1
|
Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans 2024; 52:2385-2398. [PMID: 39666440 DOI: 10.1042/bst20230642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues. In this review, I compare the mechanisms controlling primary and secondary cell wall patterns, with emphasis on water transporting tissues and insights derived from modeling studies. Much of what we know about this is based on complex cell shapes and primary xylem patterns, leading to an emphasis on the Rho-of-plants - cortical microtubule - cellulose microfibril system for secondary cell wall patterning. There is a striking diversity of secondary cell wall patterns with important functional benefits, however, about which we know much less and that may develop in substantially different ways.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Spiegelhalder RP, Berg LS, Nunes TDG, Dörr M, Jesenofsky B, Lindner H, Raissig MT. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon. Development 2024; 151:dev203011. [PMID: 39166983 PMCID: PMC11449446 DOI: 10.1242/dev.203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Grasses form morphologically derived, four-celled stomata, where two dumbbell-shaped guard cells (GCs) are flanked by two lateral subsidiary cells (SCs). This innovative form enables rapid opening and closing kinetics and efficient plant-atmosphere gas exchange. The mobile bHLH transcription factor MUTE is required for SC formation in grasses. Yet whether and how MUTE also regulates GC development and whether MUTE mobility is required for SC recruitment is unclear. Here, we transgenically impaired BdMUTE mobility from GC to SC precursors in the emerging model grass Brachypodium distachyon. Our data indicate that reduced BdMUTE mobility severely affected the spatiotemporal coordination of GC and SC development. Furthermore, although BdMUTE has a cell-autonomous role in GC division orientation, complete dumbbell morphogenesis of GCs required SC recruitment. Finally, leaf-level gas exchange measurements showed that dosage-dependent complementation of the four-celled grass morphology was mirrored in a gradual physiological complementation of stomatal kinetics. Together, our work revealed a dual role of grass MUTE in regulating GC division orientation and SC recruitment, which in turn is required for GC morphogenesis and the rapid kinetics of grass stomata.
Collapse
Affiliation(s)
- Roxane P Spiegelhalder
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea S Berg
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Tiago D G Nunes
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Melanie Dörr
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Barbara Jesenofsky
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Heike Lindner
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| | - Michael T Raissig
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
3
|
Nguyen TH, Blatt MR. Surrounded by luxury: The necessities of subsidiary cells. PLANT, CELL & ENVIRONMENT 2024; 47:3316-3329. [PMID: 38436128 DOI: 10.1111/pce.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The evolution of stomata marks one of the key advances that enabled plants to colonise dry land while allowing gas exchange for photosynthesis. In large measure, stomata retain a common design across species that incorporates paired guard cells with little variation in structure. By contrast, the cells of the stomatal complex immediately surrounding the guard cells vary widely in shape, size and count. Their origins in development are similarly diverse. Thus, the surrounding cells are likely a luxury that the necessity of stomatal control cannot do without (with apologies to Oscar Wilde). Surrounding cells are thought to support stomatal movements as solute reservoirs and to shape stomatal kinetics through backpressure on the guard cells. Their variety may also reflect a substantial diversity in function. Certainly modelling, kinetic analysis and the few electrophysiological studies to date give hints of much more complex contributions in stomatal physiology. Even so, our knowledge of the cells surrounding the guard cells in the stomatal complex is far from complete.
Collapse
Affiliation(s)
- Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, Bower Building, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, Bower Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Uyehara AN, Diep BN, Allsman LA, Gayer SG, Martinez SE, Kim JJ, Agarwal S, Rasmussen CG. De novo TANGLED1 recruitment from the phragmoplast to aberrant cell plate fusion sites in maize. J Cell Sci 2024; 137:jcs262097. [PMID: 38832513 PMCID: PMC11234383 DOI: 10.1242/jcs.262097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Division plane positioning is crucial for proper growth and development in many organisms. In plants, the division plane is established before mitosis, by accumulation of a cytoskeletal structure called the preprophase band (PPB). The PPB is thought to be essential for recruitment of division site-localized proteins, which remain at the division site after the PPB disassembles. Here, we show that the division site-localized protein TANGLED1 (TAN1) is recruited independently of the PPB to the cell cortex by the plant cytokinetic machinery, the phragmoplast, from experiments using both the PPB-defective mutant discordia1 (dcd1) and chemical treatments that disrupt the phragmoplast in maize. TAN1 recruitment to de novo sites on the cortex is partially dependent on intact actin filaments and the myosin XI motor protein OPAQUE1 (O1). These data imply a yet unknown role for TAN1 and possibly other division site-localized proteins during the last stages of cell division when the phragmoplast touches the cell cortex to complete cytokinesis.
Collapse
Affiliation(s)
- Aimee N. Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Beatrice N. Diep
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Lindy A. Allsman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Sarah G. Gayer
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Janice J. Kim
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Shreya Agarwal
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| | - Carolyn G. Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, CA 92521, USA
| |
Collapse
|
5
|
Ge S, Sun P, Wu W, Chen X, Wang Y, Zhang M, Huang J, Liang YK. COBL7 is required for stomatal formation via regulation of cellulose deposition in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:227-242. [PMID: 37853545 DOI: 10.1111/nph.19327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
As a key regulator of plant photosynthesis, water use efficiency and immunity, stomata are specialized cellular structures that adopt defined shapes. However, our knowledge about the genetic players of stomatal pore formation and stomatal morphogenesis remains limited. Forward genetic screening, positional cloning, confocal and electron microscopy, physiological and pharmacological assays were employed for isolation and characterization of mutants and genes. We identified a mutant, dsm1, with impaired cytokinesis and deformed stomata. DSM1 is highly expressed in guard mother cells and guard cells, and encodes COBRA-LIKE 7 (COBL7), a plant-specific glycosylphosphatidylinositol (GPI)-anchored protein. COBRA-LIKE 7 and its closest homologue, COBL8, are first enriched on the forming cell plates during cytokinesis, and then their subcellular distribution and abundance change are correlated with the progressive stages of stomatal pore formation. Both COBL7 and COBL8 possess an ability to bind cellulose. Perturbing the expression of COBL7 and COBL8 leads to a decrease in cellulose content and inhibition of stomatal pore development. Moreover, we found that COBL7, COBL8 and CSLD5 have synergistic effects on stomatal development and plant growth. Our findings reveal that COBL7 plays a predominant and functionally redundant role with COBL8 in stomatal formation through regulating cellulose deposition and ventral wall modification in Arabidopsis.
Collapse
Affiliation(s)
- Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinhang Chen
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yifei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Zhang K, Xue M, Qin F, He Y, Zhou Y. Natural polymorphisms in ZmIRX15A affect water-use efficiency by modulating stomatal density in maize. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2560-2573. [PMID: 37572352 PMCID: PMC10651153 DOI: 10.1111/pbi.14153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Stomatal density (SD) is closely related to crop drought resistance. Understanding the genetic basis for natural variation in SD may facilitate efforts to improve water-use efficiency. Here, we report a genome-wide association study for SD in maize seedlings, which identified 18 genetic variants that could be resolved to seven candidate genes. A 3-bp insertion variant (InDel1089) in the last exon of Zea mays (Zm) IRX15A (Irregular xylem 15A) had the most significant association with SD and modulated the translation of ZmIRX15A mRNA by affecting its secondary structure. Dysfunction of ZmIRX15A increased SD, leading to an increase in the transpiration rate and CO2 assimilation efficiency. ZmIRX15A encodes a xylan deposition enzyme and its disruption significantly decreased xylan abundance in secondary cell wall composition. Transcriptome analysis revealed a substantial alteration of the expression of genes involved in stomatal complex morphogenesis and drought response in the loss-of-function of ZmIRX15A mutant. Overall, our study provides important genetic insights into the natural variation of leaf SD in maize, and the identified loci or genes can serve as direct targets for enhancing drought resistance in molecular-assisted maize breeding.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Plant Physiology and BiochemistryEngineering Research Center of Plant Growth RegulatorCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Ming Xue
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyCo‐Innovation Center for Modern Production Technology of Grain CropsKey Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
| | - Feng Qin
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yan He
- National Maize Improvement Center of ChinaCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuyi Zhou
- State Key Laboratory of Plant Physiology and BiochemistryEngineering Research Center of Plant Growth RegulatorCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
7
|
Ashraf MA, Liu L, Facette MR. A polarized nuclear position specifies the correct division plane during maize stomatal development. PLANT PHYSIOLOGY 2023; 193:125-139. [PMID: 37300534 DOI: 10.1093/plphys/kiad329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Asymmetric cell division generates different cell types and is a feature of development in multicellular organisms. Prior to asymmetric cell division, cell polarity is established. Maize (Zea mays) stomatal development serves as an excellent plant model system for asymmetric cell division, especially the asymmetric division of the subsidiary mother cell (SMC). In SMCs, the nucleus migrates to a polar location after the accumulation of polarly localized proteins but before the appearance of the preprophase band. We examined a mutant of an outer nuclear membrane protein that is part of the LINC (linker of nucleoskeleton and cytoskeleton) complex that localizes to the nuclear envelope in interphase cells. Previously, maize linc kash sine-like2 (mlks2) was observed to have abnormal stomata. We confirmed and identified the precise defects that lead to abnormal asymmetric divisions. Proteins that are polarly localized in SMCs prior to division polarized normally in mlks2. However, polar localization of the nucleus was sometimes impaired, even in cells that have otherwise normal polarity. This led to a misplaced preprophase band and atypical division planes. MLKS2 localized to mitotic structures; however, the structure of the preprophase band, spindle, and phragmoplast appeared normal in mlks2. Time-lapse imaging revealed that mlks2 has defects in premitotic nuclear migration toward the polarized site and unstable position at the division site after formation of the preprophase band. Overall, our results show that nuclear envelope proteins promote premitotic nuclear migration and stable nuclear position and that the position of the nucleus influences division plane establishment in asymmetrically dividing cells.
Collapse
Affiliation(s)
- M Arif Ashraf
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Le Liu
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Plant Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Rudall PJ. Stomatal development and orientation: a phylogenetic and ecophysiological perspective. ANNALS OF BOTANY 2023; 131:1039-1050. [PMID: 37288594 PMCID: PMC10457030 DOI: 10.1093/aob/mcad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Oriented patterning of epidermal cells is achieved primarily by transverse protodermal cell divisions perpendicular to the organ axis, followed by axial cell elongation. In linear leaves with parallel venation, most stomata are regularly aligned with the veins. This longitudinal patterning operates under a strong developmental constraint and has demonstrable physiological benefits, especially in grasses. However, transversely oriented stomata characterize a few groups, among both living angiosperms and extinct Mesozoic seed plants. SCOPE This review examines comparative and developmental data on stomatal patterning in a broad phylogenetic context, focusing on the evolutionary and ecophysiological significance of guard-cell orientation. It draws from a diverse range of literature to explore the pivotal roles of the plant growth hormone auxin in establishing polarity and chemical gradients that enable cellular differentiation. CONCLUSIONS Transverse stomata evolved iteratively in a few seed-plant groups during the Mesozoic era, especially among parasitic or xerophytic taxa, such as the hemiparasitic mistletoe genus Viscum and the xerophytic shrub Casuarina, indicating a possible link with ecological factors such as the Cretaceous CO2 decline and changing water availability. The discovery of this feature in some extinct seed-plant taxa known only from fossils could represent a useful phylogenetic marker.
Collapse
|
9
|
Zhou Y, Zhang T, Wang X, Wu W, Xing J, Li Z, Qiao X, Zhang C, Wang X, Wang G, Li W, Bai S, Li Z, Suo Y, Wang J, Niu Y, Zhang J, Lan C, Hu Z, Li B, Zhang X, Wang W, Galbraith DW, Chen Y, Guo S, Song CP. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis. Nat Commun 2023; 14:4384. [PMID: 37474494 PMCID: PMC10359280 DOI: 10.1038/s41467-023-40013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The unique dumbbell-shape of grass guard cells (GCs) is controlled by their cell walls which enable their rapid responses to the environment. The molecular mechanisms regulating the synthesis and assembly of GC walls are as yet unknown. Here we have identified BZU3, a maize gene encoding UDP-glucose 4-epimerase that regulates the supply of UDP-glucose during GC wall synthesis. The BZU3 mutation leads to significant decreases in cellular UDP-glucose levels. Immunofluorescence intensities reporting levels of cellulose and mixed-linkage glucans are reduced in the GCs, resulting in impaired local wall thickening. BZU3 also catalyzes the epimerization of UDP-N-acetylgalactosamine to UDP-N-acetylglucosamine, and the BZU3 mutation affects N-glycosylation of proteins that may be involved in cell wall synthesis and signaling. Our results suggest that the spatiotemporal modulation of BZU3 plays a dual role in controlling cell wall synthesis and glycosylation via controlling UDP-glucose/N-acetylglucosamine homeostasis during stomatal morphogenesis. These findings provide insights into the mechanisms controlling formation of the unique morphology of grass stomata.
Collapse
Affiliation(s)
- Yusen Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Tian Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xiaocui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zuliang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xin Qiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Chunrui Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Guangshun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Wenhui Li
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, School of Life Sciences, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng, 475004, China
| | - Yanli Niu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Chen Lan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
| | - David W Galbraith
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China
- School of Plant Sciences and Bio5 Institute, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Jinming avenue 1, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| |
Collapse
|
10
|
Durney CH, Wilson MJ, McGregor S, Armand J, Smith RS, Gray JE, Morris RJ, Fleming AJ. Grasses exploit geometry to achieve improved guard cell dynamics. Curr Biol 2023:S0960-9822(23)00683-8. [PMID: 37327783 DOI: 10.1016/j.cub.2023.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/18/2023]
Abstract
Stomata are controllable micropores formed between two adjacent guard cells (GCs) that regulate gas flow across the plant surface.1 Grasses, among the most successful organisms on the planet and the main food crops for humanity, have GCs flanked by specialized lateral subsidiary cells (SCs).2,3,4 SCs improve performance by acting as a local pool of ions and metabolites to drive changes in turgor pressure within the GCs that open/close the stomatal pore.4,5,6,7,8 The 4-celled complex also involves distinctive changes in geometry, having dumbbell-shaped GCs compared with typical kidney-shaped stomata.2,4,9 However, the degree to which this distinctive geometry contributes to improved stomatal performance, and the underlying mechanism, remains unclear. To address this question, we created a finite element method (FEM) model of a grass stomatal complex that successfully captures experimentally observed pore opening/closure. Exploration of the model, including in silico and experimental mutant analyses, supports the importance of a reciprocal pressure system between GCs and SCs for effective stomatal function, with SCs functioning as springs to restrain lateral GC movement. Our results show that SCs are not essential but lead to a more responsive system. In addition, we show that GC wall anisotropy is not required for grass stomatal function (in contrast to kidney-shaped GCs10) but that a relatively thick GC rod region is needed to enhance pore opening. Our results demonstrate that a specific cellular geometry and associated mechanical properties are required for the effective functioning of grass stomata.
Collapse
Affiliation(s)
- Clinton H Durney
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew J Wilson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Shauni McGregor
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jodie Armand
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Richard S Smith
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julie E Gray
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Andrew J Fleming
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
11
|
Zhang D, Spiegelhalder RP, Abrash EB, Nunes TDG, Hidalgo I, Anleu Gil MX, Jesenofsky B, Lindner H, Bergmann DC, Raissig MT. Opposite polarity programs regulate asymmetric subsidiary cell divisions in grasses. eLife 2022; 11:e79913. [PMID: 36537077 PMCID: PMC9767456 DOI: 10.7554/elife.79913] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Grass stomata recruit lateral subsidiary cells (SCs), which are key to the unique stomatal morphology and the efficient plant-atmosphere gas exchange in grasses. Subsidiary mother cells (SMCs) strongly polarise before an asymmetric division forms a SC. Yet apart from a proximal polarity module that includes PANGLOSS1 (PAN1) and guides nuclear migration, little is known regarding the developmental processes that form SCs. Here, we used comparative transcriptomics of developing wild-type and SC-less bdmute leaves in the genetic model grass Brachypodium distachyon to identify novel factors involved in SC formation. This approach revealed BdPOLAR, which forms a novel, distal polarity domain in SMCs that is opposite to the proximal PAN1 domain. Both polarity domains are required for the formative SC division yet exhibit various roles in guiding pre-mitotic nuclear migration and SMC division plane orientation, respectively. Nonetheless, the domains are linked as the proximal domain controls polarisation of the distal domain. In summary, we identified two opposing polarity domains that coordinate the SC division, a process crucial for grass stomatal physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Emily B Abrash
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Tiago DG Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Inés Hidalgo
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| | - Dominique C Bergmann
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Institute of Plant Sciences, University of BernBernSwitzerland
| |
Collapse
|
12
|
Saridis P, Georgiadou X, Shtein I, Pouris J, Panteris E, Rhizopoulou S, Constantinidis T, Giannoutsou E, Adamakis IDS. Stomata in Close Contact: The Case of Pancratium maritimum L. (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:3377. [PMID: 36501416 PMCID: PMC9740904 DOI: 10.3390/plants11233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A special feature found in Amaryllidaceae is that some guard cells of the neighboring stomata form a "connection strand" between their dorsal cell walls. In the present work, this strand was studied in terms of both its composition and its effect on the morphology and function of the stomata in Pancratium maritimum L. leaves. The structure of stomata and their connection strand were studied by light and transmission electron microscopy. FM 4-64 and aniline blue staining and application of tannic acid were performed to detect cell membranes, callose, and pectins, respectively. A plasmolysis experiment was also performed. The composition of the connection strand was analyzed by fluorescence microscopy after immunostaining with several cell-wall-related antibodies, while pectinase treatment was applied to confirm the presence of pectins in the connection strand. To examine the effect of this connection on stomatal function, several morphological characteristics (width, length, size, pore aperture, stomatal distance, and cell size of the intermediate pavement cell) were studied. It is suggested that the connecting strand consists of cell wall material laid through the middle of the intermediate pavement cell adjoining the two stomata. These cell wall strands are mainly comprised of pectins, and crystalline cellulose and extensins were also present. Connected stomata do not open like the single stomata do, indicating that the connection strand could also affect stomatal function. This trait is common to other Amaryllidaceae representatives.
Collapse
Affiliation(s)
- Pavlos Saridis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Xenia Georgiadou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ilana Shtein
- Eastern Region Resarch and Development Center, Milken Campus, Ariel 40700, Israel
| | - John Pouris
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Theophanis Constantinidis
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | |
Collapse
|
13
|
Wang Q, Bai H, Zada A, Jiao Q. DORN1 Is Involved in Drought Stress Tolerance through a Ca 2+-Dependent Pathway. Int J Mol Sci 2022; 23:ijms232214213. [PMID: 36430696 PMCID: PMC9694886 DOI: 10.3390/ijms232214213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Water shortages caused by climate change seriously threaten the survival and production of plants and are also one of the major environmental pressures faced by plants. DORN1 was the first identified purinoceptor for the plant response to extracellular ATP. It has been established that DORN1 could play key roles in a series of biological activities in plants. However, the biological roles of DORN1 and the mechanism remain unclear under drought stress conditions in plants. Here, DORN1 was targeted for knockout by using the CRISPR/Cas 9 system. It was found that the loss function of DORN1 resulted in a significant decrease in the effective quantum yield of PSII [Y(II)], the photochemical quenching coefficient (qP), and the rate of photosynthetic electron transport through PSII (ETR), which reflected plants' photochemical efficiency. Whereas Y(NO) values showed obvious enhancement under drought stress conditions. Further experimental results showed that the Y(II), qP, and ETR, which reflect plants' photochemical efficiency, increased significantly with CaCl2 treatment. These results indicated that the drought tolerance of the mutant was decreased, and the exogenous application of calcium ions could effectively promote the drought tolerance of the dorn1 mutant. Transpiration loss controlled by stomata is closely related to drought tolerance, further, we examined the transpirational water loss in dorn1 and found that it was greater than wild-type (WT). Besides, the dorn1 mutant's stomatal aperture significantly increased compared with the WT and the stomata of dorn1 mutant plants tend to close after CaCl2 treatment. Taken together, our results show that DORN1 plays a key role in drought stress tolerance in plants, which may depend on calcium and calcium-related signaling pathways.
Collapse
Affiliation(s)
- Qingwen Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing 210046, China
| | - Hongbao Bai
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
14
|
Raissig MT, Woods DP. The wild grass Brachypodium distachyon as a developmental model system. Curr Top Dev Biol 2022; 147:33-71. [PMID: 35337454 DOI: 10.1016/bs.ctdb.2021.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arrival of cheap and high-throughput sequencing paired with efficient gene editing technologies allows us to use non-traditional model systems and mechanistically approach biological phenomena beyond what was conceivable just a decade ago. Venturing into different model systems enables us to explore for example clade-specific environmental responses to changing climates or the genetics and development of clade-specific organs, tissues and cell types. We-both early career researchers working with the wild grass model Brachypodium distachyon-want to use this review to (1) highlight why we think B. distachyon is a fantastic grass developmental model system, (2) summarize the tools and resources that have enabled discoveries made in B. distachyon, and (3) discuss a handful of developmental biology vignettes made possible by using B. distachyon as a model system. Finally, we want to conclude by (4) relating our personal stories with this emerging model system and (5) share what we think is important to consider before starting work with an emerging model system.
Collapse
Affiliation(s)
- Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany; Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Daniel P Woods
- Department of Plant Sciences, University of California, Davis, CA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
15
|
Li Y, Zhang X, Zhang Y, Ren H. Controlling the Gate: The Functions of the Cytoskeleton in Stomatal Movement. FRONTIERS IN PLANT SCIENCE 2022; 13:849729. [PMID: 35283892 PMCID: PMC8905143 DOI: 10.3389/fpls.2022.849729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 05/03/2023]
Abstract
Stomata are specialized epidermal structures composed of two guard cells and are involved in gas and water exchange between plants and the environment and pathogen entry into the plant interior. Stomatal movement is a response to many internal and external stimuli to increase adaptability to environmental change. The cytoskeleton, including actin filaments and microtubules, is highly dynamic in guard cells during stomatal movement, and the destruction of the cytoskeleton interferes with stomatal movement. In this review, we discuss recent progress on the organization and dynamics of actin filaments and microtubule network in guard cells, and we pay special attention to cytoskeletal-associated protein-mediated cytoskeletal rearrangements during stomatal movement. We also discuss the potential mechanisms of stomatal movement in relation to the cytoskeleton and attempt to provide a foundation for further research in this field.
Collapse
Affiliation(s)
- Yihao Li
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Xin Zhang
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- *Correspondence: Yi Zhang,
| | - Haiyun Ren
- Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- Haiyun Ren,
| |
Collapse
|
16
|
Yi H, Chen Y, Anderson CT. Turgor pressure change in stomatal guard cells arises from interactions between water influx and mechanical responses of their cell walls. QUANTITATIVE PLANT BIOLOGY 2022; 3:e12. [PMID: 37077969 PMCID: PMC10095868 DOI: 10.1017/qpb.2022.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
The ability of plants to absorb CO2 for photosynthesis and transport water from root to shoot depends on the reversible swelling of guard cells that open stomatal pores in the epidermis. Despite decades of experimental and theoretical work, the biomechanical drivers of stomatal opening and closure are still not clearly defined. We combined mechanical principles with a growing body of knowledge concerning water flux across the plant cell membrane and the biomechanical properties of plant cell walls to quantitatively test the long-standing hypothesis that increasing turgor pressure resulting from water uptake drives guard cell expansion during stomatal opening. To test the alternative hypothesis that water influx is the main motive force underlying guard cell expansion, we developed a system dynamics model accounting for water influx. This approach connects stomatal kinetics to whole plant physiology by including values for water flux arising from water status in the plant .
Collapse
Affiliation(s)
- Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Author for correspondence: H. Yi, E-mail:
| | - Yintong Chen
- Department of Biology and Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Charles T. Anderson
- Department of Biology and Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|