1
|
Rasmussen A, Vidoz ML, Sparks EE. Stem-borne roots as a framework to study trans-organogenesis and uncover fundamental insights in developmental biology. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102604. [PMID: 39033716 DOI: 10.1016/j.pbi.2024.102604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Plants have a remarkable ability to generate organs with a different identity to the parent organ, called 'trans-organogenesis'. An example of trans-organogenesis is the formation of roots from stems (a type of adventitious root), which is the first type of root that arose during plant evolution. Despite being ancestral, stem-borne roots are often contextualised through lateral root research, implying that lateral roots precede adventitious roots. In this review we challenge that idea, highlight what is known about stem-borne root development across the plant kingdom, the remarkable diversity in form and function, and the many remaining evolutionary questions. Exploring stem-borne root evolutionary development can enhance our understanding of developmental decision making and the processes by which cells acquire their fates.
Collapse
Affiliation(s)
- Amanda Rasmussen
- School of Biosciences, Division of Agriculture and Environmental Sciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Maria Laura Vidoz
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (UNNE), Corrientes, Argentina; Instituto de Botánica del Nordeste (IBONE), UNNE-CONICET, Corrientes, Argentina
| | - Erin E Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
2
|
Meng J, Li W, Qi F, Yang T, Li N, Wan J, Li X, Jiang Y, Wang C, Huang M, Zhang Y, Chen Y, Teotia S, Tang G, Zhang Z, Tang J. Knockdown of microRNA390 Enhances Maize Brace Root Growth. Int J Mol Sci 2024; 25:6791. [PMID: 38928499 PMCID: PMC11203754 DOI: 10.3390/ijms25126791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Brace root architecture is a critical determinant of maize's stalk anchorage and nutrition uptake, influencing root lodging resistance, stress tolerance, and plant growth. To identify the key microRNAs (miRNAs) in control of maize brace root growth, we performed small RNA sequencing using brace root samples at emergence and growth stages. We focused on the genetic modulation of brace root development in maize through manipulation of miR390 and its downstream regulated auxin response factors (ARFs). In the present study, miR167, miR166, miR172, and miR390 were identified to be involved in maize brace root growth in inbred line B73. Utilizing short tandem target mimic (STTM) technology, we further developed maize lines with reduced miR390 expression and analyzed their root architecture compared to wild-type controls. Our findings show that STTM390 maize lines exhibit enhanced brace root length and increased whorl numbers. Gene expression analyses revealed that the suppression of miR390 leads to upregulation of its downstream regulated ARF genes, specifically ZmARF11 and ZmARF26, which may significantly alter root architecture. Additionally, loss-of-function mutants for ZmARF11 and ZmARF26 were characterized to further confirm the role of these genes in brace root growth. These results demonstrate that miR390, ZmARF11, and ZmARF26 play crucial roles in regulating maize brace root growth; the involved complicated molecular mechanisms need to be further explored. This study provides a genetic basis for breeding maize varieties with improved lodging resistance and adaptability to diverse agricultural environments.
Collapse
Affiliation(s)
- Juan Meng
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Weiya Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Feiyan Qi
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Tianxiao Yang
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA;
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Xiaoqi Li
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yajuan Jiang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Chenhui Wang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Meilian Huang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yuanyuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida 201306, India;
| | - Guiliang Tang
- Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA;
| | - Zhanhui Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (J.M.); (W.L.); (F.Q.); (N.L.); (J.W.); (X.L.); (Y.J.); (C.W.); (M.H.); (Y.Z.); (Y.C.)
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
3
|
Hostetler AN, Morais de Sousa Tinoco S, Sparks EE. Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:553-562. [PMID: 37798135 DOI: 10.1093/jxb/erad390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Under all environments, roots are important for plant anchorage and acquiring water and nutrients. However, there is a knowledge gap regarding how root architecture contributes to stress tolerance in a changing climate. Two closely related plant species, maize and sorghum, have distinct root system architectures and different levels of stress tolerance, making comparative analysis between these two species an ideal approach to resolve this knowledge gap. However, current research has focused on shared aspects of the root system that are advantageous under abiotic stress conditions rather than on differences. Here we summarize the current state of knowledge comparing the root system architecture relative to plant performance under water deficit, salt stress, and low phosphorus in maize and sorghum. Under water deficit, steeper root angles and deeper root systems are proposed to be advantageous for both species. In saline soils, a reduction in root length and root number has been described as advantageous, but this work is limited. Under low phosphorus, root systems that are shallow and wider are beneficial for topsoil foraging. Future work investigating the differences between these species will be critical for understanding the role of root system architecture in optimizing plant production for a changing global climate.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | | | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
4
|
Sauer M, Zhao J, Park M, Khangura RS, Dilkes BP, Poethig RS. Identification of the Teopod1, Teopod2, and Early Phase Change genes in maize. G3 (BETHESDA, MD.) 2023; 13:jkad179. [PMID: 37548268 PMCID: PMC10542106 DOI: 10.1093/g3journal/jkad179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 05/26/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Teopod1 (Tp1), Teopod2 (Tp2), and Early phase change (Epc) have profound effects on the timing of vegetative phase change in maize. Gain-of-function mutations in Tp1 and Tp2 delay all known phase-specific vegetative traits, whereas loss-of-function mutations in Epc accelerate vegetative phase change and cause shoot abortion in some genetic backgrounds. Here, we show that Tp1 and Tp2 likely represent cis-acting mutations that cause the overexpression of Zma-miR156j and Zma-miR156h, respectively. Epc is the maize ortholog of HASTY, an Arabidopsis gene that stabilizes miRNAs and promotes their intercellular movement. Consistent with its pleiotropic phenotype and epistatic interaction with Tp1 and Tp2, epc reduces the levels of miR156 and several other miRNAs.
Collapse
Affiliation(s)
- Matt Sauer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfei Zhao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meeyeon Park
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajdeep S Khangura
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Siosiou A, Sparks EE, Tsialtas IT. Brace roots in C 3 Poaceae: where have they gone? MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000939. [PMID: 37799209 PMCID: PMC10550375 DOI: 10.17912/micropub.biology.000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Brace roots are common in large C 4 Poaceae species, such as maize and sorghum. However, in other species, these roots were either never reported, or the existence of the trait was neglected. Here we report the presence of brace roots in a high-performing Avena sativa L. (oat) line.
Collapse
Affiliation(s)
- Anna Siosiou
- Faculty of Agriculture, Lab. of Agronomy, Aristotle University of Thessaloniki, Thessaloniki, Central Macedonia, Greece
| | - Erin E. Sparks
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, United States
| | - Ioannis T. Tsialtas
- Faculty of Agriculture, Lab. of Agronomy, Aristotle University of Thessaloniki, Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
6
|
He K, Zhao Z, Ren W, Chen Z, Chen L, Chen F, Mi G, Pan Q, Yuan L. Mining genes regulating root system architecture in maize based on data integration analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:127. [PMID: 37188973 DOI: 10.1007/s00122-023-04376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE A new strategy that integrated multiple public data resources was established to construct root gene co-expression network and mine genes regulating root system architecture in maize. A root gene co-expression network, containing 13,874 genes, was constructed. A total of 53 root hub genes and 16 priority root candidate genes were identified. One priority root candidate was further functionally verified using overexpression transgenic maize lines. Root system architecture (RSA) is crucial for crops productivity and stress tolerance. In maize, few RSA genes are functionally cloned, and effective discovery of RSA genes remains a great of challenge. In this work, we established a strategy to mine maize RSA genes by integrating functionally characterized root genes, root transcriptome, weighted gene co-expression network analysis (WGCNA) and genome-wide association analysis (GWAS) of RSA traits based on public data resources. A total of 589 maize root genes were collected by searching well-characterized root genes in maize or homologous genes of other species. We performed WGCNA to construct a maize root gene co-expression network containing 13874 genes based on public available root transcriptome data, and further discovered the 53 hub genes related to root traits. In addition, by the prediction function of obtained root gene co-expression network, a total of 1082 new root candidate genes were explored. By further overlapping the obtained new root candidate gene with the root-related GWAS of RSA candidate genes, 16 priority root candidate genes were identified. Finally, a priority root candidate gene, Zm00001d023379 (encodes pyruvate kinase 2), was validated to modulate root open angle and shoot-borne roots number using its overexpression transgenic lines. Our results develop an integration analysis method for effectively exploring regulatory genes of RSA in maize and open a new avenue to mine the candidate genes underlying complex traits.
Collapse
Affiliation(s)
- Kunhui He
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zheng Zhao
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Wei Ren
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhe Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Limei Chen
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Qingchun Pan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Singh Z, Singh H, Garg T, Mushahary KKK, Yadav SR. Genetic and Hormonal Blueprint of Shoot-Borne Adventitious Root Development in Rice and Maize. PLANT & CELL PHYSIOLOGY 2023; 63:1806-1813. [PMID: 35713294 DOI: 10.1093/pcp/pcac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The evolution of root architecture in plants was a prerequisite for the absorption of water and minerals from the soil, and thus a major determinant of terrestrial plant colonization. Cereals have a remarkably complex root system consisting of embryonic primary roots and post-embryonic lateral roots and shoot-borne adventitious roots. Among grass species, rice adventitious roots (also called crown roots) are developed from compressed nodes at the stem base, whereas in maize, besides crown roots, several aboveground brace roots are also formed, thus adventitious root types display species-specific diversity. Despite being the backbone for the adult root system in monocots, adventitious roots are the least studied of all the plant organs. In recent times, molecular genetics, genomics and proteomics-based approaches have been utilized to dissect the mechanism of post-embryonic meristem formation and tissue patterning. Adventitious root development is a cumulative effect of the actions and interactions of crucial genetic and hormonal regulators. In this review, we provide a comprehensive view of the key regulators involved during the different stages of adventitious root development in two important crop plants, rice and maize. We have reviewed the roles of major phytohormones, microRNAs and transcription factors and their crosstalk during adventitious root development in these cereal crops.
Collapse
Affiliation(s)
- Zeenu Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Harshita Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tushar Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
8
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
9
|
Sparks EE. Maize plants and the brace roots that support them. THE NEW PHYTOLOGIST 2023; 237:48-52. [PMID: 36102037 DOI: 10.1111/nph.18489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Brace roots are a unique but poorly understood set of organs found in some large cereal crops such as maize. These roots develop from aerial stem nodes and can remain aerial or grow into the ground. Despite their name, the function of these roots to brace the plant was only recently shown. In this article, I discuss the current understanding of brace root function and development, as well as the multitude of open questions that remain about these fascinating organs.
Collapse
Affiliation(s)
- Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, Newark, DE, 19713, USA
| |
Collapse
|
10
|
Laskowski MJ, Tiley HC, Fang Y, Epstein A, Fu Y, Ramos R, Drummond TJ, Heidstra R, Bhakhri P, Baskin TI, Leyser O. The miR156 juvenility factor and PLETHORA 2 form a regulatory network and influence timing of meristem growth and lateral root emergence. Development 2022; 149:dev199871. [PMID: 36281807 DOI: 10.1242/dev.199871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.
Collapse
Affiliation(s)
| | - Helene C Tiley
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Yiling Fang
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Anabel Epstein
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Yuyang Fu
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | - Roberto Ramos
- Biology Department, Oberlin College, Oberlin, OH 44074USA
| | | | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Priyanka Bhakhri
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
11
|
Hostetler AN, Erndwein L, Ganji E, Reneau JW, Killian ML, Sparks EE. Maize brace root mechanics vary by whorl, genotype and reproductive stage. ANNALS OF BOTANY 2022; 129:657-668. [PMID: 35238341 PMCID: PMC9113123 DOI: 10.1093/aob/mcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Root lodging is responsible for significant crop losses worldwide. During root lodging, roots fail by breaking, buckling or pulling out of the ground. In maize, above-ground roots, called brace roots, have been shown to reduce susceptibility to root lodging. However, the underlying structural-functional properties of brace roots that prevent root lodging are poorly defined. In this study, we quantified structural mechanical properties, geometry and bending moduli for brace roots from different whorls, genotypes and reproductive stages. METHODS Using 3-point bend tests, we show that brace root mechanics are variable by whorl, genotype and reproductive stage. KEY RESULTS Generally, we find that within each genotype and reproductive stage, the brace roots from the first whorl (closest to the ground) had higher structural mechanical properties and a lower bending modulus than brace roots from the second whorl. There was additional variation between genotypes and reproductive stages. Specifically, genotypes with higher structural mechanical properties also had a higher bending modulus, and senesced brace roots had lower structural mechanical properties than hydrated brace roots. CONCLUSIONS Collectively these results highlight the importance of considering whorl-of-origin, genotype and reproductive stage for the quantification of brace root mechanics, which is important for mitigating crop loss due to root mechanical failure.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Lindsay Erndwein
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Beckman Institute for Advanced Science and Technology, the University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan W Reneau
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| |
Collapse
|
12
|
Hostetler AN, Erndwein L, Reneau JW, Stager A, Tanner HG, Cook D, Sparks EE. Multiple brace root phenotypes promote anchorage and limit root lodging in maize. PLANT, CELL & ENVIRONMENT 2022; 45:1573-1583. [PMID: 35141927 DOI: 10.1111/pce.14289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Plant mechanical failure (lodging) causes global yield losses of 7%-66% in cereal crops. We have previously shown that the above-ground nodal roots (brace roots) in maize are critical for anchorage. However, it is unknown how brace root phenotypes vary across genotypes and the functional consequence of this variation. This study quantifies the contribution of brace roots to anchorage, brace root traits, plant height, and root lodging susceptibility in 52 maize inbred lines. We show that the contribution of brace roots to anchorage and root lodging susceptibility varies among genotypes and this contribution can be explained by plant architectural variation. Additionally, supervised machine learning models were developed and show that multiple plant architectural phenotypes can predict the contribution of brace roots to anchorage and root lodging susceptibility. Together these data define the plant architectures that are important in lodging resistance and show that the contribution of brace roots to anchorage is a good proxy for root lodging susceptibility.
Collapse
Affiliation(s)
- Ashley N Hostetler
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Lindsay Erndwein
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Jonathan W Reneau
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Adam Stager
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Herbert G Tanner
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, USA
| | - Douglas Cook
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
13
|
Abstract
Uncovering the genes responsible for different types of roots will transform aspects of plant agriculture.
Collapse
Affiliation(s)
- Lidor Shaar-Moshe
- Department of Plant Biology, University of California, Davis, Davis, CA, USA.,Genome Center, University of California, Davis, Davis, CA, USA
| | - Siobhan M Brady
- Department of Plant Biology, University of California, Davis, Davis, CA, USA.,Genome Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
14
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|