1
|
Abouzaid A, Ali K, Jatoi S, Ahmed M, Ahmad G, Nazim A, Mehmoodi A, Malik J. Cardiac Arrhythmias in Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension: Mechanistic Insights, Pathophysiology, and Outcomes. Ann Noninvasive Electrocardiol 2024; 29:e70010. [PMID: 39205610 PMCID: PMC11358588 DOI: 10.1111/anec.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Arrhythmias are increasingly recognized as severe complications of precapillary pulmonary hypertension, encompassing pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Despite their significant contribution to symptoms, morbidity, in-hospital mortality, and potentially sudden death in PAH/CTEPH, there remains a lack of comprehensive data on epidemiology, pathophysiology, and outcomes to inform the management of these patients. This review provides an overview of the latest evidence on this subject, spanning from the molecular mechanisms underlying arrhythmias in the hypertrophied or failing right heart to the clinical aspects of epidemiology, diagnosis, and treatment.
Collapse
Affiliation(s)
| | - Khansa Ali
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Suniya Jatoi
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Mansoor Ahmed
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Gulfam Ahmad
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Ahsan Nazim
- Department of MedicineLiaquat University of Medical and Health SciencesJamshoroPakistan
| | - Amin Mehmoodi
- Department of MedicineIbn e Seena HospitalKabulAfghanistan
| | - Jahanzeb Malik
- Department of CardiologyCardiovascular Analytics GroupIslamabadPakistan
| |
Collapse
|
2
|
He Y, Sun Z, He X, Mi Y. AFM is used to study the biophysics of hypertension-induced tachyarrhythmia. Microsc Res Tech 2023; 86:1099-1107. [PMID: 37422907 DOI: 10.1002/jemt.24365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Patients with long-lasting hypertension often suffer from atrial or ventricular arrhythmias. Evidence suggests that mechanical stimulation can change the refractory period and dispersion of the ventricular myocyte action potential through stretch-activated ion channels (SACs) and influence cellular calcium transients, thus increasing susceptibility to ventricular arrhythmias. However, the specific pathogenesis of hypertension-induced arrhythmias is unknown. In this study, through clinical data, we found that a short-term increase in blood pressure leads to a rise in tachyarrhythmias in patients with clinical hypertension. We investigated the mechanism of this phenomenon using a combined imaging system(AC) of atomic force microscopy (AFM) and laser scanning confocal microscopy. After mechanical distraction to stimulate ventricular myocytes isolated from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), we synchronously monitored cardiomyocyte stiffness and intracellular calcium changes. This method can reasonably simulate cardiomyocytes' mechanics and ion changes when blood pressure rises rapidly. Our results indicated that the stiffness value of cardiomyocytes in SHR was significantly more extensive than that of normal controls, and cardiomyocytes were more sensitive to mechanical stress; In addition, intracellular calcium increased rapidly and briefly in rats with spontaneous hypertension. After intervention with streptomycin, a SAC blocker, ventricular myocytes are significantly less sensitive to mechanical stimuli. Thus, SAC is involved in developing and maintaining ventricular arrhythmias induced by hypertension. The increased stiffness of ventricular myocytes caused by hypertension leads to hypersensitivity of cellular calcium flow to mechanical stimuli is one of the mechanisms that cause arrhythmias. The AC system is a new research method to study the mechanical properties of cardiomyocytes. This study provides new techniques and ideas for developing new anti-arrhythmic drugs. HIGHLIGHT: The mechanism of hypertension-induced tachyarrhythmia is not precise. Through this study, it is found that the biophysical properties of myocardial abnormalities, the myocardium is excessively sensitive to mechanical stimulation, and the calcium flow appears to transient explosive changes, leading to tachyarrhythmia.
Collapse
Affiliation(s)
- Yin He
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhifu Sun
- Otolaryngology head and neck surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaonan He
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yuhong Mi
- Emergency Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Increased Mitochondrial Calcium Fluxes in Hypertrophic Right Ventricular Cardiomyocytes from a Rat Model of Pulmonary Artery Hypertension. Life (Basel) 2023; 13:life13020540. [PMID: 36836897 PMCID: PMC9967871 DOI: 10.3390/life13020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Pulmonary artery hypertension causes right ventricular hypertrophy which rapidly progresses to heart failure with underlying cardiac mitochondrial dysfunction. Prior to failure, there are alterations in cytosolic Ca2+ handling that might impact mitochondrial function in the compensatory phase of RV hypertrophy. Our aims, therefore, were (i) to measure beat-to-beat mitochondrial Ca2+ fluxes, and (ii) to determine mitochondrial abundance and function in non-failing, hypertrophic cardiomyocytes. Male Wistar rats were injected with either saline (CON) or monocrotaline (MCT) to induce pulmonary artery hypertension and RV hypertrophy after four weeks. Cytosolic Ca2+ ([Ca2+]cyto) transients were obtained in isolated right ventricular (RV) cardiomyocytes, and mitochondrial Ca2+ ([Ca2+]mito) was recorded in separate RV cardiomyocytes. The distribution and abundance of key proteins was determined using confocal and stimulated emission depletion (STED) microscopy. The RV mitochondrial function was also assessed in RV homogenates using oxygraphy. The MCT cardiomyocytes had increased area, larger [Ca2+]cyto transients, increased Ca2+ store content, and faster trans-sarcolemmal Ca2+ extrusion relative to CON. The MCT cardiomyocytes also had larger [Ca2+]mito transients. STED images detected increased mitochondrial protein abundance (TOM20 clusters per μm2) in MCT, yet no difference was found when comparing mitochondrial respiration and membrane potential between the groups. We suggest that the larger [Ca2+]mito transients compensate to match ATP supply to the increased energy demands of hypertrophic cardiomyocytes.
Collapse
|
4
|
Hurley M, Kaur S, Walton R, Power A, Haïssaguerre M, Bernus O, Ward ML, White E. Endocardial role in arrhythmias induced by acute ventricular stretch and the involvement of Purkinje fibres, in isolated rat hearts. Curr Res Physiol 2023; 6:100098. [PMID: 36814643 PMCID: PMC9939534 DOI: 10.1016/j.crphys.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether PFs and specifically TRPM4 channels, play a role in these mechanically-induced arrhythmias. Pseudo-ECGs and left ventricular (LV) activation, measured by optical mapping, were recorded in isolated, Langendorff-perfused, rat hearts. The LV endocardial surface was irrigated with experimental agents, via an indwelling catheter. The number and period of ectopic activations was measured during LV lumen inflation via an indwelling fluid-filled balloon (100 μL added over 2 s, maintained for 38 s). Mechanically-induced arrhythmias occurred during balloon inflation: they were multifocal, maximal in the first 5 s and ceased within 20 s. Optical mapping revealed activation patterns indicating PF-mediated and ectopic focal sources. Irrigation of the LV lumen with Lugol solution (IK/I2) for 10s reduced ectopics by 93% (n = 16, P < 0.001); with ablation of endocardial PFs confirmed by histology. Five min irrigation of the LV lumen with 50 μM 9-Phenanthrol, a blocker of TRPM4 channels, reduced ectopics by 39% (n = 15, P < 0.01). Immunohistochemistry confirmed that TRPM4 was more abundant in PFs than myocardium. Our results show that the endocardial surface plays an important role in these mechanically-induced ectopic activations. Ectopic activation patterns indicate a participation of PFs in these arrhythmias, with a potential involvement of TRPM4 channels, shown by the reduction of arrhythmias by 9-Phenanthrol.
Collapse
Affiliation(s)
- Miriam Hurley
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Sarbjot Kaur
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Richard Walton
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France
| | - Amelia Power
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Michel Haïssaguerre
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France,Bordeaux University Hospital (CHU), Electrophysiology and Ablation Unit, Pessac, France
| | - Olivier Bernus
- Université Bordeaux, INSERM Centre de recherche Cardio-Thoracique de Bordeaux, Pessac, Bordeaux, France,IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation, Bordeaux Université, Pessac, Bordeaux, France
| | - Marie-Louise Ward
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ed White
- School of Biomedical Sciences, University of Leeds, Leeds, UK,Corresponding author. Garstang Building, School of Biomedical Sciences, University of Leeds, LS29JT, Leeds, UK.
| |
Collapse
|
5
|
Bechard E, Bride J, Le Guennec JY, Brette F, Demion M. TREK-1 in the heart: Potential physiological and pathophysiological roles. Front Physiol 2022; 13:1095102. [PMID: 36620226 PMCID: PMC9815770 DOI: 10.3389/fphys.2022.1095102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The TREK-1 channel belongs to the TREK subfamily of two-pore domains channels that are activated by stretch and polyunsaturated fatty acids and inactivated by Protein Kinase A phosphorylation. The activation of this potassium channel must induce a hyperpolarization of the resting membrane potential and a shortening of the action potential duration in neurons and cardiac cells, two phenomena being beneficial for these tissues in pathological situations like ischemia-reperfusion. Surprisingly, the physiological role of TREK-1 in cardiac function has never been thoroughly investigated, very likely because of the lack of a specific inhibitor. However, possible roles have been unraveled in pathological situations such as atrial fibrillation worsened by heart failure, right ventricular outflow tract tachycardia or pulmonary arterial hypertension. The inhomogeneous distribution of TREK-1 channel within the heart reinforces the idea that this stretch-activated potassium channel might play a role in cardiac areas where the mechanical constraints are important and need a particular protection afforded by TREK-1. Consequently, the main purpose of this mini review is to discuss the possible role played by TREK -1 in physiological and pathophysiological conditions and its potential role in mechano-electrical feedback. Improved understanding of the role of TREK-1 in the heart may help the development of promising treatments for challenging cardiac diseases.
Collapse
|
6
|
Sabourin J, Beauvais A, Luo R, Montani D, Benitah JP, Masson B, Antigny F. The SOCE Machinery: An Unbalanced Knowledge between Left and Right Ventricular Pathophysiology. Cells 2022; 11:cells11203282. [PMID: 36291148 PMCID: PMC9600889 DOI: 10.3390/cells11203282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Right ventricular failure (RVF) is the most important prognostic factor for morbidity and mortality in pulmonary arterial hypertension (PAH) or pulmonary hypertension (PH) caused by left heart diseases. However, right ventricle (RV) remodeling is understudied and not targeted by specific therapies. This can be partly explained by the lack of basic knowledge of RV remodeling. Since the physiology and hemodynamic function of the RV differ from those of the left ventricle (LV), the mechanisms of LV dysfunction cannot be generalized to that of the RV, albeit a knowledge of these being helpful to understanding RV remodeling and dysfunction. Store-operated Ca2+ entry (SOCE) has recently emerged to participate in the LV cardiomyocyte Ca2+ homeostasis and as a critical player in Ca2+ mishandling in a pathological context. In this paper, we highlight the current knowledge on the SOCE contribution to the LV and RV dysfunctions, as SOCE molecules are present in both compartments. he relative lack of studies on RV dysfunction indicates the necessity of further investigations, a significant challenge over the coming years.
Collapse
Affiliation(s)
- Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| | - Antoine Beauvais
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Rui Luo
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Jean-Pierre Benitah
- Signalisation et Physiopathologie Cardiovasculaire, Inserm, Université Paris-Saclay, UMR-S 1180, 91400 Orsay, France
| | - Bastien Masson
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Antigny
- Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Université Paris-Saclay, Inserm, UMR-S 999, 92350 Le Plessis-Robinson, France
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l’Hypertension Pulmonaire, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
- Correspondence: (J.S.); (F.A.); Tel.: +(33)-180-006-302 (J.S.); +(33)-140-942-299 (F.A.)
| |
Collapse
|
7
|
Li J, Zhang X, Mo Y, Huang T, Rao H, Tan Z, Huang L, Zeng D, Jiang C, Zhong Y, Cai Y, Liang B, Wu J. Urokinase-loaded cyclic RGD-decorated liposome targeted therapy for in-situ thrombus of pulmonary arteriole of pulmonary hypertension. Front Bioeng Biotechnol 2022; 10:1038829. [PMID: 36324896 PMCID: PMC9618629 DOI: 10.3389/fbioe.2022.1038829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 09/07/2024] Open
Abstract
Backgroud: In-situ thrombosis is a significant pathophysiological basis for the development of pulmonary hypertension (PH). However, thrombolytic therapy for in-situ thrombus in PH was often hampered by the apparent side effects and the low bioavailability of common thrombolytic medications. Nanoscale cyclic RGD (cRGD)-decorated liposomes have received much attention thanks to their thrombus-targeting and biodegradability properties. As a result, we synthesized urokinase-loaded cRGD-decorated liposome (UK-cRGD-Liposome) for therapy of in-situ thrombosis as an exploration of pulmonary hypertensive novel therapeutic approaches. Purpose: To evaluate the utilize of UK-cRGD-Liposome for targeted thrombolysis of in-situ thrombus in PH and to explore the potential mechanisms of in-situ thrombus involved in the development of PH. Methods: UK-cRGD-Liposome nanoscale drug delivery system was prepared using combined methods of thin-film hydration and sonication. Induced PH via subcutaneous injection of monocrotaline (MCT). Fibrin staining (modified MSB method) was applied to detect the number of vessels within-situ thrombi in PH. Echocardiography, hematoxylin-eosin (H & E) staining, and Masson's trichrome staining were used to analyze right ventricular (RV) function, pulmonary vascular remodeling, as well as RV remodeling. Results: The number of vessels with in-situ thrombi revealed that UK-cRGD-Liposome could actively target urokinase to in-situ thrombi and release its payload in a controlled manner in the in vivo environment, thereby enhancing the thrombolytic effect of urokinase. Pulmonary artery hemodynamics and echocardiography indicated a dramatical decrease in pulmonary artery pressure and a significant improvement in RV function post targeted thrombolytic therapy. Moreover, pulmonary vascular remodeling and RV remodeling were significantly restricted post targeted thrombolytic therapy. Conclusion: UK-cRGD-Liposome can restrict the progression of PH and improve RV function by targeting the dissolution of pulmonary hypertensive in-situ thrombi, which may provide promising therapeutic approaches for PH.
Collapse
Affiliation(s)
- Jingtao Li
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Zhang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingying Mo
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongtong Huang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huaqing Rao
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenyuan Tan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Decai Zeng
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunlan Jiang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanfen Zhong
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongzhi Cai
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binbin Liang
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ji Wu
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Wu J, Liu T, Shi S, Fan Z, Hiram R, Xiong F, Cui B, Su X, Chang R, Zhang W, Yan M, Tang Y, Huang H, Wu G, Huang C. Dapagliflozin reduces the vulnerability of rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling. Cardiovasc Diabetol 2022; 21:197. [PMID: 36171554 PMCID: PMC9516842 DOI: 10.1186/s12933-022-01614-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
Background Malignant ventricular arrhythmia (VA) is a major contributor to sudden cardiac death (SCD) in patients with pulmonary arterial hypertension (PAH)-induced right heart failure (RHF). Recently, dapagliflozin (DAPA), a sodium/glucose cotransporter-2 inhibitor (SGLT2i), has been found to exhibit cardioprotective effects in patients with left ventricular systolic dysfunction. In this study, we examined the effects of DAPA on VA vulnerability in a rat model of PAH-induced RHF. Methods Rats randomly received monocrotaline (MCT, 60 mg/kg) or vehicle via a single intraperitoneal injection. A day later, MCT-injected rats were randomly treated with placebo, low-dose DAPA (1 mg/kg/day), or high-dose (3 mg/kg/day) DAPA orally for 35 days. Echocardiographic analysis, haemodynamic experiments, and histological assessments were subsequently performed to confirm the presence of PAH-induced RHF. Right ventricle (RV) expression of calcium (Ca2+) handling proteins were detected via Western blotting. RV expression of connexin 43 (Cx43) was determined via immunohistochemical staining. An optical mapping study was performed to assess the electrophysiological characteristics in isolated hearts. Cellular Ca2+ imaging from RV cardiomyocytes (RVCMs) was recorded using Fura-2 AM or Fluo-4 AM. Results High-dose DAPA treatment attenuated RV structural remodelling, improved RV function, alleviated Cx43 remodelling, increased the conduction velocity, restored the expression of key Ca2+ handling proteins, increased the threshold for Ca2+ and action potential duration (APD) alternans, decreased susceptibility to spatially discordant APD alternans and spontaneous Ca2+ events, promoted cellular Ca2+ handling, and reduced VA vulnerability in PAH-induced RHF rats. Low-dose DAPA treatment also showed antiarrhythmic effects in hearts with PAH-induced RHF, although with a lower level of efficacy. Conclusion DAPA administration reduced VA vulnerability in rats with PAH-induced RHF by improving RVCM Ca2+ handling. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01614-5.
Collapse
Affiliation(s)
- Jinchun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Department of Cardiology, Qinghai Provincial People's Hospital, No.2 Gong He Road, Xining, 810007, People's Republic of China
| | - Tao Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Zhixing Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Roddy Hiram
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montreal, QC, Canada
| | - Feng Xiong
- Department of Medicine, Faculty of Medicine, Montreal Heart Institute (MHI), Université de Montréal, Montreal, QC, Canada
| | - Bo Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, No.2 Gong He Road, Xining, 810007, People's Republic of China
| | - Rong Chang
- Department of Cardiology, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, No. 187 Guanlan Road, Longhua District, Shenzhen, 518109, China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Min Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
9
|
Pham T, Tran K, Taberner AJ, Loiselle DS, Han JC. Crossbridge thermodynamics in pulmonary arterial hypertensive right-ventricular failure. J Appl Physiol (1985) 2022; 132:1338-1349. [PMID: 35482327 PMCID: PMC9208464 DOI: 10.1152/japplphysiol.00014.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Right-ventricular (RV) failure is an event consequent to pathological RV hypertrophy commonly resulting from pulmonary arterial hypertension. This pathology is well characterized by RV diastolic dysfunction, impaired ejection, and reduced mechanical efficiency. However, whether the dynamic stiffness and cross-bridge thermodynamics in the failing RV muscles are compromised remains uncertain. Pulmonary arterial hypertension was induced in the rat by injection of monocrotaline, and RV trabeculae were isolated from RV failing rats. Cross-bridge mechano-energetics were characterized by subjecting the trabeculae to two interventions: 1) force-length work-loop contractions over a range of afterloads while measuring heat output, followed by careful partitioning of heat components into activation heat and cross-bridge heat to separately assess mechanical efficiency and cross-bridge efficiency, and 2) sinusoidal-perturbation of muscle length while trabeculae were actively contracting to interrogate cross-bridge dynamic stiffness. We found that reduced mechanical efficiency is correlated with increased passive stress, reduced shortening, and elevated activation heat. In contrast, the thermodynamics, specifically the efficiency of, and the stiffness characteristics of, cross bridges did not differ between the control and failing trabeculae and were not correlated with elevated passive stress or reduced shortening. We thus conclude that, despite diastolic dysfunction and mechanical inefficiency, cross-bridge stiffness and thermodynamics are unaffected in RV failure following pulmonary arterial hypertension. NEW & NOTEWORTHY This study characterizes cross-bridge mechano-energetics and dynamic stiffness of right-ventricular trabeculae isolated from a rat model of pulmonary hypertensive right-ventricular failure. Failing trabeculae showed increased passive force but normal active force. Their lower mechanical efficiency is found to be driven by an increase in the energy expenditure arising from contractile activation. This does not reflect a change in their cross-bridge stiffness and efficiency.
Collapse
Affiliation(s)
- Toan Pham
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Kenneth Tran
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Denis S Loiselle
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.,Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - June-Chiew Han
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
11
|
Strauss B, Bisserier M, Obus E, Katz MG, Fargnoli A, Cacheux M, Akar JG, Hummel JP, Hadri L, Sassi Y, Akar FG. Right predominant electrical remodeling in a pure model of pulmonary hypertension promotes reentrant arrhythmias. Heart Rhythm 2022; 19:113-124. [PMID: 34563688 PMCID: PMC8742785 DOI: 10.1016/j.hrthm.2021.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Electrophysiological (EP) properties have been studied mainly in the monocrotaline model of pulmonary arterial hypertension (PAH). Findings are confounded by major extrapulmonary toxicities, which preclude the ability to draw definitive conclusions regarding the role of PAH per se in EP remodeling. OBJECTIVE The purpose of this study was to investigate the EP substrate and arrhythmic vulnerability of a new model of PAH that avoids extracardiopulmonary toxicities. METHODS Sprague-Dawley rats underwent left pneumonectomy (Pn) followed by injection of the vascular endothelial growth factor inhibitor Sugen-5416 (Su/Pn). Five weeks later, cardiac magnetic resonance imaging was performed in vivo, optical action potential (AP) mapping ex vivo, and molecular analyses in vitro. RESULTS Su/Pn rats exhibited right ventricular (RV) hypertrophy and were highly prone to pacing-induced ventricular tachycardia/fibrillation (VT/VF). Underlying this susceptibility was disproportionate RV-sided prolongation of AP duration, which promoted formation of right-sided AP alternans at physiological rates. While propagation was impaired at all rates in Su/Pn rats, the extent of conduction slowing was most severe immediately before the emergence of interventricular lines of block and onset of VT/VF. Measurement of the cardiac wavelength revealed a decrease in Su/Pn relative to control. Nav1.5 and total connexin 43 expression was not altered, while connexin 43 phosphorylation was decreased in PAH. Col1a1 and Col3a1 transcripts were upregulated coinciding with myocardial fibrosis. Once generated, VT/VF was sustained by multiple reentrant circuits with a lower frequency of RV activation due to wavebreak formation. CONCLUSION In this pure model of PAH, we document RV-predominant remodeling that promotes multiwavelet reentry underlying VT. The Su/Pn model represents a severe form of PAH that allows the study of EP properties without the confounding influence of extrapulmonary toxicity.
Collapse
Affiliation(s)
- Benjamin Strauss
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Emerson Obus
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Michael G. Katz
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Anthony Fargnoli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Marine Cacheux
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| | - Joseph G. Akar
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| | - James P Hummel
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
| | - Yassine Sassi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai
- Center for Vascular and Heart Research, Fralin Biomedical research Institute at Virginia Tech Carilion
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University
| | - Fadi G. Akar
- Electro-biology & Arrhythmia Therapeutics Laboratory, Cardiovascular Research Center, Yale University
| |
Collapse
|
12
|
Silva FDJ, Drummond FR, Fidelis MR, Freitas MO, Leal TF, de Rezende LMT, de Moura AG, Carlo Reis EC, Natali AJ. Continuous Aerobic Exercise Prevents Detrimental Remodeling and Right Heart Myocyte Contraction and Calcium Cycling Dysfunction in Pulmonary Artery Hypertension. J Cardiovasc Pharmacol 2021; 77:69-78. [PMID: 33060546 DOI: 10.1097/fjc.0000000000000928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/21/2020] [Indexed: 11/27/2022]
Abstract
ABSTRACT Pulmonary artery hypertension (PAH) imposes right heart and lung detrimental remodeling which impairs cardiac contractility, physical effort tolerance, and survival. The effects of an early moderate-intensity continuous aerobic exercise training on the right ventricle and lung structure, and on contractility and the calcium (Ca2+) transient in isolated myocytes from rats with severe PAH induced by monocrotaline were analyzed. Rats were divided into control sedentary (CS), control exercise (CE), monocrotaline sedentary (MS), and monocrotaline exercise (ME) groups. Animals from control exercise and ME groups underwent a moderate-intensity aerobic exercise on a treadmill (60 min/d; 60% intensity) for 32 days, after a monocrotaline (60 mg/kg body weight i.p.) or saline injection. The pulmonary artery resistance was higher in MS than in control sedentary (1.36-fold) and was reduced by 39.39% in ME compared with MS. Compared with MS, the ME group presented reduced alveolus (17%) and blood vessel (46%) wall, fibrosis (25.37%) and type I collagen content (55.78%), and increased alveolus (52.96%) and blood vessel (146.97%) lumen. In the right ventricle, the ME group exhibited diminished hypertrophy index (25.53%) and type I collagen content (40.42%) and improved myocyte contraction [ie, reduced times to peak (29.27%) and to 50% relax (13.79%)] and intracellular Ca2+ transient [ie, decreased times to peak (16.06%) and to 50% decay (7.41%)] compared with MS. Thus, early moderate-intensity continuous aerobic exercise prevents detrimental remodeling in the right heart and lung increases in the pulmonary artery resistance and dysfunction in single myocyte contraction and Ca2+ cycling in this model.
Collapse
MESH Headings
- Airway Remodeling
- Animals
- Arterial Pressure
- Calcium Signaling
- Disease Models, Animal
- Exercise Therapy
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Male
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/physiopathology
- Pulmonary Arterial Hypertension/therapy
- Pulmonary Artery/physiopathology
- Rats, Wistar
- Vascular Resistance
- Ventricular Dysfunction, Right/metabolism
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/prevention & control
- Ventricular Function, Right
- Ventricular Remodeling
- Rats
Collapse
Affiliation(s)
| | - Filipe Rios Drummond
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil; and
| | | | | | - Tiago Ferreira Leal
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | - Antônio José Natali
- Department of Physical Education, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
13
|
Benson AP, Stevenson-Cocks HJ, Whittaker DG, White E, Colman MA. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function. Methods 2020; 185:60-81. [PMID: 31988002 DOI: 10.1016/j.ymeth.2020.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Computational models of the heart, from cell-level models, through one-, two- and three-dimensional tissue-level simplifications, to biophysically-detailed three-dimensional models of the ventricles, atria or whole heart, allow the simulation of excitation and propagation of this excitation, and have provided remarkable insight into the normal and pathological functioning of the heart. In this article we present equations for modelling cellular excitation (i.e. the cell action potential) from both a phenomenological and a biophysical perspective. Hodgkin-Huxley formalism is discussed, along with the current generation of biophysically-detailed cardiac cell models. Alternative Markovian formulations for modelling ionic currents are also presented. Equations describing propagation of this cellular excitation, through one-, two- and three-dimensional idealised or realistic tissues, are then presented. For all types of model, from cell to tissue, methods for discretisation and integration of the underlying equations are discussed. The article finishes with a discussion of two tissue-level experimental imaging techniques - diffusion tensor magnetic resonance imaging and optical imaging - that can be used to provide data for parameterisation and validation of cell- and tissue-level cardiac models.
Collapse
Affiliation(s)
- Alan P Benson
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK.
| | | | - Dominic G Whittaker
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK; School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ed White
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK
| | - Michael A Colman
- School of Biomedical Sciences University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Antigny F, Mercier O, Humbert M, Sabourin J. Excitation-contraction coupling and relaxation alteration in right ventricular remodelling caused by pulmonary arterial hypertension. Arch Cardiovasc Dis 2020; 113:70-84. [DOI: 10.1016/j.acvd.2019.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/09/2023]
|
15
|
Response of non-failing hypertrophic rat hearts to prostaglandin F2α. Curr Res Physiol 2019; 2:1-11. [PMID: 34746811 PMCID: PMC8562143 DOI: 10.1016/j.crphys.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 11/21/2022] Open
Abstract
Background Prostaglandin F2α (PGF2α) has a positively inotropic effect on right ventricular (RV) trabeculae from healthy adult rat hearts, and may therefore be therapeutically useful as a non-catecholaminergic inotrope. These provide additional contractile support for the heart without the added energetic demand of increased heart rate, and are also suitable for patients with reduced β adrenergic receptor (β-AR) responsiveness, or impaired mitochondrial energy supply. However, the response of hypertrophied rat hearts to PGF2α has not previously been examined. Our aim was therefore to determine the effect of PGF2α on isolated perfused rat hearts with RV hypertrophy following induction of pulmonary artery hypertension. Methods Male Wistar rats (300 g) were injected with either 60 mg kg−1 of monocrotaline (MCT, n = 10) or sterile saline as control (CON, n = 11). Four weeks post injection; hearts were isolated and Langendorff-perfused in sinus rhythm. Measurement of left ventricular (LV) pressure and the electrocardiogram were made and the response to 0.3 μM PGF2α was determined. Results PGF2α increased LV developed pressure in CON and in 60% MCT hearts, with no change in heart rate. However, 40% of MCT hearts developed arrhythmias during the peak inotropic response. For comparison, the response to 0.03 μM isoproterenol (ISO) was also investigated. Peak LV pressure developed sooner in response to ISO compared to PGF2α in both rat groups, although the inotropic response to ISO was reduced in MCT hearts. Analysis of fixed ventricular tissue confirmed that only RV myocytes were hypertrophied in MCT hearts. Our study showed that PGF2α was positively inotropic for healthy hearts, but found it generated arrhythmias in 40% of MCT hearts at the dose investigated. However, a more physiological dose of PGF2α may be a useful alternative without the added energetic cost of catecholaminergic inotropes. PGF2α elicits a positive inotropic response in isolated, perfused healthy and hypertrophic rat hearts, with no chronotropic effects, unlike β-AR stimulation. The dose of 0.3 μM PGF2α investigated also triggered sustained, slow onset, arrhythmic activity in 40% of hypertrophic MCT hearts. The peak inotropic response to PGF2α is slower to establish in comparison to the characteristic response to β-AR stimulation, which suggests PGF2α acts via a separate signalling pathway within cardiomyocytes. Hypertrophic MCT hearts had a reduced inotropic response to β-AR stimulation, which illustrates the importance of developing non-catecholaminergic inotropes which will eliminate the increased energetic cost and improve myocardial performance.
Collapse
|
16
|
Soares LL, Drummond FR, Rezende LMT, Lopes Dantas Costa AJ, Leal TF, Fidelis MR, Neves MM, Prímola-Gomes TN, Carneiro-Junior MA, Carlo Reis EC, Natali AJ. Voluntary running counteracts right ventricular adverse remodeling and myocyte contraction impairment in pulmonary arterial hypertension model. Life Sci 2019; 238:116974. [DOI: 10.1016/j.lfs.2019.116974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
17
|
Investigation of the Role of Myocyte Orientations in Cardiac Arrhythmia Using Image-Based Models. Biophys J 2019; 117:2396-2408. [PMID: 31679763 PMCID: PMC6990390 DOI: 10.1016/j.bpj.2019.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022] Open
Abstract
Cardiac electrical excitation-propagation is influenced by myocyte orientations (cellular organization). Quantitatively understanding this relationship presents a significant research challenge, especially during arrhythmias in which excitation patterns become complex. Tissue-scale simulations of cardiac electrophysiology, incorporating both dynamic action potential behavior and image-based myocardial architecture, provide an approach to investigate three-dimensional (3D) propagation of excitation waves in the heart. In this study, we aimed to assess the importance of natural variation in myocyte orientations on cardiac arrhythmogenesis using 3D tissue electrophysiology simulations. Three anatomical models (i.e., describing myocyte orientations) of healthy rat ventricles—obtained using diffusion tensor imaging at 100 μm resolution—were registered to a single biventricular geometry (i.e., a single cardiac shape), in which the myocyte orientations could be represented by each of the diffusion tensor imaging data sets or by an idealized rule-based description. The Fenton-Karma cellular excitation model was modified to reproduce rat ventricular action potential duration restitution to create reaction-diffusion cardiac electrophysiology models. Over 250 3D simulations were performed to investigate the effects of myocyte orientations on the following: 1) ventricular activation, 2) location-dependent arrhythmia induction via rapid pacing, and 3) dynamics of re-entry averaged over multiple episodes. It was shown that 1) myocyte orientation differences manifested themselves in local activation times, but the influence on total activation time was small; 2) differences in myocyte orientations could critically affect the inducibility and persistence of arrhythmias for specific stimulus-location/cycle-length combinations; and 3) myocyte orientations alone could be an important determinant of scroll wave break, although no significant differences were observed in averaged arrhythmia dynamics between the four myocyte orientation scenarios considered. Our results show that myocyte orientations are an important determinant of arrhythmia inducibility, persistence, and scroll wave break. These findings suggest that where specificity is desired (for example, when predicting location-dependent, patient-specific arrhythmia inducibility), subject-specific myocyte orientations may be important.
Collapse
|
18
|
Cirulis MM, Ryan JJ, Archer SL. Pathophysiology, incidence, management, and consequences of cardiac arrhythmia in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. Pulm Circ 2019; 9:2045894019834890. [PMID: 30747032 PMCID: PMC6410395 DOI: 10.1177/2045894019834890] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arrhythmias are increasingly recognized as serious, end-stage complications of pre-capillary pulmonary hypertension, including pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH). Although arrhythmias contribute to symptoms, morbidity, in-hospital mortality, and possibly sudden death in PAH/CTEPH, there remains a paucity of epidemiologic, pathophysiologic, and outcome data to guide management of these patients. This review summarizes the most current evidence on the topic: from the molecular mechanisms driving arrhythmia in the hypertrophied or failing right heart, to the clinical aspects of epidemiology, diagnosis, and management.
Collapse
Affiliation(s)
- Meghan M Cirulis
- 1 Division of Pulmonary Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
- 2 Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - John J Ryan
- 2 Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Stephen L Archer
- 3 Department of Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Adão R, Mendes-Ferreira P, Maia-Rocha C, Santos-Ribeiro D, Rodrigues PG, Vidal-Meireles A, Monteiro-Pinto C, Pimentel LD, Falcão-Pires I, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clin Exp Pharmacol Physiol 2018; 46:255-265. [PMID: 30339273 DOI: 10.1111/1440-1681.13043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Abstract
We have previously shown that treatment with recombinant human neuregulin-1 (rhNRG-1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)-induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG-1 treatment showed direct myocardial anti-remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG-1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG-1 treatment on ventricular passive stiffness in RV and LV samples from MCT-induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling-associated genes and calcium handling proteins. Chronic rhNRG-1 treatment decreased passive tension development in RV and LV isolated from animals with MCT-induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG-1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB-induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac-specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG-1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.
Collapse
Affiliation(s)
- Rui Adão
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diana Santos-Ribeiro
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Gonçalves Rodrigues
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Vidal-Meireles
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Monteiro-Pinto
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís D Pimentel
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Hardy MEL, Pervolaraki E, Bernus O, White E. Dynamic Action Potential Restitution Contributes to Mechanical Restitution in Right Ventricular Myocytes From Pulmonary Hypertensive Rats. Front Physiol 2018; 9:205. [PMID: 29593564 PMCID: PMC5859380 DOI: 10.3389/fphys.2018.00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/23/2018] [Indexed: 11/21/2022] Open
Abstract
We investigated the steepened dynamic action potential duration (APD) restitution of rats with pulmonary artery hypertension (PAH) and right ventricular (RV) failure and tested whether the observed APD restitution properties were responsible for negative mechanical restitution in these myocytes. PAH and RV failure were provoked in male Wistar rats by a single injection of monocrotaline (MCT) and compared with saline-injected animals (CON). Action potentials were recorded from isolated RV myocytes at stimulation frequencies between 1 and 9 Hz. Action potential waveforms recorded at 1 Hz were used as voltage clamp profiles (action potential clamp) at stimulation frequencies between 1 and 7 Hz to evoke rate-dependent currents. Voltage clamp profiles mimicking typical CON and MCT APD restitution were applied and cell shortening simultaneously monitored. Compared with CON myocytes, MCT myocytes were hypertrophied; had less polarized diastolic membrane potentials; had action potentials that were triggered by decreased positive current density and shortened by decreased negative current density; APD was longer and APD restitution steeper. APD90 restitution was unchanged by exposure to the late Na+-channel blocker (5 μM) ranolazine or the intracellular Ca2+ buffer BAPTA. Under AP clamp, stimulation frequency-dependent inward currents were smaller in MCT myocytes and were abolished by BAPTA. In MCT myocytes, increasing stimulation frequency decreased contraction amplitude when depolarization duration was shortened, to mimic APD restitution, but not when depolarization duration was maintained. We present new evidence that the membrane potential of PAH myocytes is less stable than normal myocytes, being more easily perturbed by external currents. These observations can explain increased susceptibility to arrhythmias. We also present novel evidence that negative APD restitution is at least in part responsible for the negative mechanical restitution in PAH myocytes. Thus, our study links electrical restitution remodeling to a defining mechanical characteristic of heart failure, the reduced ability to respond to an increase in demand.
Collapse
Affiliation(s)
- Matthew E L Hardy
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Eleftheria Pervolaraki
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| | - Olivier Bernus
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom.,IHU Liryc, L'institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, U1045, Bordeaux, France.,Centre de Recherche Cardio-Thoracique de Bordeaux, Institut National de la Santé et de la Recherche Médicale, U1045, Bordeaux, France
| | - Ed White
- Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
21
|
Li X, Zhang ZL, Wang HF. Fusaric acid (FA) protects heart failure induced by isoproterenol (ISP) in mice through fibrosis prevention via TGF-β1/SMADs and PI3K/AKT signaling pathways. Biomed Pharmacother 2017. [PMID: 28624424 DOI: 10.1016/j.biopha.2017.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fusaric acid (FA) is a novel compound derived from a class of nicotinic acid derivatives, exhibiting activity against cancers. However, its role in regulating cardiac injury is limited. Our study was aimed to investigate the role and the underlying molecular mechanism of FA in heart fibrosis and hypertrophy. Isoproterenol (ISP) was used to induce cardiac fibrosis and hypertrophy in vitro and in vivo. FA administration ameliorated hypertrophy by reducing atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β -myosin heavy chain (β-MHC) in vitro and in vivo. Additionally, FA reduced collagen accumulation and fibrosis-related signals, including α- smooth muscle actin (α-SMA), Collagen type I and Collagen type III. Transforming growth factor-β1 (TGF-β1)/SMADs and mitogen-activated protein kinases (MAPKs), including p38, extracellular signal regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), signalling pathways were highly activated for ISP induction, which were prevented due to FA administration. Further, FA suppressed ISP-induced PI3K/AKT activity in a dose dependent manner. Of note, FA-reduced MAPKs phosphorylation was associated with phosphoinositide 3-Kinase (PI3K)/Protein kinase B (AKT) activity caused by ISP. However, PI3K/AKT activation showed no effects on TGF-β1/SMADs expression in FA-treated cells after ISP exposure. Together, FA might be an effective candidate agent for preventing cardiac fibrosis by modulating TGF-β1/SMADs and PI3K/AKT signalling pathways.
Collapse
Affiliation(s)
- Xin Li
- Department of Ultrasound, The First Affilitated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China.
| | - Zhou-Long Zhang
- Department of Ultrasound, The First Affilitated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| | - Hui-Fen Wang
- Department of Ultrasound, The First Affilitated Hospital of Henan University of Science and Technology, Luoyang City, Henan Province, China
| |
Collapse
|
22
|
Benoist D, Dubes V, Roubertie F, Gilbert SH, Charron S, Constantin M, Elbes D, Vieillot D, Quesson B, Cochet H, Haïssaguerre M, Rooryck C, Bordachar P, Thambo JB, Bernus O. Proarrhythmic remodelling of the right ventricle in a porcine model of repaired tetralogy of Fallot. Heart 2016; 103:347-354. [PMID: 28051771 PMCID: PMC5529985 DOI: 10.1136/heartjnl-2016-309730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 07/21/2016] [Indexed: 11/17/2022] Open
Abstract
Objective The growing adult population with surgically corrected tetralogy of Fallot (TOF) is at risk of arrhythmias and sudden cardiac death. We sought to investigate the contribution of right ventricular (RV) structural and electrophysiological remodelling to arrhythmia generation in a preclinical animal model of repaired TOF (rTOF). Methods and results Pigs mimicking rTOF underwent cardiac MRI functional characterisation and presented with pulmonary regurgitation, RV hypertrophy, dilatation and dysfunction compared with Sham-operated animals (Sham). Optical mapping of rTOF RV-perfused wedges revealed a significant prolongation of RV activation time with slower conduction velocities and regions of conduction slowing well beyond the surgical scar. A reduced protein expression and lateralisation of Connexin-43 were identified in rTOF RVs. A remodelling of extracellular matrix-related gene expression and an increase in collagen content that correlated with prolonged RV activation time were also found in these animals. RV action potential duration (APD) was prolonged in the epicardial anterior region at early and late repolarisation level, thus contributing to a greater APD heterogeneity and to altered transmural and anteroposterior APD gradients in rTOF RVs. APD remodelling involved changes in Kv4.3 and MiRP1 expression. Spontaneous arrhythmias were more frequent in rTOF wedges and more complex in the anterior than in the posterior RV. Conclusion Significant remodelling of RV conduction and repolarisation properties was found in pigs with rTOF. This remodelling generates a proarrhythmic substrate likely to facilitate re-entries and to contribute to sudden cardiac death in patients with rTOF.
Collapse
Affiliation(s)
- David Benoist
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - François Roubertie
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
| | - Stephen H Gilbert
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,Max Delbrück Center for Molecular Medicine, Mathematical Cell Physiology, Berlin, Germany
| | - Sabine Charron
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Marion Constantin
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Delphine Elbes
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Delphine Vieillot
- Plateforme Technologique d'Innovation Biomédicale, Université de Bordeaux, Pessac, France
| | - Bruno Quesson
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Hubert Cochet
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
| | - Michel Haïssaguerre
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
| | - Caroline Rooryck
- Inserm U1211, Maladies Rares: Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Pierre Bordachar
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
| | - Jean-Benoit Thambo
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
| | - Olivier Bernus
- IHU LIRYC, L'Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France.,Inserm U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
23
|
Pueyo E, Orini M, Rodríguez JF, Taggart P. Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans. J Mol Cell Cardiol 2016; 97:93-105. [DOI: 10.1016/j.yjmcc.2016.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/21/2016] [Accepted: 05/03/2016] [Indexed: 01/27/2023]
|
24
|
Logantha SJRJ, Stokke MK, Atkinson AJ, Kharche SR, Parveen S, Saeed Y, Sjaastad I, Sejersted OM, Dobrzynski H. Ca(2+)-Clock-Dependent Pacemaking in the Sinus Node Is Impaired in Mice with a Cardiac Specific Reduction in SERCA2 Abundance. Front Physiol 2016; 7:197. [PMID: 27313537 PMCID: PMC4889599 DOI: 10.3389/fphys.2016.00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/17/2016] [Indexed: 12/23/2022] Open
Abstract
Background: The sarcoplasmic reticulum Ca2+-ATPase (SERCA2) pump is an important component of the Ca2+-clock pacemaker mechanism that provides robustness and flexibility to sinus node pacemaking. We have developed transgenic mice with reduced cardiac SERCA2 abundance (Serca2 KO) as a model for investigating SERCA2's role in sinus node pacemaking. Methods and Results: In Serca2 KO mice, ventricular SERCA2a protein content measured by Western blotting was 75% (P < 0.05) lower than that in control mice (Serca2 FF) tissue. Immunofluorescent labeling of SERCA2a in ventricular, atrial, sinus node periphery and center tissue sections revealed 46, 45, 55, and 34% (all P < 0.05 vs. Serca2 FF) lower labeling, respectively and a mosaic pattern of expression. With telemetric ECG surveillance, we observed no difference in basal heart rate, but the PR-interval was prolonged in Serca2 KO mice: 49 ± 1 vs. 40 ± 1 ms (P < 0.001) in Serca2 FF. During exercise, heart rate in Serca2 KO mice was elevated to 667 ± 22 bpm, considerably less than 780 ± 17 bpm (P < 0.01) in Serca2 FF. In isolated sinus node preparations, 2 mM Cs+ caused bradycardia that was equally pronounced in Serca2 KO and Serca2 FF (32 ± 4% vs. 29 ± 5%), indicating no change in the pacemaker current, If. Disabling the Ca2+-clock with 2 μM ryanodine induced bradycardia that was less pronounced in Serca2 KO preparations (9 ± 1% vs. 20 ± 3% in Serca2 FF; P < 0.05), suggesting a disrupted Ca2+-clock. Mathematical modeling was used to dissect the effects of membrane- and Ca2+-clock components on Serca2 KO mouse heart rate and sinus node action potential. Computer modeling predicted a slowing of heart rate with SERCA2 downregulation and the heart rate slowing was pronounced at >70% reduction in SERCA2 activity. Conclusions:Serca2 KO mice show a disrupted Ca2+-clock-dependent pacemaker mechanism contributing to impaired sinus node and atrioventricular node function.
Collapse
Affiliation(s)
| | - Mathis K Stokke
- Institute for Experimental Medical Research, Oslo University Hospital and University of OsloOslo, Norway; Center for Heart Failure Research, University of OsloOslo, Norway; Clinic for Internal Medicine, Lovisenberg Deaconess Hospital ASOslo, Norway
| | - Andrew J Atkinson
- Institute of Cardiovascular Sciences, University of Manchester Manchester, UK
| | - Sanjay R Kharche
- Institute of Cardiovascular Sciences, University of Manchester Manchester, UK
| | - Sajida Parveen
- Institute of Cardiovascular Sciences, University of Manchester Manchester, UK
| | - Yawer Saeed
- Institute of Cardiovascular Sciences, University of Manchester Manchester, UK
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of OsloOslo, Norway; Center for Heart Failure Research, University of OsloOslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of OsloOslo, Norway; Center for Heart Failure Research, University of OsloOslo, Norway
| | - Halina Dobrzynski
- Institute of Cardiovascular Sciences, University of Manchester Manchester, UK
| |
Collapse
|
25
|
Lookin O, Balakin A, Kuznetsov D, Protsenko Y. The length-dependent activation of contraction is equally impaired in impuberal male and female rats in monocrotaline-induced right ventricular failure. Clin Exp Pharmacol Physiol 2015; 42:1198-206. [DOI: 10.1111/1440-1681.12471] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Oleg Lookin
- Laboratory of Biological Motility; Institute of Immunology and Physiology; Ural Branch of Russian Academy of Sciences; Yekaterinburg Russian Federation
| | - Alexander Balakin
- Laboratory of Biological Motility; Institute of Immunology and Physiology; Ural Branch of Russian Academy of Sciences; Yekaterinburg Russian Federation
| | - Daniil Kuznetsov
- Laboratory of Biological Motility; Institute of Immunology and Physiology; Ural Branch of Russian Academy of Sciences; Yekaterinburg Russian Federation
| | - Yuri Protsenko
- Laboratory of Biological Motility; Institute of Immunology and Physiology; Ural Branch of Russian Academy of Sciences; Yekaterinburg Russian Federation
| |
Collapse
|
26
|
Identification of Region-Specific Myocardial Gene Expression Patterns in a Chronic Swine Model of Repaired Tetralogy of Fallot. PLoS One 2015; 10:e0134146. [PMID: 26252659 PMCID: PMC4529093 DOI: 10.1371/journal.pone.0134146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Surgical repair of Tetralogy of Fallot (TOF) is highly successful but may be complicated in adulthood by arrhythmias, sudden death, and right ventricular or biventricular dysfunction. To better understand the molecular and cellular mechanisms of these delayed cardiac events, a chronic animal model of postoperative TOF was studied using microarrays to perform cardiac transcriptomic studies. The experimental study included 12 piglets (7 rTOF and 5 controls) that underwent surgery at age 2 months and were further studied after 23 (+/- 1) weeks of postoperative recovery. Two distinct regions (endocardium and epicardium) from both ventricles were analyzed. Expression levels from each localization were compared in order to decipher mechanisms and signaling pathways leading to ventricular dysfunction and arrhythmias in surgically repaired TOF. Several genes were confirmed to participate in ventricular remodeling and cardiac failure and some new candidate genes were described. In particular, these data pointed out FRZB as a heart failure marker. Moreover, calcium handling and contractile function genes (SLN, ACTC1, PLCD4, PLCZ), potential arrhythmia-related genes (MYO5B, KCNA5), and cytoskeleton and cellular organization-related genes (XIRP2, COL8A1, KCNA6) were among the most deregulated genes in rTOF ventricles. To our knowledge, this is the first comprehensive report on global gene expression profiling in the heart of a long-term swine model of repaired TOF.
Collapse
|
27
|
Kohl P, Quinn TA. Novel technologies as drivers of progress in cardiac biophysics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:69-70. [PMID: 25193876 DOI: 10.1016/j.pbiomolbio.2014.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Kohl
- National Heart and Lung Institute, Imperial College London, UK; Department of Computer Science, University of Oxford, UK.
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Canada
| |
Collapse
|
28
|
Livneh A, Kimmel E, Kohut AR, Adam D. Extracorporeal acute cardiac pacing by High Intensity Focused Ultrasound. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:140-53. [DOI: 10.1016/j.pbiomolbio.2014.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 11/29/2022]
|
29
|
Ravelli F, Masè M, Cristoforetti A, Marini M, Disertori M. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:186-97. [PMID: 25077410 DOI: 10.1016/j.pbiomolbio.2014.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 11/28/2022]
Abstract
The identification of suitable markers for critical patterns during atrial fibrillation (AF) may be crucial to guide an effective ablation treatment. Single parameter maps, based on dominant frequency and complex fractionated electrograms, have been proposed as a tool for electrogram-guided ablation, however the specificity of these markers is debated. Experimental studies suggest that AF critical patterns may be identified on the basis of specific rate and organization features, where rapid organized and rapid fragmented activities characterize respectively localized sources and critical substrates. In this paper we introduce the logical operator map, a novel mapping tool for a point-by-point identification and localization of AF critical sites. Based on advanced signal and image processing techniques, the approach combines in a single map electrogram-derived rate and organization features with tomographic anatomical detail. The construction of the anatomically-detailed logical operator map is based on the time-domain estimation of atrial rate and organization in terms of cycle length and wave-similarity, the logical combination of these indexes to obtain suitable markers of critical sites, and the multimodal integration of electrophysiological and anatomical information by segmentation and registration techniques. Logical operator maps were constructed in 14 patients with persistent AF, showing the capability of the combined rate and organization markers to identify with high selectivity the subset of electrograms associated with localized sources and critical substrates. The precise anatomical localization of these critical sites revealed the confinement of rapid organized sources in the left atrium with organization and rate gradients towards the surrounding tissue, and the presence of rapid fragmented electrograms in proximity of the sources. By merging in a single map the most relevant electrophysiological and anatomical features of the AF process, the logical operator map may have significant clinical impact as a direct, comprehensive tool to understand arrhythmia mechanisms in the single patient and guide more conservative, step-wise ablation.
Collapse
Affiliation(s)
- Flavia Ravelli
- Department of Physics, University of Trento, Povo-Trento, Italy.
| | - Michela Masè
- Department of Physics, University of Trento, Povo-Trento, Italy
| | | | | | - Marcello Disertori
- Division of Cardiology, S. Chiara Hospital, Trento, Italy; Healthcare Research and Innovation Program, PAT-FBK, Trento, Italy
| |
Collapse
|