1
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anming Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Guan Y, Cui Y, Qu X, Li B, Zhang L. Post-acidification of fermented milk and its molecular regulatory mechanism. Int J Food Microbiol 2025; 426:110920. [PMID: 39316924 DOI: 10.1016/j.ijfoodmicro.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The fermented milk products with lactic acid bacteria (LAB) are widely accepted by consumers. During the chilled-chain transportation and storage, LAB in the product keep producing lactic acid, and this will lead to post-acidification, which can affect the flavor, consumer acceptance and even shelf-life of the product. LAB is the determining factor affecting post-acidification. The acid production pathway in LAB and methods inhibiting post-acidification received widespread attention. This review will focus on the post-acidification from the perspective of fermentation starters, including acid production pathway in LAB, main factors and key enzymes affecting post-acidification. Lactobacillus delbrueckii subsp. bulgaricus is a key bacterial species responsible for post acidification in the fermented milk products. The different species and strains presented various differences in process like acid production, acid resistance and post-acidification. Furthermore, multiple factors, such as milk composition, fermentation temperature, and homogenization, also can influence post-acidification. Lactose transport and utilization pathways, as well as its subsequent products metabolic pathway directly influence the post-acidification. F0F1-ATPase, β-galactosidase, and lactate dehydrogenase are recognized as important enzymes related to post-acidification. The degree of post-acidification is mainly related to the acid production and acid resistance abilities of the fermentation starters, so the key enzymes related to post-acidification are mostly taking part in these two capacities. Recently, some new post-acidification related biomarker genes were found, providing a reference adjusting post-acidification without affecting fermentation rate and bacteria viability. To clarify the post-acidification mechanism at the molecular level will help control post- acidification.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Han SJ, Kim DK. Synergistic effect of naringenin and mild heat for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus in peptone water and cold brew coffee. Int J Food Microbiol 2025; 430:111051. [PMID: 39787753 DOI: 10.1016/j.ijfoodmicro.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S. aureus. In contrast, NG or MH treatment alone exhibited only marginal bactericidal effects. From inactivating mechanism analysis, lipid membrane destruction and intracellular enzyme inactivation were the key factors for pathogen inactivation. Cell membrane and enzyme dysfunctions were identified in propidium iodide (PI) uptake test, membrane potential assay, and membrane protein analysis. Furthermore, NG + MH exerted minimal influence on the quality attributes of RDC in pH, color, and total phenolic content. These results indicated that the NG + MH treatment system effectively ensured microbial safety in cold brew coffee while enhancing its nutritional value and preserving quality attributes.
Collapse
Affiliation(s)
- Sang-Jun Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Hu W, Huo X, Ma T, Li Z, Yang T, Yang H, Feng S. Insights into the role of cyclopropane fatty acid synthase (CfaS) from extreme acidophile in bacterial defense against environmental acid stress. Extremophiles 2024; 29:1. [PMID: 39549088 DOI: 10.1007/s00792-024-01368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The cell membrane remodeling mediated by cyclopropane fatty acid synthase (CfaS) plays a crucial role in microbial physiological processes resisting various environmental stressors, including acid. Herein, we found a relatively high proportion (24.8%-28.3%) of cyclopropane fatty acid (CFA) Cy-19:0 in the cell membrane of a newly isolated extreme acidophile, Acidithiobacillus caldus CCTCC AB 2019256, under extreme acid stress. Overexpression of the CfaS encoding gene cfaS2 in Escherichia coli conferred enhanced acid resistance. GC-MS analysis revealed a 3.52-fold increase in the relative proportion of Cy-19:0 in the cell membrane of the overexpression strain compared to the control. Correspondingly, membrane fluidity, permeability and cell surface hydrophobicity were reduced to varying degrees. Additionally, HPLC analysis indicated that the overexpression strain had 1.54-, 1.42-, 1.85-, 1.20- and 1.05-fold higher levels of intracellular glutamic acid, arginine, aspartic acid, methionine and alanine, respectively, compared to the control. Overall, our findings shed light on the role of CfaS derived from extreme acidophile in bacterial defense against environmental acid stress, potentially facilitating its application in the design and development of industrial microbial chassis cells for organic acid production.
Collapse
Affiliation(s)
- Wenbo Hu
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingyu Huo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Tengfei Ma
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Zhigang Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Tianyou Yang
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
5
|
Dessenne C, Ménart B, Acket S, Dewulf G, Guerardel Y, Vidal O, Rossez Y. Lipidomic analyses reveal distinctive variations in homeoviscous adaptation among clinical strains of Acinetobacter baumannii, providing insights from an environmental adaptation perspective. Microbiol Spectr 2024; 12:e0075724. [PMID: 39254344 PMCID: PMC11448061 DOI: 10.1128/spectrum.00757-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
Acinetobacter baumannii is known for its antibiotic resistance and is increasingly found outside of healthcare settings. To survive colder temperatures, bacteria, including A. baumannii, adapt by modifying glycerophospholipids (GPL) to maintain membrane flexibility. This study examines the lipid composition of six clinical A. baumannii strains, including the virulent AB5075, at two temperatures. At 18°C, five strains consistently show an increase in palmitoleic acid (C16:1), while ABVal2 uniquely shows an increase in oleic acid (C18:1). LC-HRMS2 analysis identifies shifts in GPL and glycerolipid composition between 18°C and 37°C, highlighting variations in phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids. ABVal2 shows increased PE with C18:1 and C16:1 at 18°C, but no change in PG, in contrast to other strains that show increased PE and PG with C16:1. Notably, although A. baumannii typically lacks FabA, a key enzyme for unsaturated fatty acid synthesis, this enzyme was found in both ABVal2 and ABVal3. In addition, ABVal2 contains five candidate desaturases that may contribute to its lipid profile. The study also reveals variations in strain motility and biofilm formation over temperature. These findings enhance our understanding of A. baumannii's physiological adaptations, survival strategies and ecological fitness in different environments.IMPORTANCEAcinetobacter baumannii, a bacterium known for its resistance to antibiotics, is a concern in healthcare settings. This study focused on understanding how this bacterium adapts to different temperatures and how its lipid composition changes. Lipids are the building blocks of cell membranes. By studying these changes, scientists can gain insights into how the bacterium survives and behaves in various environments. This understanding improves our understanding of its global dissemination capabilities. The results of the study contribute to our broader understanding of how Acinetobacter baumannii works, which is important for developing strategies to combat its impact on patient health.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Benoît Ménart
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Sébastien Acket
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| | - Gisèle Dewulf
- Centre Hospitalier de valenciennes, Laboratoire de Biologie Hygiène-service de Microbiologie, Valenciennes, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Université de technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne Cedex, Compiègne, France
| |
Collapse
|
6
|
Blake MJ, Page EF, Smith ME, Calhoun TR. Miltefosine impacts small molecule transport in Gram-positive bacteria. RSC Chem Biol 2024; 5:981-988. [PMID: 39363965 PMCID: PMC11446237 DOI: 10.1039/d4cb00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 10/05/2024] Open
Abstract
Miltefosine (MLT) is an alkylphosphocholine with clinical success as an anticancer and antiparasitic drug. Although the mechanism of action of MLT is highly debated, the interaction of MLT with the membrane, specifically lipid rafts of eukaryotes, is well-documented. Recent reports suggest MLT impacts the functional membrane microdomains in bacteria - regions of the membrane structurally and functionally similar to lipid rafts. There have been conflicting reports, however, as to whether MLT impacts the overall fluidity of cellular plasma membranes. Here, we apply steady-state fluorescence techniques, generalized polarization of laurdan and anisotropy of diphenylhexatriene, to discern how MLT impacts the global ordering and lipid packing of Staphylococcus aureus membranes. Additionally, we investigate how the transport of a range of small molecules is impacted by MLT for S. aureus and Bacillus subtilis by employing time-resolved second harmonic scattering. Overall, we observe MLT does not have an influence on the overall ordering and packing of S. aureus membranes. Additionally, we show that the transport of small molecules across the membrane can be significantly altered by MLT - although this is not the case for all molecules studied. The results presented here illustrate the potential use of MLT as an adjuvant to assist in the delivery of drug molecules in bacteria.
Collapse
|
7
|
Lou Z, Fan X, Liu C, Liao Y, Du X, Wang H. Purification of proanthocyanidins from nut seeds and study on its bactericidal mechanism against Streptococcus mutans. J Appl Microbiol 2024; 135:lxae209. [PMID: 39138062 DOI: 10.1093/jambio/lxae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
AIM The aim of this study was to purify proanthocyanidins from areca nut seeds (P-AN) and to investigate the bactericidal activity and mechanism of the purified products against Streptococcus mutans. METHODS AND RESULTS Ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry, Fourier transform infrared, Matrix-assisted laser desorption/ ionization time of flight mass spectrometry (MADLI-TOF-MS), and thiolysis experiment were used for P-AN chemical analysis. Time-kill analysis and glycolytic pH drop were used to evaluate the activity of S. mutans in vitro. Meanwhile, the investigation of the bacteriostatic mechanism included membrane protein, fluidity, permeability, and integrity tests. The results showed that P-AN was a kind of proanthocyanidin mainly composed of B-type proanthocyanidins and their polymers. Moreover, MADLI-TOF-MS and thiolysis experiments demonstrated that the degree of polymerization of P-AN was 13. The time-kill analysis showed that P-AN had strong bactericidal activity against S. mutans. P-AN at minimum inhibitory concentration (MIC) concentrations was able to induce S. mutans death, while complete lethality occurred at 2 MIC. Glycolysis test showed that P-AN significantly inhibited S. mutans acid production (P < .01). The morphological changes of S. mutans were observed by scanning electron microscopy and transmission electron microscopy experiments, which indicated that P-AN destroyed the cellular structure of S. mutans. At the same time, significant changes were observed in membrane proteins, fluidity, permeability, and integrity. CONCLUSION P-AN can effectively inhibit the activity of S. mutans. P-AN can reduce the erosion of the tooth surface by the acid of S. mutans. P-AN could break the structure of the cell membrane protein of S. mutans. P-AN could destroy the integrity of membrane, resulting in the death of S. mutans.
Collapse
Affiliation(s)
- Zaixiang Lou
- Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Xiaoyuan Fan
- Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Caihua Liu
- Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, China
| | - Yuemei Liao
- Guangxi Key Laboratory of Biology for Mango, Baise University, Baise 533000, China
| | - Xiaojing Du
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122 Jiangsu, China
| | - Hongxin Wang
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi 214122 Jiangsu, China
| |
Collapse
|
8
|
Iram D, Sansi MS, Puniya AK, Gandhi K, Meena S, Vij S. Phenotypic and molecular characterization of clinically isolated antibiotics-resistant S. aureus (MRSA), E. coli (ESBL) and Acinetobacter 1379 bacterial strains. Braz J Microbiol 2024; 55:2293-2312. [PMID: 38773046 PMCID: PMC11405748 DOI: 10.1007/s42770-024-01347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024] Open
Abstract
Antibiotic-resistant bacteria causing nosocomial infections pose a significant global health concern. This study focused on examining the lipid profiles of both non-resistant and clinically resistant strains of Staphylococcus aureus (MRSA 1418), E. coli (ESBL 1384), and Acinetobacter 1379. The main aim was to investigate the relationship between lipid profiles, hydrophobicity, and antibiotic resistance so as to identify the pathogenic potential and resistance factors of strains isolated from patients with sepsis and urinary tract infections (UTIs). The research included various tests, such as antimicrobial susceptibility assays following CLSI guidelines, biochemical tests, biofilm assays, and hydrophobicity assays. Additionally, gas chromatography mass spectrometry (GC-MS) and GC-Flame Ionization Detector (GC-FID) analysis were used for lipid profiling and composition. The clinically isolated resistant strains (MRSA-1418, ESBL-1384, and Acinetobacter 1379) demonstrated resistance phenotypes of 81.80%, 27.6%, and 63.6%, respectively, with a multiple antibiotic resistance index of 0.81, 0.27, and 0.63. Notably, the MRSA-1418 strain, which exhibited resistance, showed significantly higher levels of hemolysin, cell surface hydrophobicity, biofilm index, and a self-aggregative phenotype compared to the non-resistant strains. Gene expression analysis using quantitative real-time PCR (qPCR). Indicated elevated expression levels of intercellular adhesion biofilm-related genes (icaA, icaC, and icaD) in MRSA-1418 (pgaA, pgaC, and pgaB) and Acinetobacter 1379 after 24 h compared to non-resistant strains. Scanning electron microscopy (SEM) was employed for structural investigation. These findings provide valuable insights into the role of biofilms in antibiotic resistance and suggest potential target pathways for combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Daraksha Iram
- Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Manish Singh Sansi
- Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Anil Kumar Puniya
- Anaerobic Microbial Fermentation Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India
| | - Kamal Gandhi
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, India
| | - Sunita Meena
- Biofunctional Peptidomics and Metabolic Syndrome Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Shilpa Vij
- Antimicrobial Peptides, Biofunctional Probiotics and Peptidomics Laboratory, Dairy Microbiology Division, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
9
|
Liu S, Laman P, Jensen S, van der Wel NN, Kramer G, Zaat SA, Brul S. Isolation and characterization of persisters of the pathogenic microorganism Staphylococcus aureus. iScience 2024; 27:110002. [PMID: 38868179 PMCID: PMC11166702 DOI: 10.1016/j.isci.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
The presence of antibiotic persisters is one of the leading causes of recurrent and chronic diseases. One challenge in mechanistic research on persisters is the enrichment of pure persisters. In this work, we validated a proposed method to isolate persisters with notorious Staphylococcus aureus cultures. With this, we analyzed the proteome profile of pure persisters and revealed the distinct mechanisms associated with vancomycin and enrofloxacin induced persisters. Furthermore, morphological and metabolic characterizations were performed, indicating further differences between these two persister populations. Finally, we assessed the effect of ATP repression, protein synthesis inhibition, and reactive oxygen species (ROS) level on persister formation. In conclusion, this work provides a comprehensive understanding of S. aureus vancomycin and enrofloxacin induced persisters, facilitating a better mechanistic understanding of persisters and the development of effective strategies to combat them.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Paul Laman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sean Jensen
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Gertjan Kramer
- Department of Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sebastian A.J. Zaat
- Department of Medical Microbiology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
10
|
Caro-Astorga J, Meyerowitz JT, Stork DA, Nattermann U, Piszkiewicz S, Vimercati L, Schwendner P, Hocher A, Cockell C, DeBenedictis E. Polyextremophile engineering: a review of organisms that push the limits of life. Front Microbiol 2024; 15:1341701. [PMID: 38903795 PMCID: PMC11188471 DOI: 10.3389/fmicb.2024.1341701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Nature exhibits an enormous diversity of organisms that thrive in extreme environments. From snow algae that reproduce at sub-zero temperatures to radiotrophic fungi that thrive in nuclear radiation at Chernobyl, extreme organisms raise many questions about the limits of life. Is there any environment where life could not "find a way"? Although many individual extremophilic organisms have been identified and studied, there remain outstanding questions about the limits of life and the extent to which extreme properties can be enhanced, combined or transferred to new organisms. In this review, we compile the current knowledge on the bioengineering of extremophile microbes. We summarize what is known about the basic mechanisms of extreme adaptations, compile synthetic biology's efforts to engineer extremophile organisms beyond what is found in nature, and highlight which adaptations can be combined. The basic science of extremophiles can be applied to engineered organisms tailored to specific biomanufacturing needs, such as growth in high temperatures or in the presence of unusual solvents.
Collapse
Affiliation(s)
| | | | - Devon A. Stork
- Pioneer Research Laboratories, San Francisco, CA, United States
| | - Una Nattermann
- Pioneer Research Laboratories, San Francisco, CA, United States
| | | | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | | | - Antoine Hocher
- London Institute of Medical Sciences, London, United Kingdom
| | - Charles Cockell
- UK Centre for Astrobiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Erika DeBenedictis
- The Francis Crick Institute, London, United Kingdom
- Pioneer Research Laboratories, San Francisco, CA, United States
| |
Collapse
|
11
|
Rodrigues LT, Goeldner BSA, Mercuri EGF, Noe SM. Tradescantia response to air and soil pollution, stamen hair cells dataset and ANN color classification. Front Big Data 2024; 7:1384240. [PMID: 38812700 PMCID: PMC11133728 DOI: 10.3389/fdata.2024.1384240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Tradescantia plant is a complex system that is sensible to environmental factors such as water supply, pH, temperature, light, radiation, impurities, and nutrient availability. It can be used as a biomonitor for environmental changes; however, the bioassays are time-consuming and have a strong human interference factor that might change the result depending on who is performing the analysis. We have developed computer vision models to study color variations from Tradescantia clone 4430 plant stamen hair cells, which can be stressed due to air pollution and soil contamination. The study introduces a novel dataset, Trad-204, comprising single-cell images from Tradescantia clone 4430, captured during the Tradescantia stamen-hair mutation bioassay (Trad-SHM). The dataset contain images from two experiments, one focusing on air pollution by particulate matter and another based on soil contaminated by diesel oil. Both experiments were carried out in Curitiba, Brazil, between 2020 and 2023. The images represent single cells with different shapes, sizes, and colors, reflecting the plant's responses to environmental stressors. An automatic classification task was developed to distinguishing between blue and pink cells, and the study explores both a baseline model and three artificial neural network (ANN) architectures, namely, TinyVGG, VGG-16, and ResNet34. Tradescantia revealed sensibility to both air particulate matter concentration and diesel oil in soil. The results indicate that Residual Network architecture outperforms the other models in terms of accuracy on both training and testing sets. The dataset and findings contribute to the understanding of plant cell responses to environmental stress and provide valuable resources for further research in automated image analysis of plant cells. Discussion highlights the impact of turgor pressure on cell shape and the potential implications for plant physiology. The comparison between ANN architectures aligns with previous research, emphasizing the superior performance of ResNet models in image classification tasks. Artificial intelligence identification of pink cells improves the counting accuracy, thus avoiding human errors due to different color perceptions, fatigue, or inattention, in addition to facilitating and speeding up the analysis process. Overall, the study offers insights into plant cell dynamics and provides a foundation for future investigations like cells morphology change. This research corroborates that biomonitoring should be considered as an important tool for political actions, being a relevant issue in risk assessment and the development of new public policies relating to the environment.
Collapse
Affiliation(s)
| | | | | | - Steffen Manfred Noe
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
12
|
Willdigg JR, Patel Y, Arquilevich BE, Subramanian C, Frank MW, Rock CO, Helmann JD. The Bacillus subtilis cell envelope stress-inducible ytpAB operon modulates membrane properties and contributes to bacitracin resistance. J Bacteriol 2024; 206:e0001524. [PMID: 38323910 PMCID: PMC10955860 DOI: 10.1128/jb.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Antibiotics that inhibit peptidoglycan synthesis trigger the activation of both specific and general protective responses. σM responds to diverse antibiotics that inhibit cell wall synthesis. Here, we demonstrate that cell wall-inhibiting drugs, such as bacitracin and cefuroxime, induce the σM-dependent ytpAB operon. YtpA is a predicted hydrolase previously proposed to generate the putative lysophospholipid antibiotic bacilysocin (lysophosphatidylglycerol), and YtpB is the branchpoint enzyme for the synthesis of membrane-localized C35 terpenoids. Using targeted lipidomics, we reveal that YtpA is not required for the production of lysophosphatidylglycerol. Nevertheless, ytpA was critical for growth in a mutant strain defective for homeoviscous adaptation due to a lack of genes for the synthesis of branched chain fatty acids and the Des phospholipid desaturase. Consistently, overexpression of ytpA increased membrane fluidity as monitored by fluorescence anisotropy. The ytpA gene contributes to bacitracin resistance in mutants additionally lacking the bceAB or bcrC genes, which directly mediate bacitracin resistance. These epistatic interactions support a model in which σM-dependent induction of the ytpAB operon helps cells tolerate bacitracin stress, either by facilitating the flipping of the undecaprenyl phosphate carrier lipid or by impacting the assembly or function of membrane-associated complexes involved in cell wall homeostasis.IMPORTANCEPeptidoglycan synthesis inhibitors include some of our most important antibiotics. In Bacillus subtilis, peptidoglycan synthesis inhibitors induce the σM regulon, which is critical for intrinsic antibiotic resistance. The σM-dependent ytpAB operon encodes a predicted hydrolase (YtpA) and the enzyme that initiates the synthesis of C35 terpenoids (YtpB). Our results suggest that YtpA is critical in cells defective in homeoviscous adaptation. Furthermore, we find that YtpA functions cooperatively with the BceAB and BcrC proteins in conferring intrinsic resistance to bacitracin, a peptide antibiotic that binds tightly to the undecaprenyl-pyrophosphate lipid carrier that sustains peptidoglycan synthesis.
Collapse
Affiliation(s)
| | - Yesha Patel
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | | | - Chitra Subramanian
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Matthew W. Frank
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Charles O. Rock
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
13
|
Gligonov IA, Bagaeva DI, Demina GR, Vostroknutova GN, Vorozhtsov DS, Kaprelyants AS, Savitsky AP, Shleeva MO. The accumulation of methylated porphyrins in dormant cells of Mycolicibacterium smegmatis is accompanied by a decrease in membrane fluidity and an impede of the functioning of the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184270. [PMID: 38211647 DOI: 10.1016/j.bbamem.2024.184270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Transition of Mycolicibacterium smegmatis (Msm) and Mycobacterium tuberculosis to dormancy in vitro is accompanied by an accumulation of free methylated forms of porphyrins (tetramethyl coproporphyrin - TMC) localized in the cell wall of dormant bacteria. A study of the fluorescence anisotropy of BODIPY based fluorescent probes on individual cell level using confocal microscope revealed significant changes in this parameter for BODIPY FL C16 from 0.05 to 0.22 for vegetative and dormant Msm cells correspondingly. Similarly, the increase of TMC concentration in vegetative Msm cells grown in the presence of 5-aminolevulinic acid (a known inducer of porphyrin synthesis) resulted in an increase of BODIPY FL C16 anisotropy. These changes in TMC concentration and membrane fluidity were accompanied by an inhibition of the activity of the respiratory chain measured by oxygen consumption and a reduction of the DCPIP redox acceptor. During the first 8 h of the reactivation of the dormant Msm cells, the porphyrin content and probe fluorescent anisotropy returned to the level for vegetative bacteria. We suggested that upon transition to dormancy, an accumulation of TMC in membranes leads to a decrease in membrane fluidity, resulting in an inhibition of the respiratory chain activity. However, direct interactions of TMC with membrane bound enzymes cannot also be excluded. This, in turn, may result in the down regulation of many metabolic energy-dependent reactions as a part of mechanisms accompanying the transition to a hypometabolic state of mycobacteria.
Collapse
Affiliation(s)
- Ivan A Gligonov
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Daria I Bagaeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Galina R Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Galina N Vostroknutova
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitriy S Vorozhtsov
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexander P Savitsky
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
14
|
Yang X, Wu S, Luo S, Weng X, Wu Y, Yu X, Huang X, Wang X, Hu X. Inactivation of Carotenogenic-Biosynthesizing Genes Altered Lipids Composition and Intensity in Cronobacter sakazakii. Foodborne Pathog Dis 2024; 21:174-182. [PMID: 38112720 DOI: 10.1089/fpd.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Cronobacter sakazakii, an opportunistic milk-borne pathogen responsible for severe neonatal meningitis and bacteremia, can synthesize yellow pigment (various carotenoids) benefiting for bacterial survival, while little literature was available about the influence of various carotenoids on bacterial resistance to a series of stresses and the characteristics of cell membrane, obstructing the development of novel bactericidal strategies overcoming the strong tolerance of C. sakazakii. Thus in this study, for the first time, five carotenogenic genes of C. sakazakii BAA-894 were inactivated, respectively, to construct a series of mutants producing various carotenoids and their effects on the cell membrane properties, and resistances to food- and host-related stresses, were investigated systematically. Furthermore, to explore its possible mode of action, comparative lipidomics analysis was performed to reveal the change of lipids that were mainly located at cell membranes. The results showed that five mutants (ΔcrtB, ΔcrtI, ΔcrtY, ΔcrtZ, and ΔcrtX) displayed negligible change in growth rate but higher permeability of the outer membrane and lower fluidity of cell membrane compared to the wild type. Besides, these mutants exhibited poorer ability of biofilm formation and lower resistances to acid, oxidative, osmotic, and desiccation stresses, indicating that different carotenoid composition significantly affected environmental tolerance of C. sakazakii. To discover the possible causes, lipidomics analysis of C. sakazakii was conducted and more than 500 lipid species belonging to 27 classes had been identified at first. Compared to that of BAA-894, the composition and relative intensity of lipid species in five mutants varied significantly, especially the monounsaturated and biunsaturated phosphatidylethanolamine. The evidence presented in this study demonstrated that the varied composition of carotenoids in C. sakazakii significantly altered the lipid profile and intensity, which maybe a crucial means to influencing the characteristics of cell membranes and resistance to environmental stresses.
Collapse
Affiliation(s)
- Xi Yang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuyan Wu
- Hopkirk Research Institute, AgResearch Ltd., Palmerston North, New Zealand
| | - Shuanghua Luo
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xing Weng
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yue Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xia Yu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- Hopkirk Research Institute, AgResearch Ltd., Palmerston North, New Zealand
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Li Q, Lu H, Tian T, Fu Z, Dai Y, Li P, Zhou J. Insights into the Acceleration Mechanism of Intracellular N and Fe Co-doped Carbon Dots on Anaerobic Denitrification Using Proteomics and Metabolomics Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2393-2403. [PMID: 38268063 DOI: 10.1021/acs.est.3c08625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Liu Y, Zhang H, Fan C, Liu F, Li S, Li J, Zhao H, Zeng X. Potential role of Bcl2 in lipid metabolism and synaptic dysfunction of age-related hearing loss. Neurobiol Dis 2023; 187:106320. [PMID: 37813166 DOI: 10.1016/j.nbd.2023.106320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a prevalent condition affecting millions of individuals globally. This study investigated the role of the cell survival regulator Bcl2 in ARHL through in vitro and in vivo experiments and metabolomics analysis. The results showed that the lack of Bcl2 in the auditory cortex affects lipid metabolism, resulting in reduced synaptic function and neurodegeneration. Immunohistochemical analysis demonstrated enrichment of Bcl2 in specific areas of the auditory cortex, including the secondary auditory cortex, dorsal and ventral areas, and primary somatosensory cortex. In ARHL rats, a significant decrease in Bcl2 expression was observed in these areas. RNAseq analysis showed that the downregulation of Bcl2 altered lipid metabolism pathways within the auditory pathway, which was further confirmed by metabolomics analysis. These results suggest that Bcl2 plays a crucial role in regulating lipid metabolism, synaptic function, and neurodegeneration in ARHL; thereby, it could be a potential therapeutic target. We also revealed that Bcl2 probably has a close connection with lipid peroxidation and reactive oxygen species (ROS) production occurring in cochlear hair cells and cortical neurons in ARHL. The study also identified changes in hair cells, spiral ganglion cells, and nerve fiber density as consequences of Bcl2 deficiency, which could potentially contribute to the inner ear nerve blockage and subsequent hearing loss. Therefore, targeting Bcl2 may be a promising potential therapeutic intervention for ARHL. These findings provide valuable insights into the molecular mechanisms underlying ARHL and may pave the way for novel treatment approaches for this prevalent age-related disorder.
Collapse
Affiliation(s)
- Yue Liu
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, China; Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China.
| | - Huasong Zhang
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China; Department of Otolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China; Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China.
| | - Cong Fan
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Feiyi Liu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Shaoying Li
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Juanjuan Li
- Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, 510000, China
| | - Xianhai Zeng
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai 519041, China; Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen 518172, China.
| |
Collapse
|
17
|
Roversi D, Troiano C, Salnikov E, Giordano L, Riccitelli F, De Zotti M, Casciaro B, Loffredo MR, Park Y, Formaggio F, Mangoni ML, Bechinger B, Stella L. Effects of antimicrobial peptides on membrane dynamics: A comparison of fluorescence and NMR experiments. Biophys Chem 2023; 300:107060. [PMID: 37336097 DOI: 10.1016/j.bpc.2023.107060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Antimicrobial peptides (AMPs) represent a promising class of compounds to fight resistant infections. They are commonly thought to kill bacteria by perturbing the permeability of their cell membranes. However, bacterial killing requires a high coverage of the cell surface by bound peptides, at least in the case of cationic and amphipathic AMPs. Therefore, it is conceivable that peptide accumulation on the bacterial membranes might interfere with vital cellular functions also by perturbing bilayer dynamics, a hypothesis that has been termed "sand in the gearbox". Here we performed a systematic study of such possible effects, for two representative peptides (the cationic cathelicidin PMAP-23 and the peptaibol alamethicin), employing fluorescence and NMR spectroscopies. These approaches are commonly applied to characterize lipid order and dynamics, but sample different time-scales and could thus report on different membrane properties. In our case, fluorescence anisotropy measurements on liposomes labelled with probes localized at different depths in the bilayer showed that both peptides perturb membrane fluidity and order. Pyrene excimer-formation experiments showed a peptide-induced reduction in lipid lateral mobility. Finally, laurdan fluorescence indicated that peptide binding reduces water penetration below the headgroups region. Comparable effects were observed also in fluorescence experiments performed directly on live bacterial cells. By contrast, the fatty acyl chain order parameters detected by deuterium NMR spectroscopy remained virtually unaffected by addition of the peptides. The apparent discrepancy between the two techniques confirms previous sporadic observations and is discussed in terms of the different characteristic times of the two approaches. The perturbation of membrane dynamics in the ns timescale, indicated by the multiple fluorescence approaches reported here, could contribute to the antimicrobial activity of AMPs, by affecting the function of membrane proteins, which is strongly dependent on the physicochemical properties of the bilayer.
Collapse
Affiliation(s)
- Daniela Roversi
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Cassandra Troiano
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Evgeniy Salnikov
- RMN et Biophysique des membranes, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France
| | - Lorenzo Giordano
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesco Riccitelli
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, Padova 35131, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome 00185, Italy
| | - Burkhard Bechinger
- RMN et Biophysique des membranes, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France; Institut Universitaire de France, Paris 75005, France
| | - Lorenzo Stella
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Rome 00133, Italy.
| |
Collapse
|
18
|
Zhao D, Ma Y, Wang W, Xiang Q. Antibacterial activity and mechanism of cinnamon essential oil nanoemulsion against Pseudomonas deceptionensis CM2. Heliyon 2023; 9:e19582. [PMID: 37809560 PMCID: PMC10558840 DOI: 10.1016/j.heliyon.2023.e19582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023] Open
Abstract
This work aimed to evaluate the antibacterial activity and mechanism of cinnamon essential oil nanoemulsion (CON) against Pseudomonas deceptionensis CM2. The results revealed that CON could effectively inhibit the proliferation of P. deceptionensis CM2 cells in a time- and concentration-dependent manner. After 4 h of incubation with CON at the minimum inhibitory concentration (0.125 mg/mL), the relative fluorescence intensity of propidium iodide and 1-N-phenylnapthylamine (NPN) was increased by 32.0% and 351.4%, respectively. The membrane permeability of P. deceptionensis CM2 cells was significantly disrupted after CON treatment, resulting in the leakage of intracellular substances (such as proteins and electrolytes). CON also caused significant increases in the DiBAC4(3) fluorescence intensity of P. deceptionensis CM2 cells. These results demonstrate that CON induced inactivation of P. deceptionensis CM2 by destroying the integrity and function of bacterial membrane. A higher level of intracellular reactive oxygen species (ROS) was observed in CON-treated cells (p < 0.05), compared with control cells. Moreover, the addition of glutathione to the growth medium remarkably decreased the antimicrobial activity of CON against P. deceptionensis CM2, further confirming that oxidative stress played an important role in the antimicrobial activity of CON. Overall, CON may exhibit antibacterial effects by causing damage to the bacterial membranes and oxidative stress.
Collapse
Affiliation(s)
- Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Yanqing Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Wenwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Ye X, Wang J, Xu P, Yang X, Shi Q, Liu G, Bai Z, Zhou C, Ma L. Peptide MSI-1 inhibited MCR-1 and regulated outer membrane vesicles to combat immune evasion of Escherichia coli. Microb Biotechnol 2023; 16:1755-1773. [PMID: 37329166 PMCID: PMC10443334 DOI: 10.1111/1751-7915.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Polymyxin resistance is conferred by MCR-1 (mobile colistin resistance 1)-induced lipopolysaccharide (LPS) modification of G- bacteria. However, the peptide MSI-1 exerts potent antimicrobial activity against mcr-1-carrying bacteria. To further investigate the potential role of MCR-1 in improving bacterial virulence and facilitating immune evasion, and the immunomodulatory effect of peptide MSI-1, we first explored outer membrane vesicle (OMV) alterations of mcr-1-carrying bacteria in the presence and absence of sub-MIC MSI-1, and host immune activation during bacterial infection and OMV stimulation. Our results demonstrated that LPS remodelling induced by MCR-1 negatively affected OMV formation and protein cargo by E. coli. In addition, MCR-1 diminished LPS-stimulated pyroptosis but facilitated mitochondrial dysfunction, further aggravating apoptosis in macrophages induced by OMVs of E. coli. Similarly, TLR4-mediated NF-κB activation was markedly alleviated once LPS was modified by MCR-1. However, peptide MSI-1 at the sub-MIC level inhibited the expression of MCR-1, further partly rescuing OMV alteration and attenuation of immune responses in the presence of MCR-1 during both infection and OMV stimulation, which can be exploited for anti-infective therapy.
Collapse
Affiliation(s)
- Xinyue Ye
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Jian Wang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Pengfei Xu
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xiaoqian Yang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Qixue Shi
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Genyan Liu
- Department of Laboratory MedicineFirst Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhaoshi Bai
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer ResearchThe Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Changlin Zhou
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Lingman Ma
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
20
|
Li Q, Hu K, Mou J, Li J, Liu A, Ao X, Yang Y, He L, Chen S, Zou L, Guo M, Liu S. Insight into the acid tolerance mechanism of Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Front Microbiol 2023; 14:1226031. [PMID: 37520381 PMCID: PMC10382275 DOI: 10.3389/fmicb.2023.1226031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Several lactic acid bacteria (LAB) are double-edged swords in the production of Sichuan bran vinegar; on the one hand, they are important for the flavour of the vinegar, but on the other hand, they result in vinegar deterioration because of their gas-producing features and their acid resistance. These characteristics intensify the difficulty in managing the safe production of vinegar using strains such as Acetilactobacillus jinshanensis subsp. aerogenes Z-1. Therefore, it is necessary to characterize the mechanisms underlying their acid tolerance. The results of this study showed a survival rate of 77.2% for Z-1 when exposed to pH 3.0 stress for 1 h. This strain could survive for approximately 15 days in a vinegar solution with 4% or 6% total acid content, and its growth was effectively enhanced by the addition of 10 mM of arginine (Arg). Under acidic stress, the relative content of the unsaturated fatty acid C18:1 (n-11) increased, and eight amino acids accumulated in the cells. Meanwhile, based on a transcriptome analysis, the genes glnA, carA/B, arcA, murE/F/G, fabD/H/G, DnaK, uvrA, opuA/C, fliy, ecfA2, dnaA and LuxS, mainly enriched in amino acid transport and metabolism, protein folding, DNA repair, and cell wall/membrane metabolism processes, were hypothesized to be acid resistance-related genes in Z-1. This work paves the way for further clarifying the acid tolerance mechanism of Z-1 and shares applicable perspectives for vinegar brewing.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Juan Mou
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingye Guo
- Sichuan Baoning Vinegar Co., Ltd, Langzhong, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
21
|
Whiting R, Stanton S, Kucheriava M, Smith AR, Pitts M, Robertson D, Kammer J, Li Z, Fologea D. Hypo-Osmotic Stress and Pore-Forming Toxins Adjust the Lipid Order in Sheep Red Blood Cell Membranes. MEMBRANES 2023; 13:620. [PMID: 37504986 PMCID: PMC10385129 DOI: 10.3390/membranes13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Lipid ordering in cell membranes has been increasingly recognized as an important factor in establishing and regulating a large variety of biological functions. Multiple investigations into lipid organization focused on assessing ordering from temperature-induced phase transitions, which are often well outside the physiological range. However, particular stresses elicited by environmental factors, such as hypo-osmotic stress or protein insertion into membranes, with respect to changes in lipid status and ordering at constant temperature are insufficiently described. To fill these gaps in our knowledge, we exploited the well-established ability of environmentally sensitive membrane probes to detect intramembrane changes at the molecular level. Our steady state fluorescence spectroscopy experiments focused on assessing changes in optical responses of Laurdan and diphenylhexatriene upon exposure of red blood cells to hypo-osmotic stress and pore-forming toxins at room temperature. We verified our utilized experimental systems by a direct comparison of the results with prior reports on artificial membranes and cholesterol-depleted membranes undergoing temperature changes. The significant changes observed in the lipid order after exposure to hypo-osmotic stress or pore-forming toxins resembled phase transitions of lipids in membranes, which we explained by considering the short-range interactions between membrane components and the hydrophobic mismatch between membrane thickness and inserted proteins. Our results suggest that measurements of optical responses from the membrane probes constitute an appropriate method for assessing the status of lipids and phase transitions in target membranes exposed to mechanical stresses or upon the insertion of transmembrane proteins.
Collapse
Affiliation(s)
- Rose Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Sevio Stanton
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | | | - Aviana R Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Matt Pitts
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Robertson
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Jacob Kammer
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Department of Family Medicine, Idaho College of Osteopathic Medicine, Meridian, ID 83642, USA
| | - Zhiyu Li
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
22
|
Ding Q, Ge C, Baker RC, Buchanan RL, Tikekar RV. Assessment of trans-cinnamaldehyde and eugenol assisted heat treatment against Salmonella Typhimurium in low moisture food components. Food Microbiol 2023; 112:104228. [PMID: 36906318 DOI: 10.1016/j.fm.2023.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Increased thermal resistance of Salmonella at low water activity (aw) is a significant food safety concern in low-moisture foods (LMFs). We evaluated whether trans-cinnamaldehyde (CA, 1000 ppm) and eugenol (EG, 1000 ppm), which can accelerate thermal inactivation of Salmonella Typhimurium in water, can show similar effect in bacteria adapted to low aw in different LMF components. Although CA and EG significantly accelerated thermal inactivation (55 °C) of S. Typhimurium in whey protein (WP), corn starch (CS) and peanut oil (PO) at 0.9 aw, such effect was not observed in bacteria adapted to lower aw (0.4). The matrix effect on bacterial thermal resistance was observed at 0.9 aw, which was ranked as WP > PO > CS. The effect of heat treatment with CA or EG on bacterial metabolic activity was also partially dependent on the food matrix. Bacteria adapted to lower aw had lower membrane fluidity and unsaturated to saturated fatty acids ratio, suggesting that bacteria at low aw can change its membrane composition to increase its rigidity, thus increasing resistance against the combined treatments. This study demonstrates the effect of aw and food components on the antimicrobials-assisted heat treatment in LMF and provides an insight into the resistance mechanism.
Collapse
Affiliation(s)
- Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, 101047, China
| | | | - Robert L Buchanan
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742; Center for Food Safety and Security Systems, University of Maryland, College Park, MD, USA, 20742
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, 112 Skinner Building, College Park, MD, USA, 20742.
| |
Collapse
|
23
|
Carfrae LA, Rachwalski K, French S, Gordzevich R, Seidel L, Tsai CN, Tu MM, MacNair CR, Ovchinnikova OG, Clarke BR, Whitfield C, Brown ED. Inhibiting fatty acid synthesis overcomes colistin resistance. Nat Microbiol 2023:10.1038/s41564-023-01369-z. [PMID: 37127701 DOI: 10.1038/s41564-023-01369-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Treating multidrug-resistant infections has increasingly relied on last-resort antibiotics, including polymyxins, for example colistin. As polymyxins are given routinely, the prevalence of their resistance is on the rise and increases mortality rates of sepsis patients. The global dissemination of plasmid-borne colistin resistance, driven by the emergence of mcr-1, threatens to diminish the therapeutic utility of polymyxins from an already shrinking antibiotic arsenal. Restoring sensitivity to polymyxins using combination therapy with sensitizing drugs is a promising approach to reviving its clinical utility. Here we describe the ability of the biotin biosynthesis inhibitor, MAC13772, to synergize with colistin exclusively against colistin-resistant bacteria. MAC13772 indirectly disrupts fatty acid synthesis (FAS) and restores sensitivity to the last-resort antibiotic, colistin. Accordingly, we found that combinations of colistin and other FAS inhibitors, cerulenin, triclosan and Debio1452-NH3, had broad potential against both chromosomal and plasmid-mediated colistin resistance in chequerboard and lysis assays. Furthermore, combination therapy with colistin and the clinically relevant FabI inhibitor, Debio1452-NH3, showed efficacy against mcr-1 positive Klebsiella pneumoniae and colistin-resistant Escherichia coli systemic infections in mice. Using chemical genomics, lipidomics and transcriptomics, we explored the mechanism of the interaction. We propose that inhibiting FAS restores colistin sensitivity by depleting lipid synthesis, leading to changes in phospholipid composition. In all, this work reveals a surprising link between FAS and colistin resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Rodion Gordzevich
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Laura Seidel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Caressa N Tsai
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Megan M Tu
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Craig R MacNair
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Eric D Brown
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
24
|
Wang Y, Wu Y, Niu H, Liu Y, Ma Y, Wang X, Li Z, Dong Q. Different cellular fatty acid pattern and gene expression of planktonic and biofilm state Listeria monocytogenes under nutritional stress. Food Res Int 2023; 167:112698. [PMID: 37087265 DOI: 10.1016/j.foodres.2023.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Listeria monocytogenes is a Gram-positive bacterium frequently involved in food-borne disease outbreaks and is widely distributed in the food-processing environment. This work aims to depict the impact of nutrition deficiency on the survival strategy of L. monocytogenes both in planktonic and biofilm states. In the present study, cell characteristics (autoaggression, hydrophobicity and motility), membrane fatty acid composition of MRL300083 (Lm83) in the forms of planktonic and biofilm-associated cells cultured in TSB-YE and 10-fold dilutions of TSB-YE (DTSB-YE) were investigated. Additionally, the relative expression of related genes were also determined by RT-qPCR. It was observed that cell growth in different bacterial life modes under nutritional stress rendered the cells a distinct phenotype. The higher autoaggression (AAG) and motility of the planktonic cells in DTSB-YE is associated with better biofilm formation. An increased proportion of unsaturated fatty acid/saturated fatty acid (USFA/SFA) indicates more fluidic biophysical properties for cell membranes of L. monocytogenes in planktonic and biofilm cells in DTSB-YE. Biofilm cells produced a higher percentage of USFA and straight fatty acids than the corresponding planktonic cells. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. The adaptation of bacteria to stress is a multifactorial cellular process, the expression of flagella-related genes fliG, fliP, flgE and the two-component chemotactic system cheA/Y genes of planktonic cells in DTSB-YE significantly increased compared to that in TSB-YE (p < 0.05). This study provides new information on the role of the physiological adaptation and gene expression of L. monocytogenes for planktonic and biofilm growth under nutritional stress.
Collapse
Affiliation(s)
- Yuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Youzhi Wu
- School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
25
|
Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing Antibacterial Strategies for Osteomyelitis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206154. [PMID: 36717275 PMCID: PMC10104653 DOI: 10.1002/advs.202206154] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Osteomyelitis is a destructive disease of bone tissue caused by infection with pathogenic microorganisms. Because of the complex and long-term abnormal conditions, osteomyelitis is one of the refractory diseases in orthopedics. Currently, anti-infective therapy is the primary modality for osteomyelitis therapy in addition to thorough surgical debridement. However, bacterial resistance has gradually reduced the benefits of traditional antibiotics, and the development of advanced antibacterial agents has received growing attention. This review introduces the main targets of antibacterial agents for treating osteomyelitis, including bacterial cell wall, cell membrane, intracellular macromolecules, and bacterial energy metabolism, focuses on their mechanisms, and predicts prospects for clinical applications.
Collapse
Affiliation(s)
- Xukai Wang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Mingran Zhang
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Tongtong Zhu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Qiuhua Wei
- Department of Disinfection and Infection ControlChinese PLA Center for Disease Control and Prevention20 Dongda StreetBeijing100071P. R. China
| | - Guangyao Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin University126 Xiantai StreetChangchun130033P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
26
|
Paciello F, Ripoli C, Fetoni AR, Grassi C. Redox Imbalance as a Common Pathogenic Factor Linking Hearing Loss and Cognitive Decline. Antioxidants (Basel) 2023; 12:antiox12020332. [PMID: 36829891 PMCID: PMC9952092 DOI: 10.3390/antiox12020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Experimental and clinical data suggest a tight link between hearing and cognitive functions under both physiological and pathological conditions. Indeed, hearing perception requires high-level cognitive processes, and its alterations have been considered a risk factor for cognitive decline. Thus, identifying common pathogenic determinants of hearing loss and neurodegenerative disease is challenging. Here, we focused on redox status imbalance as a possible common pathological mechanism linking hearing and cognitive dysfunctions. Oxidative stress plays a critical role in cochlear damage occurring during aging, as well as in that induced by exogenous factors, including noise. At the same time, increased oxidative stress in medio-temporal brain regions, including the hippocampus, is a hallmark of neurodegenerative disorders like Alzheimer's disease. As such, antioxidant therapy seems to be a promising approach to prevent and/or counteract both sensory and cognitive neurodegeneration. Here, we review experimental evidence suggesting that redox imbalance is a key pathogenetic factor underlying the association between sensorineural hearing loss and neurodegenerative diseases. A greater understanding of the pathophysiological mechanisms shared by these two diseased conditions will hopefully provide relevant information to develop innovative and effective therapeutic strategies.
Collapse
Affiliation(s)
- Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-0630154966
| | - Anna Rita Fetoni
- Unit of Audiology, Department of Neuroscience, Università degli Studi di Napoli Federico II, 80138 Naples, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
27
|
Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes. Molecules 2023; 28:molecules28031252. [PMID: 36770917 PMCID: PMC9920354 DOI: 10.3390/molecules28031252] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Search for novel antimicrobial agents, including plant-derived flavonoids, and evaluation of the mechanisms of their antibacterial activities are pivotal objectives. The goal of this study was to compare the antihemolytic activity of flavonoids, quercetin, naringenin and catechin against sheep erythrocyte lysis induced by α-hemolysin (αHL) produced by the Staphylococcus aureus strain NCTC 5655. We also sought to investigate the membrane-modifying action of the flavonoids. Lipophilic quercetin, but not naringenin or catechin, effectively inhibited the hemolytic activity of αHL at concentrations (IC50 = 65 ± 5 µM) below minimal inhibitory concentration values for S. aureus growth. Quercetin increased the registered bacterial cell diameter, enhanced the fluidity of the inner and surface regions of bacterial cell membranes and raised the rigidity of the hydrophobic region and the fluidity of the surface region of erythrocyte membranes. Our findings provide evidence that the antibacterial activities of the flavonoids resulted from a disorder in the structural organization of bacterial cell membranes, and the antihemolytic effect of quercetin was related to the effect of the flavonoid on the organization of the erythrocyte membrane, which, in turn, increases the resistance of the target cells (erythrocytes) to αHL and inhibits αHL-induced osmotic hemolysis due to prevention of toxin incorporation into the target membrane. We confirmed that cell membrane disorder could be one of the direct modes of antibacterial action of the flavonoids.
Collapse
|
28
|
Hellequin E, Collin S, Seder-Colomina M, Véquaud P, Anquetil C, Kish A, Huguet A. Membrane lipid adaptation of soil Bacteroidetes isolates to temperature and pH. Front Microbiol 2023; 14:1032032. [PMID: 36950164 PMCID: PMC10025309 DOI: 10.3389/fmicb.2023.1032032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
3-hydroxy fatty acids (3-OH FAs) are characteristic components of the Gram-negative bacterial membrane, recently proposed as promising temperature and pH (paleo) proxies in soil. Nevertheless, to date, the relationships between the 3-OH FA distribution and temperature/pH are only based on empirical studies, with no ground truthing work at the microbial level. This work investigated the influence of growth temperature and pH on the lipid composition of three strains of soil Gram-negative bacteria belonging to the Bacteroidetes phylum. Even though non-hydroxy FAs were more abundant than 3-OH FAs in the investigated strains, our results suggest that 3-OH FAs are involved in the membrane adaptation of these bacteria to temperature. The strains shared a common adaptation mechanism to temperature, with a significant increase in the ratio of anteiso vs. iso or normal 3-OH FAs at lower temperature. In contrast with temperature, no common adaptation mechanism to pH was observed, as the variations in the FA lipid profiles differed from one strain to another. We suggest that models reconstructing environmental changes in soils should include the whole suite of 3-OH FAs present in the membrane of Gram-negative bacteria, as all of them could be influenced by temperature or pH at the microbial level.
Collapse
Affiliation(s)
- Eve Hellequin
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
- *Correspondence: Eve Hellequin,
| | - Sylvie Collin
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
| | | | - Pierre Véquaud
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
| | | | - Adrienne Kish
- Muséum National d'Histoire naturelle, CNRS, Unité Molécules de Communication et Adaptation des Microorganismes UMR7245 MCAM, Paris, France
| | - Arnaud Huguet
- Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris, France
| |
Collapse
|
29
|
Pendleton A, Yeo WS, Alqahtani S, DiMaggio DA, Stone CJ, Li Z, Singh VK, Montgomery CP, Bae T, Brinsmade SR. Regulation of the Sae Two-Component System by Branched-Chain Fatty Acids in Staphylococcus aureus. mBio 2022; 13:e0147222. [PMID: 36135382 PMCID: PMC9600363 DOI: 10.1128/mbio.01472-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is a ubiquitous Gram-positive bacterium and an opportunistic human pathogen. S. aureus pathogenesis relies on a complex network of regulatory factors that adjust gene expression. Two important factors in this network are CodY, a repressor protein responsive to nutrient availability, and the SaeRS two-component system (TCS), which responds to neutrophil-produced factors. Our previous work revealed that CodY regulates the secretion of many toxins indirectly via Sae through an unknown mechanism. We report that disruption of codY results in increased levels of phosphorylated SaeR (SaeR~P) and that codY mutant cell membranes contain a higher percentage of branched-chain fatty acids (BCFAs) than do wild-type membranes, prompting us to hypothesize that changes to membrane composition modulate the activity of the SaeS sensor kinase. Disrupting the lpdA gene encoding dihydrolipoyl dehydrogenase, which is critical for BCFA synthesis, significantly reduced the abundance of SaeR, phosphorylated SaeR, and BCFAs in the membrane, resulting in reduced toxin production and attenuated virulence. Lower SaeR levels could be explained in part by reduced stability. Sae activity in the lpdA mutant could be complemented genetically and chemically with exogenous short- or full-length BCFAs. Intriguingly, lack of lpdA also alters the activity of other TCSs, suggesting a specific BCFA requirement managing the basal activity of multiple TCSs. These results reveal a novel method of posttranscriptional virulence regulation via BCFA synthesis, potentially linking CodY activity to multiple virulence regulators in S. aureus. IMPORTANCE Two-component systems (TCSs) are an essential way that bacteria sense and respond to their environment. These systems are usually composed of a membrane-bound histidine kinase that phosphorylates a cytoplasmic response regulator. Because most of the histidine kinases are embedded in the membrane, lipids can allosterically regulate the activity of these sensors. In this study, we reveal that branched-chain fatty acids (BCFAs) are required for the activation of multiple TCSs in Staphylococcus aureus. Using both genetic and biochemical data, we show that the activity of the virulence activator SaeS and the phosphorylation of its response regulator SaeR are reduced in a branched-chain keto-acid dehydrogenase complex mutant and that defects in BCFA synthesis have far-reaching consequences for exotoxin secretion and virulence. Finally, we show that mutation of the global nutritional regulator CodY alters BCFA content in the membrane, revealing a potential mechanism of posttranscriptional regulation of the Sae system by CodY.
Collapse
Affiliation(s)
| | - Won-Sik Yeo
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Shahad Alqahtani
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Carl J. Stone
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | | |
Collapse
|
30
|
Lee HS, Lee HJ, Kim B, Kim SH, Cho DH, Jung HJ, Bhatia SK, Choi KY, Kim W, Lee J, Lee SH, Yang YH. Inhibition of Cyclopropane Fatty Acid Synthesis in the Membrane of Halophilic Halomonas socia CKY01 by Kanamycin. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Ma Y, Zhu W, Zhu G, Xu Y, Li S, Chen R, Chen L, Wang J. Efficient Robust Yield Method for Preparing Bacterial Ghosts by Escherichia coli Phage ID52 Lysis Protein E. Bioengineering (Basel) 2022; 9:300. [PMID: 35877351 PMCID: PMC9311611 DOI: 10.3390/bioengineering9070300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial ghosts (BGs) are nonliving empty bacterial shells without cytoplasm retaining original morphology and identical antigenicity of natural bacteria, making them high potential and promising vaccine candidates and delivery vehicles. However, the low yield of commonly used BGs preparation methods limits its mass production and widely application. In order to improve BGs production, E. coli phage ID52 lysis protein E was introduced to generating BGs for the first time. Above all, we compared the lysis activity of lysis protein of E. coli phage φX174 and E. coli phage ID52 as well as the effects of promoters on the lysis activity of ID52-E, which shown that the lysis activity and BGs formation rate of protein ID52-E was significantly higher than protein φX174-E. Further, the lysis activity of ID52-E was significantly improved under the control of L-arabinose inducible promoter which initial induction OD600 reached as high as 2.0. The applicability of lysis protein ID52-E induced by L-arabinose was proved by preparing probiotic E. coli Nissle 1917 BGs and pathogenic Salmonella typhimurium BGs in mass production. This paper introduced a novel and highly efficient method for BGs preparation depending on recombinant expression of E. coli phage ID52-E under eco-friendly and reasonable price inducer L-arabinose.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wenjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Guanshu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Yue Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Shuyu Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| | - Rui Chen
- Bionavi Life Sciences Co., Ltd., Shenzhen 518118, China;
| | - Lidan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China;
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (W.Z.); (G.Z.); (Y.X.); (S.L.)
| |
Collapse
|
32
|
Effect of linear and branched fructans on growth and probiotic characteristics of seven Lactobacillus spp. isolated from an autochthonous beverage from Chiapas, Mexico. Arch Microbiol 2022; 204:364. [DOI: 10.1007/s00203-022-02984-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/16/2023]
|
33
|
Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. mSphere 2022; 7:e0018722. [PMID: 35603537 PMCID: PMC9241526 DOI: 10.1128/msphere.00187-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of resisting environmental insults by applying various strategies, including regulating membrane fluidity and producing membrane vesicles (MVs). This study examined the difference in membrane fluidity between planktonic and biofilm modes of growth in P. aeruginosa and whether the ability to alter membrane rigidity in P. aeruginosa could be transferred via MVs. To this end, planktonic and biofilm P. aeruginosa were compared with respect to the lipid composition of their membranes and their MVs and the expression of genes contributing to alteration of membrane fluidity. Additionally, viscosity maps of the bacterial membrane in planktonic and biofilm lifestyles and under the effect of incubation with bacterial MVs were obtained. Further, the growth rate and biofilm formation capability of P. aeruginosa in the presence of MVs were compared. Results showed that the membrane of the biofilm bacteria is significantly less fluid than the membrane of the planktonic bacteria and is enriched with saturated fatty acids. Moreover, the enzymes involved in altering the structure of existing lipids and favoring membrane rigidification are overexpressed in the biofilm bacteria. MVs of biofilm P. aeruginosa elicit membrane rigidification and delay the bacterial growth in the planktonic lifestyle; conversely, they enhance biofilm development in P. aeruginosa. Overall, the study describes the interplay between the planktonic and biofilm bacteria by shedding light on the role of MVs in altering membrane fluidity. IMPORTANCE Membrane rigidification is a survival strategy in Pseudomonas aeruginosa exposed to stress. Despite various studies dedicated to the mechanism behind this phenomenon, not much attention has been paid to the contribution of the bacterial membrane vesicles (MVs) in this regard. This study revealed that P. aeruginosa rigidifies its membrane in the biofilm mode of growth. Additionally, the capability of decreasing membrane fluidity is transferable to the bacterial population via the bacterial MVs, resulting in reprogramming of bacterial membrane fluidity. Given the importance of membrane rigidification for decreasing the pathogen’s susceptibility to antimicrobials, elucidation of the conditions leading to such biophysicochemical modulation of the P. aeruginosa membrane should be considered for the purpose of developing therapeutic approaches against this resistant pathogen.
Collapse
|
34
|
Yao C, He Z, Li J, E J, Wang R, Zhang Q, Wang J. Effect of glutathione on Lactiplantibacillus plantarum stability during room temperature storage and the underlying mechanism of action. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Differences in Acid Stress Response of Lacticaseibacillus paracasei Zhang Cultured from Solid-State Fermentation and Liquid-State Fermentation. Microorganisms 2021; 9:microorganisms9091951. [PMID: 34576848 PMCID: PMC8465097 DOI: 10.3390/microorganisms9091951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Liquid-state fermentation (LSF) and solid-state fermentation (SSF) are two forms of industrial production of lactic acid bacteria (LAB). The choice of two fermentations for LAB production has drawn wide concern. In this study, the tolerance of bacteria produced by the two fermentation methods to acid stress was compared, and the reasons for the tolerance differences were analyzed at the physiological and transcriptional levels. The survival rate of the bacterial agent obtained from solid-state fermentation was significantly higher than that of bacteria obtained from liquid-state fermentation after spray drying and cold air drying. However, the tolerance of bacterial cells obtained from liquid-state fermentation to acid stress was significantly higher than that from solid-state fermentation. The analysis at physiological level indicated that under acid stress, cells from liquid-state fermentation displayed a more solid and complete membrane structure, higher cell membrane saturated fatty acid, more stable intracellular pH, and more stable activity of ATPase and glutathione reductase, compared with cells from solid-state fermentation, and these physiological differences led to better tolerance to acid stress. In addition, transcriptomic analysis showed that in the cells cultured from liquid-state fermentation, the genes related to glycolysis, inositol phosphate metabolism, and carbohydrate transport were down-regulated, whereas the genes related to fatty acid synthesis and glutamate metabolism were upregulated, compared with those in cells from solid-state fermentation. In addition, some genes related to acid stress response such as cspA, rimP, rbfA, mazF, and nagB were up-regulated. These findings provide a new perspective for the study of acid stress tolerance of L. paracasei Zhang and offer a reference for the selection of fermentation methods of LAB production.
Collapse
|
36
|
Bock LJ, Ferguson PM, Clarke M, Pumpitakkul V, Wand ME, Fady PE, Allison L, Fleck RA, Shepherd MJ, Mason AJ, Sutton JM. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Commun Biol 2021; 4:1058. [PMID: 34504285 PMCID: PMC8429429 DOI: 10.1038/s42003-021-02566-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2021] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of stably adapting to the antiseptic octenidine by an unknown mechanism. Here we characterise this adaptation, both in the laboratory and a simulated clinical setting, and identify a novel antiseptic resistance mechanism. In both settings, 2 to 4-fold increase in octenidine tolerance was associated with stable mutations and a specific 12 base pair deletion in a putative Tet-repressor family gene (smvR), associated with a constitutive increase in expression of the Major Facilitator Superfamily (MFS) efflux pump SmvA. Adaptation to higher octenidine concentrations led to additional stable mutations, most frequently in phosphatidylserine synthase pssA and occasionally in phosphatidylglycerophosphate synthase pgsA genes, resulting in octenidine tolerance 16- to 256-fold higher than parental strains. Metabolic changes were consistent with mitigation of oxidative stress and altered plasma membrane composition and order. Mutations in SmvAR and phospholipid synthases enable higher level, synergistic tolerance of octenidine.
Collapse
Affiliation(s)
- Lucy J Bock
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK.
| | - Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Vichayanee Pumpitakkul
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Matthew E Wand
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK
| | - Paul-Enguerrand Fady
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Matthew J Shepherd
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - J Mark Sutton
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK.
| |
Collapse
|
37
|
Lee HS, Song HS, Lee HJ, Kim SH, Suh MJ, Cho JY, Ham S, Kim YG, Joo HS, Kim W, Lee SH, Yoo D, Bhatia SK, Yang YH. Comparative Study of the Difference in Behavior of the Accessory Gene Regulator (Agr) in USA300 and USA400 Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA). J Microbiol Biotechnol 2021; 31:1060-1068. [PMID: 34226408 PMCID: PMC9705881 DOI: 10.4014/jmb.2104.04032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Community-associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA) is notorious as a leading cause of soft tissue infections. Despite several studies on the Agr regulator, the mechanisms of action of Agr on the virulence factors in different strains are still unknown. To reveal the role of Agr in different CA-MRSA, we investigated the LACΔagr mutant and the MW2Δagr mutant by comparing LAC (USA300), MW2 (USA400), and Δagr mutants. The changes of Δagr mutants in sensitivity to oxacillin and several virulence factors such as biofilm formation, pigmentation, motility, and membrane properties were monitored. LACΔagr and MW2Δagr mutants showed different oxacillin sensitivity and biofilm formation compared to the LAC and MW2 strains. Regardless of the strain, the motility was reduced in Δagr mutants. And there was an increase in the long chain fatty acid in phospholipid fatty acid composition of Δagr mutants. Other properties such as biofilm formation, pigmentation, motility, and membrane properties were different in both Δagr mutants. The Agr regulator may have a common role like the control of motility and straindependent roles such as antibiotic resistance, biofilm formation, change of membrane, and pigment production. It does not seem easy to control all MRSA by targeting the Agr regulator only as it showed strain-dependent behaviors.
Collapse
Affiliation(s)
- Hye Soo Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 07040, Republic of Korea
| | - Hwang-Soo Joo
- Department of Biotechnology, College of Engineering, Duksung Women’s University, Seoul 01369, Republic of Korea
| | - Wooseong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Dongwon Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors S.K. Bhatia Phone: +82-2-450-3936 Fax: + 82-2-3437-8360 E-mail:
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea,
Y.-H. Yang E-mail:
| |
Collapse
|
38
|
Fluorescence Polarization (FP) Assay for Measuring Staphylococcus aureus Membrane Fluidity. Methods Mol Biol 2021; 2341:55-68. [PMID: 34264461 DOI: 10.1007/978-1-0716-1550-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Fluorescence polarization is a method to determine membrane fluidity using a hydrophobic fluorescent dye that intercalates into the fatty acid bilayer. A spectrofluorometer is used to polarize UV light as a vertical excitation beam which passes through the dye-labeled membrane where the dye fluoresces. The beams perpendicular and horizontal to the excitation light are then collected and analyzed. Membrane structural properties are largely due to the packing of the fatty acids in the lipid bilayer that determines the membrane biophysical parameters. Staphylococcus aureus contains straight-chain (SCFAs) and branched-chain (BCFAs) fatty acids in the membrane and alters the proportion of membrane fluidizing BCFAs and stabilizing SCFAs as a response to a variety of stresses. Herein, we describe a method for determination of membrane fluidity in S. aureus using diphenylhexatriene, one of the most used fluorescent dyes for this purpose.
Collapse
|
39
|
Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus. Biomed Pharmacother 2021; 141:111933. [PMID: 34328107 DOI: 10.1016/j.biopha.2021.111933] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/20/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a leading pathogen responsible for mild to severe invasive infections in humans. Especially, methicillin resistant Staphylococcus aureus (MRSA) is prevalent in hospital and community associated infections. Staphyloxanthin is a golden yellow color eponymous pigment produced by S. aureus and provides resistance to reactive oxygen species (ROS) and host neutrophil-based killing. In addition, this membrane pigment contributes to membrane rigidity and helps MRSA to survive under stress conditions. Targeting virulence of pathogen without exerting selection pressure is the recent approach to fight bacterial infections without developing drug resistance. The present study for the first time evaluated the staphyloxanthin inhibitory potential of thymol against MRSA. Qualitative and quantitative analyses demonstrated 90% of staphyloxanthin inhibition at 100 µg/mL concentration of thymol without alteration in growth. Molecular docking analysis and in vitro measurement of metabolic intermediates of staphyloxanthin revealed that thymol could possibly interact with CrtM to inhibit staphyloxanthin. Absorbance and infra red spectra further validated the inhibition of staphyloxanthin by thymol. In addition, thymol treatment significantly reduced the resistance of MRSA to ROS and neutrophil-based killing as exhibited by oxidant susceptibility assays and ex vivo innate immune clearance assay using human whole blood and neutrophils. Further, reduction in staphyloxanthin by thymol treatment increased the membrane fluidity and made MRSA cells more susceptible to membrane targeting antibiotic polymyxin B. Especially, thymol was found to be non-cytotoxic to human peripheral blood mononuclear cells. Our study validated the antivirulence potential of thymol against MRSA by inhibiting staphyloxanthin and suggests the prospective therapeutic role of thymol to combat MRSA infections.
Collapse
|
40
|
Luchini A, Cavasso D, Radulescu A, D'Errico G, Paduano L, Vitiello G. Structural Organization of Cardiolipin-Containing Vesicles as Models of the Bacterial Cytoplasmic Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8508-8516. [PMID: 34213914 DOI: 10.1021/acs.langmuir.1c00981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The bacterial cytoplasmic membrane is the innermost bacterial membrane and is mainly composed of three different phospholipid species, i.e., phosphoethanolamine (PE), phosphoglycerol (PG), and cardiolipin (CL). In particular, PG and CL are responsible for the negative charge of the membrane and are often the targets of cationic antimicrobial agents. The growing resistance of bacteria toward the available antibiotics requires the development of new and more efficient antibacterial drugs. In this context, studying the physicochemical properties of the bacterial cytoplasmic membrane is pivotal for understanding drug-membrane interactions at the molecular level as well as for designing drug-testing platforms. Here, we discuss the preparation and characterization of PE/PG/CL vesicle suspensions, which contain all of the main lipid components of the bacterial cytoplasmic membrane. The vesicle suspensions were characterized by means of small-angle neutron scattering, dynamic light scattering, and electron paramagnetic spectroscopy. By combining solution scattering and spectroscopy techniques, we propose a detailed description of the impact of different CL concentrations on the structure and dynamics of the PE/PG bilayer. CL induces the formation of thicker bilayers, which exhibit higher curvature and are overall more fluid. The experimental results contribute to shed light on the structure and dynamics of relevant model systems of the bacterial cytoplasmic membrane.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Domenico Cavasso
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Gerardino D'Errico
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Luigi Paduano
- Department of Chemical Science, University of Naples Federico II, Complesso di Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, Via della Lastruccia 3, 50019 Sesto Fiorentino FI, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
41
|
Menaquinone-mediated regulation of membrane fluidity is relevant for fitness of Listeria monocytogenes. Arch Microbiol 2021; 203:3353-3360. [PMID: 33871675 PMCID: PMC8289781 DOI: 10.1007/s00203-021-02322-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/02/2022]
Abstract
Listeria monocytogenes is a food-borne pathogen with the ability to grow at low temperatures down to − 0.4 °C. Maintaining cytoplasmic membrane fluidity by changing the lipid membrane composition is important during growth at low temperatures. In Listeria monocytogenes, the dominant adaptation effect is the fluidization of the membrane by shortening of fatty acid chain length. In some strains, however, an additional response is the increase in menaquinone content during growth at low temperatures. The increase of this neutral lipid leads to fluidization of the membrane and thus represents a mechanism that is complementary to the fatty acid-mediated modification of membrane fluidity. This study demonstrated that the reduction of menaquinone content for Listeria monocytogenes strains resulted in significantly lower resistance to temperature stress and lower growth rates compared to unaffected control cultures after growth at 6 °C. Menaquinone content was reduced by supplementation with aromatic amino acids, which led to a feedback inhibition of the menaquinone synthesis. Menaquinone-reduced Listeria monocytogenes strains showed reduced bacterial cell fitness. This confirmed the adaptive function of menaquinones for growth at low temperatures of this pathogen.
Collapse
|
42
|
Santoscoy MC, Jarboe LR. A systematic framework for using membrane metrics for strain engineering. Metab Eng 2021; 66:98-113. [PMID: 33813035 DOI: 10.1016/j.ymben.2021.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/20/2022]
Abstract
The cell membrane plays a central role in the fitness and performance of microbial cell factories and therefore it is an attractive engineering target. The goal of this work is to develop a systematic framework for identifying membrane features for use as engineering targets. The metrics that describe the composition of the membrane can be visualized as "knobs" that modulate various "outcomes", such as physical properties of the membrane and metabolic activity in the form of growth and productivity, with these relationships varying depending on the condition. We generated a set of strains with altered membrane lipid composition via expression of des, fabA and fabB and performed a rigorous characterization of these knobs and outcomes across several individual inhibitory conditions. Here, the knobs are the relative abundance of unsaturated lipids and lipids containing cyclic rings; the average lipid length, and the ratio of linear and non-linear lipids (L/nL ratio). The outcomes are membrane permeability, hydrophobicity, fluidity, and specific growth rate. This characterization identified significant correlations between knobs and outcomes that were specific to individual inhibitors, but also were significant across all tested conditions. For example, across all conditions, the L/nL ratio is positively correlated with the cell surface hydrophobicity, and the average lipid length is positively correlated with specific growth rate. A subsequent analysis of the data with the individual inhibitors identified pairs of lipid metrics and membrane properties that were predicted to impact cell growth in seven modeled scenarios with two or more inhibitors. The L/nL ratio and the membrane hydrophobicity were predicted to impact cell growth with the highest frequency. We experimentally validated this prediction in the combined condition of 42 °C, 2.5 mM furfural and 2% v/v ethanol in minimal media. Membrane hydrophobicity was confirmed to be a significant predictor of ethanol production. This work demonstrates that membrane physical properties can be used to predict the performance of biocatalysts in single and multiple inhibitory conditions, and possibly as an engineering target. In this manner, membrane properties can possibly be used as screening or selection metrics for library- or evolution-based strain engineering.
Collapse
Affiliation(s)
- Miguel C Santoscoy
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
43
|
Wu C, Wang Z, Wang X, Zou J, Wu Z, Liu J, Zhang W. Morphology/Interstitial Fluid Pressure-Tunable Nanopomegranate Designed by Alteration of Membrane Fluidity under Tumor Enzyme and PEGylation. Mol Pharm 2021; 18:2039-2052. [PMID: 33769816 DOI: 10.1021/acs.molpharmaceut.1c00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up to now, insufficient drug accumulation in tumor remains a major challenge for nanochemotherapy. However, the spherical nanocarriers with large diameter, which are beneficial for blood circulation and tumor extravasation, cannot travel deep in a tumor. Additionally, high tumor interstitial fluid pressure (IFP) in the tumor microenvironment may promote the efflux of the penetrable nanodrugs. Therefore, the size and shape of nanocarriers as well as the tumoral IFP can be regulated synchronously for improved tumor penetration and combined chemotherapy. Herein, a novel dual-functional polymer-polypeptide (Biotin-PEG2000-GKGPRQITITK) for both verified tumor targeting and responsiveness was synthesized to construct the "peel" of nanopomegranate-like nanovectors (DI-MPL), in which docetaxel-loaded micelles was encapsulated as "seeds". Interestingly, DI-MPL was endowed multi-abilities of tunable size/shape switch and controlled release of IFP alleviator imatinib (IM), which were developed with one and the same strategy-alteration of membrane fluidity under the cleavage of polymer-polypeptide and PEGylation. As a result, the peel of DI-MPL could turn into small pieces with the seed scattered out in response to matrix metalloproteinase-9 (MMP-9), making nanopomegranate (180 nm) switch into spheres/disks (40 nm), during which IM is released to reduce IFP synchronously. With prominent tumor penetration ability in both multicellular tumor spheroids (MCTS) and tumor tissue, DI-MPL exhibited optimal inhibition of MCTS growth and the enhanced chemotherapy in comparison to other preparations. Meanwhile, the improved penetrability of DI-MPL in tumor tissue was found to be related to the reduced IFP, which is achieved via inhibiting expression of phosphorylated platelet-derived growth factor receptor-β (p-PDGFR-β) by IM. Altogether, the bilateral adjusting strategies from nanocarrier size/shape and tumoral IFP with a single enzyme-responsive material could provide a potential combined chemotherapy to improve tumor penetration.
Collapse
Affiliation(s)
- Chenchen Wu
- School of Pharmacy, China Pharmaceutical University, No. 639, Longmian Road, Nanjing 210009, PR China
| | - Zhiyu Wang
- School of Pharmacy, China Pharmaceutical University, No. 639, Longmian Road, Nanjing 210009, PR China
| | - Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, No. 639, Longmian Road, Nanjing 210009, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, No. 639, Longmian Road, Nanjing 210009, PR China
| | - Zimei Wu
- School of Pharmacy, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jianping Liu
- School of Pharmacy, China Pharmaceutical University, No. 639, Longmian Road, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, No. 639, Longmian Road, Nanjing 210009, PR China
| |
Collapse
|
44
|
Yang H, Zhang L, Li J, Jin Y, Zou J, Huang J, Zhou R, Huang M, Wu C. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus. Food Res Int 2021; 140:110005. [PMID: 33648238 DOI: 10.1016/j.foodres.2020.110005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
Cross protection is a widely existed phenomenon in microorganisms which subjected to a mild stress develop tolerance to other stresses, yet the underlying mechanisms for this protection have not been fully elucidated. Here, we report that heat preadaptation induced cross protection against acid stress in Tetragenococcus halophilus, and the cross protective mechanisms were revealed based on cell surface characterizations and transcriptomic analysis. The results showed that heat preadaptation of T. halophilus at 45 °C for 1.5 h improved the acid tolerance of cells at pH 2.5, and the preadapted cells exhibited higher pHi compared with the un-preadapted cells during acid stress. Analysis of the cell surface properties suggested that the heat-treated cells displayed smoother surface, lower roughness and higher integrity than those of untreated cells. Meanwhile, the distributions of membrane fatty acids also changed in response to acid stress, and the treated cells reveled lower ratio of unsaturated to saturated fatty acids. RNA-Sequencing was employed to further elucidate the cross protective mechanism induced by heat preadaptation, and the results showed that the differentially expressed genes (DGEs) were mainly involved in cellular metabolism and membrane transport during heat preadaptation. A detailed analysis of gene expression profile of cells between heat treated and untreated revealed that genes associated with energy metabolism, amino acid metabolism and genetic information processing were induced upon heat stress. Results presented in this study may broaden our understanding on cross protection and provide a potential strategy to enhance the performance of cells during industrial processes.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liang Zhang
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Jinsong Li
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
45
|
Membrane properties of amacrocyclic tetraether bisphosphatidylcholine lipid: Effect of a single membrane-spanning polymethylene cross-linkage between two head groups of ditetradecylphosphatidylcholine membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183569. [PMID: 33549531 DOI: 10.1016/j.bbamem.2021.183569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
The plasma membranes of archaea are abundant in macrocyclic tetraether lipids that contain a single or double long transmembrane hydrocarbon chains connecting the two glycerol backbones at both ends. In this study, a novel amacrocyclic bisphosphatidylcholine lipid bearing a single membrane-spanning octacosamethylene chain, 1,1'-O-octacosamethylene-2,2'-di-O-tetradecyl-bis-(sn-glycero)-3,3'-diphosphocholine (AC-(di-O-C14PC)2), was synthesized to elucidate effects of the interlayer cross-linkage on membrane properties based on comparison with its corresponding diether phosphatidylcholine, 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC), that forms bilayer membrane. Several physicochemical techniques demonstrated that while AC-(di-O-C14PC)2 monolayer, which adopts a particularly high-ordered structure in the gel phase, shows remarkably high thermotropic transition temperature compared to DTPC bilayer, the fluidity of both phospholipids above the transition temperature is comparable. Nonetheless, the fluorescent dye leakage from inside the AC-(di-O-C14PC)2 vesicles in the fluid phase is highly suppressed. The origin of the membrane properties characteristic of AC-(di-O-C14PC)2 monolayer is discussed in terms of the single long transmembrane hydrophobic linkage and the diffusional motion of the lipid molecules.
Collapse
|
46
|
Effects of a Δ-9-fatty acid desaturase and a cyclopropane-fatty acid synthase from the novel psychrophile Pseudomonas sp. B14-6 on bacterial membrane properties. J Ind Microbiol Biotechnol 2020; 47:1045-1057. [PMID: 33259029 DOI: 10.1007/s10295-020-02333-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Psychrophilic bacteria, living at low and mild temperatures, can contribute significantly to our understanding of microbial responses to temperature, markedly occurring in the bacterial membrane. Here, a newly isolated strain, Pseudomonas sp. B14-6, was found to dynamically change its unsaturated fatty acid and cyclic fatty acid content depending on temperature which was revealed by phospholipid fatty acid (PLFA) analysis. Genome sequencing yielded the sequences of the genes Δ-9-fatty acid desaturase (desA) and cyclopropane-fatty acid-acyl-phospholipid synthase (cfa). Overexpression of desA in Escherichia coli led to an increase in the levels of unsaturated fatty acids, resulting in decreased membrane hydrophobicity and increased fluidity. Cfa proteins from different species were all found to promote bacterial growth, despite their sequence diversity. In conclusion, PLFA analysis and genome sequencing unraveled the temperature-related behavior of Pseudomonas sp. B14-6 and the functions of two membrane-related enzymes. Our results shed new light on temperature-dependent microbial behaviors and might allow to predict the consequences of global warming on microbial communities.
Collapse
|
47
|
|
48
|
Zang H, Dai Y, Sun Y, Jia T, Song Q, Li X, Jiang X, Sui D, Han Z, Li D, Hou N. Mechanism of the biodemulsifier-enhanced biodegradation of phenanthrene by Achromobacter sp. LH-1. Colloids Surf B Biointerfaces 2020; 195:111253. [DOI: 10.1016/j.colsurfb.2020.111253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
|
49
|
Characterization of the biosorption of fast black azo dye K salt by the bacterium Rhodopseudomonas palustris 51ATA strain. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
The molecular dynamics of bacterial spore and the role of calcium dipicolinate in core properties at the sub-nanosecond time-scale. Sci Rep 2020; 10:8265. [PMID: 32427943 PMCID: PMC7237433 DOI: 10.1038/s41598-020-65093-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022] Open
Abstract
Bacterial spores are among the most resistant forms of life on Earth. Their exceptional resistance properties rely on various strategies, among them the core singular structure, organization and hydration. By using elastic incoherent neutron scattering, we probed the dynamics of Bacillus subtilis spores to determine whether core macromolecular motions at the sub-nanosecond timescale could also contribute to their resistance to physical stresses. In addition, in order to better specify the role of the various spore components, we used different mutants lacking essential structure such as the coat (PS4150 mutant), or the calcium dipicolinic acid complex (CaDPA) located in the core (FB122 mutant). PS4150 allows to better probe the core’s dynamics, as proteins of the coat represent an important part of spore proteins, and FB122 gives information about the role of the large CaDPA depot for the mobility of core’s components. We show that core’s macromolecular mobility is not particularly constrained at the sub-nanosecond timescale in spite of its low water content as some dynamical characteristics as force constants are very close to those of vegetative bacteria such as Escherichia coli or to those of fully hydrated proteins. Although the force constants of the coatless mutant are similar to the wild-type’s ones, it has lower mean square displacements (MSDs) at high Q showing that core macromolecules are somewhat more constrained than the rest of spore components. However, no behavior reflecting the glassy state regularly evoked in the literature could be drawn from our data. As hydration and macromolecules’ mobility are highly correlated, the previous assumption, that core low water content might explain spores’ exceptional resistance properties seems unlikely. Thus, we confirm recent theories, suggesting that core water is mostly as free as bulk water and proteins/macromolecules are fully hydrated. The germination of spores leads to a much less stable system with a force constant of 0.1 N/m and MSDs ~2.5 times higher at low Q than in the dormant state. DPA has also an influence on core mobility with a slightly lower force constant for the DPA-less mutant than for the wild-type, and MSDs that are ~ 1.8 times higher on average than for the wild-type at low Q. At high Q, germinated and DPA-less spores were very similar to the wild-type ones, showing that DPA and core compact structure might influence large amplitude motions rather than local dynamics of macromolecules.
Collapse
|