1
|
Bodin R, Seewooruttun C, Corona A, Delanaud S, Pelletier A, Villégier AS. Sex-dependent impact of perinatal 5G electromagnetic field exposure in the adolescent rat behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113704-113717. [PMID: 37851267 DOI: 10.1007/s11356-023-30256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
The fifth generation (5G) network is currently being worldwide spread out, raising questions about the potential impact of this new technology, particularly on immature organisms. The current study aimed to investigate the effects of daily 5G electromagnetic field (EMF) perinatal exposure on the neurodevelopment of rats. The exposure level was set to the limit of whole-body public exposure defined by the International Commission on Non-Ionizing Radiation Protection. The mother rat specific absorption rate (SAR) was 0.07 W/kg for 22 h/day at 3500 MHz continuous wave from gestational day (GD) 8 to post-natal day (PND) 21. Clinical observations were performed on weight, length, sex ratio, number of pups per litter, and number of stillborn in sham and EMF-exposed groups (n = 7). The age of pinna ear detachment, incisor eruption, and eye opening were recorded. Behavior was assessed on righting, gripping, and negative geotaxis reflexes at PND 3 or 7 and on stereotyped and horizontal movements in the open field at PND 43. Our results indicated that both male and female pups showed delayed incisor eruption in the EMF-exposed group compared to the sham group (+ 1 day). Regarding activity in the open field, adolescent females showed less stereotyped movements (- 70%), while adolescent males showed more stereotyped movements (+ 50%) compared to the sham-exposed adolescent rats. Thus, the present study suggested that perinatal exposure to 5G at SAR level below reglementary threshold led to perturbations in the descendants seen in juveniles and adolescents.
Collapse
Affiliation(s)
- Raphaël Bodin
- PERITOX Laboratory (UMR_I 01), INERIS, MIV/TEAM, Verneuil-en-Halatte, France
| | | | - Aurélie Corona
- University of Picardie Jules Verne, CURS, Amiens, France
| | | | | | | |
Collapse
|
2
|
Cantürk Tan F, Yalçin B, Yay AH, Tan B, Yeğin K, Daşdağ S. Effects of pre and postnatal 2450 MHz continuous wave (CW) radiofrequency radiation on thymus: Four generation exposure. Electromagn Biol Med 2022; 41:315-324. [PMID: 35635232 DOI: 10.1080/15368378.2022.2079673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study aims to investigate the effects of pre- and postnatal 2450 MHz continuous wave (CW) radiofrequency radiation (RFR) on the thymus of rats spanning four generations. Four groups; sham, irradiated female, irradiated male, irradiated male and female, each consisting of four rats (one male and three females), were created. During the experiment, rats in the exposure groups were whole-body exposed to 2450 MHz CW-RFR for 12 h/day. Irradiation started one month before the fertilization in the experimental group. When the offspring were two months old, four rats, one male and three female, were allocated for the second-generation study. The remaining offspring were sacrificed under general anesthesia, and their thymuses were removed. The same procedure was applied to the next generation. Two months after the second generation gave birth, third-generation rats were decapitated, and their thymuses were removed. In all groups, cortex, medulla and resident cells could be clearly distinguished in the second and third generations. No differences were observed between the control and two experimental groups, defined as irradiated female and irradiated male. In contrast, vascularization was observed in the thymus of the fourth-generation offspring of the group where both males and females were irradiated. The number of offspring and mass of all rats decreased in the third-generation group. Pre-and postnatal 2450 MHz continuous wave radiofrequency radiation exposure may potentially affect the thymus of future generations.
Collapse
Affiliation(s)
| | - Betül Yalçin
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Arzu Hanım Yay
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | - Korkut Yeğin
- Department of Electrical and Electronics Engineering, Ege University, İzmir, Turkey
| | - Süleyman Daşdağ
- Department of Biophysics, İstanbul Medeniyet University, İstanbul, Turkey
| |
Collapse
|
3
|
Biological Effects of Non-Ionizing Electromagnetic Fields at 27 GHz on Sperm Quality of Mytilus galloprovincialis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10040521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, an increasing use of wireless internet technologies has been demonstrated. The devices which use these technologies emit in new spectral regions an electromagnetic radiation (EMF) which could interact with the male reproductive system. The aim of this study was to investigate in vitro the effect of electromagnetic fields at 27 GHz on sperm quality in Mytilus galloprovincialis. Sperm samples were collected from sexually mature males of M. galloprovincialis and placed in seawater. Once we evaluated the number and quality of spermatozoa, sperm cells were exposed to electromagnetic fields radiated by a pyramidal horn antenna. The effect of exposure was evaluated after 10, 20, 30, 40 and 60 min by a light microscope and using an Eosin test. Ten replications were performed for each time series, and statistical analysis was carried out by t-test. Sperm motility decreased after 10 min of exposure, and after 30 min most of the spermatozoa were immobile and not vital. This study provides useful data on the potential ecological impact of the high-band 5G on animal fertility, the effect of which is currently under investigation.
Collapse
|
4
|
Yao C, Zhao L, Peng R. The biological effects of electromagnetic exposure on immune cells and potential mechanisms. Electromagn Biol Med 2021; 41:108-117. [PMID: 34753364 DOI: 10.1080/15368378.2021.2001651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Anxiety about potential health hazards of electromagnetic exposure has been growing in the past decades, with their widely application in many fields. The immune system plays pivotal role in maintaining body's homeostasis. Importantly, immune system is also a sensitive target for electromagnetic fields. In recent years, the biological effects of electromagnetic fields on immune cells have been attracting more and more attentions. Accumulated data suggested that electromagnetic exposure could affect the number and function of immune cells to some extent, including cell proportion, cell cycle, apoptosis, killing activity, cytokines contents and so on. The research objects basically covered all types of immune cells, mainly on PBMC, T lymphocytes, B lymphocytes, NK cells and macrophages. Meanwhile, there also are negative reports of electromagnetic fields on immune cells. This article reviews the results of epidemiological investigation, the progresses in animal studies and in vitro experiments, and the current attempts to explore potential mechanisms. Knowledge of the biological effects on immune cells associated with electromagnetic fields is critical for proper health hazard evaluation, development of safety standards, and safe exploitation of new electromagnetic devices and applications.
Collapse
Affiliation(s)
- Chuanfu Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| |
Collapse
|
5
|
Broom KA, Findlay R, Addison DS, Goiceanu C, Sienkiewicz Z. Early-Life Exposure to Pulsed LTE Radiofrequency Fields Causes Persistent Changes in Activity and Behavior in C57BL/6 J Mice. Bioelectromagnetics 2019; 40:498-511. [PMID: 31522469 PMCID: PMC6790696 DOI: 10.1002/bem.22217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022]
Abstract
Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early-life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole-body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham-exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low-level RF fields in early life may have a persistent and long-term effect on adult behavior. Bioelectromagnetics. 2019;40:498-511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kerry A. Broom
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| | - Richard Findlay
- Physics Group, EMFcomp LimitedHarwell CampusHarwellOxfordshireUK
| | - Darren S. Addison
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| | - Cristian Goiceanu
- Department of Environmental Health, National Institute of Public HealthRegional Center IasiIasiRomania
| | - Zenon Sienkiewicz
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| |
Collapse
|
6
|
Hidisoglu E, Kantar-Gok D, Ozen S, Yargicoglu P. Short-term 2.1 GHz radiofrequency radiation treatment induces significant changes on the auditory evoked potentials in adult rats. Int J Radiat Biol 2018; 94:858-871. [DOI: 10.1080/09553002.2018.1492166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Enis Hidisoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar-Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Sukru Ozen
- Engineering Faculty, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Piraye Yargicoglu
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
7
|
Doyon P, Johansson O. Electromagnetic fields may act via calcineurin inhibition to suppress immunity, thereby increasing risk for opportunistic infection: Conceivable mechanisms of action. Med Hypotheses 2017; 106:71-87. [PMID: 28818275 DOI: 10.1016/j.mehy.2017.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
|
8
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
9
|
Mina D, Sagonas K, Fragopoulou AF, Pafilis P, Skouroliakou A, Margaritis LH, Tsitsilonis OE, Valakos ED. Immune responses of a wall lizard to whole-body exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 2016; 92:162-8. [PMID: 26853383 DOI: 10.3109/09553002.2016.1135262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE During the last three decades, the number of devices that emit non-ionizing electromagnetic radiation (EMR) at the wireless communication spectrum has rapidly increased and possible effects on living organisms have become a major concern. The purpose of this study was to investigate the effects of radiofrequency EMR emitted by a widely used wireless communication device, namely the Digital Enhanced Communication Telephony (DECT) base, on the immune responses of the Aegean wall lizard (Podarcis erhardii). MATERIALS AND METHODS Adult male lizards were exposed 24 h/day for 8 weeks to 1880-1900 MHz DECT base radiation at average electric field intensity of 3.2 V/m. Immune reactivity was assessed using the phytohemagglutinin (PHA) skin swelling and mixed lymphocyte reaction (MLR) tests. RESULTS Our results revealed a noticeable suppression (approximately 45%) of inflammatory responses in EMR-exposed lizards compared to sham-exposed animals. T cell-mediated responses were marginally affected. CONCLUSION Daily radiofrequency EMR exposure seems to affect, at least partially, the immunocompetence of the Aegean wall lizard.
Collapse
Affiliation(s)
- Despoina Mina
- a Department of Cell Biology and Biophysics, Faculty of Biology , University of Athens , Athens , Greece ;,b Department of Animal and Human Physiology, Faculty of Biology , University of Athens , Athens , Greece
| | - Kostas Sagonas
- b Department of Animal and Human Physiology, Faculty of Biology , University of Athens , Athens , Greece
| | - Adamantia F Fragopoulou
- a Department of Cell Biology and Biophysics, Faculty of Biology , University of Athens , Athens , Greece
| | - Panayiotis Pafilis
- c Department of Zoology and Marine Biology, Faculty of Biology , University of Athens , Athens , Greece
| | - Aikaterini Skouroliakou
- d Department of Energy Technology Engineering , Technological Educational Institute of Athens , Athens , Greece
| | - Lukas H Margaritis
- a Department of Cell Biology and Biophysics, Faculty of Biology , University of Athens , Athens , Greece
| | - Ourania E Tsitsilonis
- b Department of Animal and Human Physiology, Faculty of Biology , University of Athens , Athens , Greece
| | - Efstratios D Valakos
- b Department of Animal and Human Physiology, Faculty of Biology , University of Athens , Athens , Greece
| |
Collapse
|
10
|
Rosado MM, Nasta F, Prisco MG, Lovisolo GA, Marino C, Pioli C. Effects of GSM-modulated 900 MHz radiofrequency electromagnetic fields on the hematopoietic potential of mouse bone marrow cells. Bioelectromagnetics 2014; 35:559-67. [PMID: 25256206 DOI: 10.1002/bem.21880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 07/29/2014] [Indexed: 11/09/2022]
Abstract
Studies describing the influence of radiofrequency electromagnetic fields on bone marrow cells (BMC) often lack functional data. We examined the effects of in vivo exposure to a Global System for Mobile Communications (GSM) modulated 900 MHz RF fields on BMC using two transplantation models. X-irradiated syngeneic mice were injected with BMC from either RF-field-exposed, sham-exposed or cage control mice. Twelve weeks after transplantation, no differences in thymocyte number, frequency of subpopulations and cell proliferation were found in mice receiving BMC from either group. Also, in the spleen cell number, percentages of B/T cells, B/T-cell proliferation, and interferon γ (IFN-γ) production were similar in all groups. In parallel, a mixture of BMC from congenic sham- and RF-exposed mice were co-transplanted into lymphopenic Rag2 deficient mice. BMC from RF-exposed and sham-exposed mice displayed no advantage or disadvantage when competing for the replenishment of lymphatic organs with mature lymphocytes in Rag2 deficient mice. This model revealed that BMC from sham-exposed and RF-exposed mice were less efficient than BMC from cage control mice in repopulating the thymus, an effect likely due to restraint stress. In conclusion, our results showed no effects of in vivo exposure to GSM-modulated RF-fields on the ability of bone marrow (BM) precursors to long-term reconstitute peripheral T and B cell compartments.
Collapse
|
11
|
|
12
|
Laudisi F, Sambucci M, Nasta F, Pinto R, Lodato R, Altavista P, Lovisolo GA, Marino C, Pioli C. Prenatal exposure to radiofrequencies: Effects of WiFi signals on thymocyte development and peripheral T cell compartment in an animal model. Bioelectromagnetics 2012; 33:652-61. [DOI: 10.1002/bem.21733] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/12/2012] [Indexed: 11/10/2022]
|