levels of soluble sugars and proteins, chlorophyll contents, and antioxidant enzyme activities, leading to the reduction in the levels of reactive oxygen species and membrane lipid peroxidation, and promotion of the recovery of photosynthetic performance, energy metabolism, and plant growth under Ca(NO3)2 stress. These results show the importance of applying BR in protected agriculture as a means for the effective management of secondary salinization.
Collapse
Affiliation(s)
- Yi Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Haoting Chen
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Shuo Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Yang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mukesh Kumar Kanwar
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Longqiang Bai
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Yu Shi
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
22
|
Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int J Mol Sci 2021; 22:ijms221910265. [PMID: 34638606 PMCID: PMC8508643 DOI: 10.3390/ijms221910265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Drought has become a major threat to food security, because it affects crop growth and development. Drought tolerance is an important quantitative trait, which is regulated by hundreds of genes in crop plants. In recent decades, scientists have made considerable progress to uncover the genetic and molecular mechanisms of drought tolerance, especially in model plants. This review summarizes the evaluation criteria for drought tolerance, methods for gene mining, characterization of genes related to drought tolerance, and explores the approaches to enhance crop drought tolerance. Collectively, this review illustrates the application prospect of these genes in improving the drought tolerance breeding of crop plants.
Collapse
|
23
|
Comparing Machine Learning Methods for Classifying Plant Drought Stress from Leaf Reflectance Spectra in Arabidopsis thaliana. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plant breeders and plant physiologists are deeply committed to high throughput plant phenotyping for drought tolerance. A combination of artificial intelligence with reflectance spectroscopy was tested, as a non-invasive method, for the automatic classification of plant drought stress. Arabidopsis thaliana plants (ecotype Col-0) were subjected to different levels of slowly imposed dehydration (S0, control; S1, moderate stress; S2, severe stress). The reflectance spectra of fully expanded leaves were recorded with an Ocean Optics USB4000 spectrometer and the soil water content (SWC, %) of each pot was determined. The entire data set of the reflectance spectra (intensity vs. wavelength) was given to different machine learning (ML) algorithms, namely decision trees, random forests and extreme gradient boosting. The performance of different methods in classifying the plants in one of the three drought stress classes (S0, S1 and S2) was measured and compared. All algorithms produced very high evaluation scores (F1 > 90%) and agree on the features with the highest discriminative power (reflectance at ~670 nm). Random forests was the best performing method and the most robust to random sampling of training data, with an average F1-score of 0.96 ± 0.05. This classification method is a promising tool to detect plant physiological responses to drought using high-throughput pipelines.
Collapse
|
24
|
Ziska LH. Crop Adaptation: Weedy and Crop Wild Relatives as an Untapped Resource to Utilize Recent Increases in Atmospheric CO 2. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010088. [PMID: 33406672 PMCID: PMC7823393 DOI: 10.3390/plants10010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Adaptation measures are necessary to ensure the stability and performance of the food supply relative to anthropogenic climate change. Although a wide range of measures have been proposed (e.g., planting dates, crop choices, drought resistance), there may be a ubiquitous means to increase productivity relatively quickly. Numerous studies have shown that the projected increase in atmospheric CO2 can stimulate crop growth and seed yield with noted intra-specific differences within crop cultivars, suggesting potential differences to CO2 that could be exploited to enhance seed yield in the future. However, it is worth emphasizing that atmospheric CO2 has already risen substantially (≈27% since 1970) and that, at present, no active effort by breeders has been made to select for the CO2 increase that has already occurred. In contrast, for weedy or crop wild relatives (CWR), there are indications of evolutionary adaptation to these recent increases. While additional steps are needed, the identification and introgression of these CO2-sensitive traits into modern crop cultivars may be a simple and direct means to increase crop growth and seed yield.
Collapse
Affiliation(s)
- Lewis H Ziska
- Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, Wei H, Yang B, Ye Q, Anderson E, Mao Q, Drmanac R, Wang O, Peters BA, Xu M, Wu P, Topp B, Coin LJM, Henry RJ. Comparison of long-read methods for sequencing and assembly of a plant genome. Gigascience 2020; 9:giaa146. [PMID: 33347571 PMCID: PMC7751402 DOI: 10.1093/gigascience/giaa146] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/07/2020] [Accepted: 11/22/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. RESULTS Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. CONCLUSIONS The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.
Collapse
Affiliation(s)
- Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Subash Kumar Rai
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy J C Bruxner
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Wei Tian
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ivon Harliwong
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Hanmin Wei
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Bicheng Yang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Qianyu Ye
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ellis Anderson
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Qing Mao
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Radoje Drmanac
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Ou Wang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
| | - Brock A Peters
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Mengyang Xu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Qingdao, Building 2, No. 2 Hengyunshan Road, Qingdao 266555, China
| | - Pei Wu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Tianjin, Airport Business Park, Building E3, Airport Economics Area, Tianjin 300308, China
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lachlan J M Coin
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3004, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, Wei H, Yang B, Ye Q, Anderson E, Mao Q, Drmanac R, Wang O, Peters BA, Xu M, Wu P, Topp B, Coin LJM, Henry RJ. Comparison of long-read methods for sequencing and assembly of a plant genome. Gigascience 2020; 9:6042729. [PMID: 33347571 DOI: 10.1101/2020.03.16.992933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/07/2020] [Accepted: 11/22/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Sequencing technologies have advanced to the point where it is possible to generate high-accuracy, haplotype-resolved, chromosome-scale assemblies. Several long-read sequencing technologies are available, and a growing number of algorithms have been developed to assemble the reads generated by those technologies. When starting a new genome project, it is therefore challenging to select the most cost-effective sequencing technology, as well as the most appropriate software for assembly and polishing. It is thus important to benchmark different approaches applied to the same sample. RESULTS Here, we report a comparison of 3 long-read sequencing technologies applied to the de novo assembly of a plant genome, Macadamia jansenii. We have generated sequencing data using Pacific Biosciences (Sequel I), Oxford Nanopore Technologies (PromethION), and BGI (single-tube Long Fragment Read) technologies for the same sample. Several assemblers were benchmarked in the assembly of Pacific Biosciences and Nanopore reads. Results obtained from combining long-read technologies or short-read and long-read technologies are also presented. The assemblies were compared for contiguity, base accuracy, and completeness, as well as sequencing costs and DNA material requirements. CONCLUSIONS The 3 long-read technologies produced highly contiguous and complete genome assemblies of M. jansenii. At the time of sequencing, the cost associated with each method was significantly different, but continuous improvements in technologies have resulted in greater accuracy, increased throughput, and reduced costs. We propose updating this comparison regularly with reports on significant iterations of the sequencing technologies.
Collapse
Affiliation(s)
- Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Subash Kumar Rai
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy J C Bruxner
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Wei Tian
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ivon Harliwong
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Hanmin Wei
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Bicheng Yang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Qianyu Ye
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Australia, 300 Herston Road, Herston, QLD 4006, Australia
| | - Ellis Anderson
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Qing Mao
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Radoje Drmanac
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Ou Wang
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
| | - Brock A Peters
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- MGI, BGI-Shenzhen, Building 11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- Advanced Genomics Technology Lab, Complete Genomics Inc., 2904 Orchard Parkway, San Jose, CA 95134, USA
| | - Mengyang Xu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Qingdao, Building 2, No. 2 Hengyunshan Road, Qingdao 266555, China
| | - Pei Wu
- BGI-Shenzhen, No.21 Hongan 3rd Street, Yantian District, Shenzhen 518083, China
- BGI-Tianjin, Airport Business Park, Building E3, Airport Economics Area, Tianjin 300308, China
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lachlan J M Coin
- Genome Innovation Hub, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3004, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
27
|
Water and Land as Shared Resources for Agriculture and Aquaculture: Insights from Asia. WATER 2020. [DOI: 10.3390/w12102787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although agriculture and aquaculture depend on access to increasingly scarce, shared water resources to produce food for human consumption, they are most often considered in isolation. We argue that they should be treated as integrated components of a single complex system that is prone to direct or indirect tradeoffs that should be avoided while also being amenable to synergies that should be sought. Direct tradeoffs such as competition for space or the pollution of shared water resources usually occur when the footprints of agriculture and aquaculture overlap or when the two practices coexist in close proximity to one another. Interactions can be modulated by factors such as hydropower infrastructure and short-term economic incentives, both of which are known to disrupt the balance between aquaculture and agriculture. Indirect tradeoffs, on the other hand, play out across distances, i.e., when agricultural food sources are diverted to feed animals in aquaculture. Synergies are associated with the culture of aquatic organisms in rice paddies and irrigation waters, seasonal rotations of crop cultivation with aquaculture, and various forms of integrated agriculture–aquaculture (IAA), including jitang, a highly developed variant of pond-dike IAA. Policy decisions, socioeconomic considerations, and technology warrant increased scrutiny as determinants of tradeoffs and synergies. Priority issues for the future include guiding the expansion of aquaculture from its traditional base in Asia, taking advantage of the heterogeneity that exists within both agricultural and aquaculture systems, the development of additional metrics of tradeoffs and synergies, and adapting to the effects of climate change.
Collapse
|
28
|
Wilker J, Humphries S, Rosas-Sotomayor JC, Gómez Cerna M, Torkamaneh D, Edwards M, Navabi A, Pauls KP. Genetic Diversity, Nitrogen Fixation, and Water Use Efficiency in a Panel of Honduran Common Bean ( Phaseolus vulgaris L.) Landraces and Modern Genotypes. PLANTS 2020; 9:plants9091238. [PMID: 32961677 PMCID: PMC7569834 DOI: 10.3390/plants9091238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/09/2023]
Abstract
Common bean (Phaseolus vulgaris L.) provides critical nutrition and a livelihood for millions of smallholder farmers worldwide. Beans engage in symbiotic nitrogen fixation (SNF) with Rhizobia. Honduran hillside farmers farm marginal land and utilize few production inputs; therefore, bean varieties with high SNF capacity and environmental resiliency would be of benefit to them. We explored the diversity for SNF, agronomic traits, and water use efficiency (WUE) among 70 Honduran landrace, participatory bred (PPB), and conventionally bred bean varieties (HON panel) and 6 North American check varieties in 3 low-N field trials in Ontario, Canada and Honduras. Genetic diversity was measured with a 6K single nucleotide polymorphism (SNP) array, and phenotyping for agronomic, SNF, and WUE traits was carried out. STRUCTURE analysis revealed two subpopulations with admixture between the subpopulations. Nucleotide diversity was greater in the landraces than the PPB varieties across the genome, and multiple genomic regions were identified where population genetic differentiation between the landraces and PPB varieties was evident. Significant differences were found between varieties and breeding categories for agronomic traits, SNF, and WUE. Landraces had above average SNF capacity, conventional varieties showed higher yields, and PPB varieties performed well for WUE. Varieties with the best SNF capacity could be used in further participatory breeding efforts.
Collapse
Affiliation(s)
- Jennifer Wilker
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Sally Humphries
- Department of Sociology and Anthropology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Juan Carlos Rosas-Sotomayor
- Departamento de Ciencia y Producción Agropecuaria, Escuela Agrícola Panamericana, Zamorano, Tegucigalpa 11101, Honduras;
| | - Marvin Gómez Cerna
- Fundación para la Investigación Participativa con Agricultores de Honduras, La Ceiba, Atlántida 561, Honduras;
| | - Davoud Torkamaneh
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Michelle Edwards
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - Alireza Navabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.W.); (D.T.); (M.E.)
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54136)
| |
Collapse
|
29
|
Henry R. Innovations in Agriculture and Food Supply in Response to the COVID-19 Pandemic. MOLECULAR PLANT 2020; 13:1095-1097. [PMID: 32711125 PMCID: PMC7374153 DOI: 10.1016/j.molp.2020.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 05/10/2023]
Affiliation(s)
- Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia.
| |
Collapse
|
30
|
Cheng B, Smyth HE, Furtado A, Henry RJ. Slower development of lower canopy beans produces better coffee. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4201-4214. [PMID: 32206798 PMCID: PMC7337091 DOI: 10.1093/jxb/eraa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The production of high-quality coffee is being challenged by changing climates in coffee-growing regions. The coffee beans from the upper and lower canopy at different development stages of the same plants were analyzed to investigate the impact of the microenvironment on gene expression and coffee quality. Compared with coffee beans from the upper canopy, lower canopy beans displayed more intense aroma with higher caffeine, trigonelline, and sucrose contents, associated with greater gene expression in the representative metabolic pathways. Global gene expression indicated a longer ripening in the lower canopy, resulting from higher expression of genes relating to growth inhibition and suppression of chlorophyll degradation during early bean ripening. Selection of genotypes or environments that enhance expression of the genes slowing bean development may produce higher quality coffee beans, allowing coffee production in a broader range of available future environments.
Collapse
Affiliation(s)
- Bing Cheng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Heather E Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|