1
|
Jaeger J, Riedl A, Djedovic A, Vervaeke J, Walsh D. Naturalizing relevance realization: why agency and cognition are fundamentally not computational. Front Psychol 2024; 15:1362658. [PMID: 38984275 PMCID: PMC11231436 DOI: 10.3389/fpsyg.2024.1362658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
The way organismic agents come to know the world, and the way algorithms solve problems, are fundamentally different. The most sensible course of action for an organism does not simply follow from logical rules of inference. Before it can even use such rules, the organism must tackle the problem of relevance. It must turn ill-defined problems into well-defined ones, turn semantics into syntax. This ability to realize relevance is present in all organisms, from bacteria to humans. It lies at the root of organismic agency, cognition, and consciousness, arising from the particular autopoietic, anticipatory, and adaptive organization of living beings. In this article, we show that the process of relevance realization is beyond formalization. It cannot be captured completely by algorithmic approaches. This implies that organismic agency (and hence cognition as well as consciousness) are at heart not computational in nature. Instead, we show how the process of relevance is realized by an adaptive and emergent triadic dialectic (a trialectic), which manifests as a metabolic and ecological-evolutionary co-constructive dynamic. This results in a meliorative process that enables an agent to continuously keep a grip on its arena, its reality. To be alive means to make sense of one's world. This kind of embodied ecological rationality is a fundamental aspect of life, and a key characteristic that sets it apart from non-living matter.
Collapse
Affiliation(s)
- Johannes Jaeger
- Department of Philosophy, University of Vienna, Vienna, Austria
- Complexity Science Hub (CSH) Vienna, Vienna, Austria
- Ronin Institute, Essex, NJ, United States
| | - Anna Riedl
- Middle European Interdisciplinary Master's Program in Cognitive Science, University of Vienna, Vienna, Austria
| | - Alex Djedovic
- Cognitive Science Program, University of Toronto, Toronto, ON, Canada
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
| | - John Vervaeke
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Denis Walsh
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
- Department of Philosophy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Montévil M. Mathematical Modeling in the Study of Organisms and Their Parts. Methods Mol Biol 2024; 2745:105-119. [PMID: 38060182 DOI: 10.1007/978-1-0716-3577-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Mathematical modeling is a very powerful tool to understand natural phenomena. Such a tool carries its own assumptions and should always be used critically. In this chapter we highlight the key ingredients and steps of modeling and focus on their biological interpretation. Particularly, we discuss the role of theoretical principles in writing models. We also highlight the meaning and interpretation of equations. The main aim of this chapter is to facilitate the interaction between biologists and mathematical modelers. We focus on the case of cell proliferation and motility in the context of multicellular organisms.
Collapse
Affiliation(s)
- Maël Montévil
- Centre Cavaillès, République des savoirs UAR 3608, ÉNS-PSL and CNRS, Paris, France
| |
Collapse
|
3
|
Bich L. Integrating Multicellular Systems: Physiological Control and Degrees of Biological Individuality. Acta Biotheor 2023; 72:1. [PMID: 38151680 PMCID: PMC10752842 DOI: 10.1007/s10441-023-09476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
This paper focuses on physiological integration in multicellular systems, a notion often associated with biological individuality, but which has not received enough attention and needs a thorough theoretical treatment. Broadly speaking, physiological integration consists in how different components come together into a cohesive unit in which they are dependent on one another for their existence and activity. This paper argues that physiological integration can be understood by considering how the components of a biological multicellular system are controlled and coordinated in such a way that their activities can contribute to the maintenance of the system. The main implication of this perspective is that different ways of controlling their parts may give rise to multicellular organizations with different degrees of integration. After defining control, this paper analyses how control is realized in two examples of multicellular systems located at different ends of the spectrum of multicellularity: biofilms and animals. It focuses on differences in control ranges, and it argues that a high degree of integration implies control exerted at both medium and long ranges, and that insofar as biofilms lack long-range control (relative to their size) they can be considered as less integrated than other multicellular systems. It then discusses the implication of this account for the debate on physiological individuality and the idea that degrees of physiological integration imply degrees of individuality.
Collapse
Affiliation(s)
- Leonardo Bich
- Department of Philosophy, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian, 20018, Spain.
| |
Collapse
|
4
|
Prescott TJ, Wilson SP. Understanding brain functional architecture through robotics. Sci Robot 2023; 8:eadg6014. [PMID: 37256968 DOI: 10.1126/scirobotics.adg6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Robotics is increasingly seen as a useful test bed for computational models of the brain functional architecture underlying animal behavior. We provide an overview of past and current work, focusing on probabilistic and dynamical models, including approaches premised on the free energy principle, situating this endeavor in relation to evidence that the brain constitutes a layered control system. We argue that future neurorobotic models should integrate multiple neurobiological constraints and be hybrid in nature.
Collapse
Affiliation(s)
- Tony J Prescott
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Stuart P Wilson
- Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Farnsworth KD, Elwood RW. Why it hurts: with freedom comes the biological need for pain. Anim Cogn 2023:10.1007/s10071-023-01773-2. [PMID: 37029847 DOI: 10.1007/s10071-023-01773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
We argue that pain is not needed to protect the body from damage unless the organism is able to make free choices in action selection. Then pain (including its affective and evaluative aspects) provides a necessary prioritising motivation to select actions expected to avoid it, whilst leaving the possibility of alternative actions to serve potentially higher priorities. Thus, on adaptive grounds, only organisms having free choice over action selection should experience pain. Free choice implies actions must be selected following appraisal of their effects, requiring a predictive model generating estimates of action outcomes. These features give organisms anticipatory behavioural autonomy (ABA), for which we propose a plausible system using an internal predictive model, integrated into a system able to produce the qualitative and affective aspects of pain. Our hypothesis can be tested using behavioural experiments designed to elicit trade-off responses to novel experiences for which algorithmic (automaton) responses might be inappropriate. We discuss the empirical evidence for our hypothesis among taxonomic groups, showing how testing for ABA guides thinking on which groups might experience pain. It is likely that all vertebrates do and plausible that some invertebrates do (decapods, cephalopods and at least some insects).
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK.
| | - Robert W Elwood
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK
| |
Collapse
|
6
|
Pontarotti G, Mossio M, Pocheville A. The genotype-phenotype distinction: from Mendelian genetics to 21st century biology. Genetica 2022; 150:223-234. [PMID: 35877054 DOI: 10.1007/s10709-022-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
The Genotype-Phenotype (G-P) distinction was proposed in the context of Mendelian genetics, in the wake of late nineteenth century studies about heredity. In this paper, we provide a conceptual analysis that highlights that the G-P distinction was grounded on three pillars: observability, transmissibility, and causality. Originally, the genotype is the non-observable and transmissible cause of its observable and non-transmissible effect, the phenotype. We argue that the current developments of biology have called the validity of such pillars into question. First, molecular biology has unveiled the putative material substrate of the genotype (qua DNA), making it an observable object. Second, numerous findings on non-genetic heredity suggest that some phenotypic traits can be directly transmitted. Third, recent organicist approaches to biological phenomena have emphasized the reciprocal causality between parts of a biological system, which notably applies to the relation between genotypes and phenotypes. As a consequence, we submit that the G-P distinction has lost its general validity, although it can still apply to specific situations. This calls for forging new frameworks and concepts to better describe heredity and development.
Collapse
Affiliation(s)
- Gaëlle Pontarotti
- Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS/Université Paris 1 Panthéon-Sorbonne, Paris, France.
| | - Matteo Mossio
- Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS/Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Arnaud Pocheville
- Université de Toulouse, Laboratoire Évolution et Diversité Biologique, UMR 5174, CNRS, IRD, UPS, Toulouse, France
| |
Collapse
|
7
|
Bich L, Bechtel W. Organization needs organization: Understanding integrated control in living organisms. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 93:96-106. [PMID: 35366521 DOI: 10.1016/j.shpsa.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Organization figures centrally in the understanding of biological systems advanced by both new mechanists and proponents of the autonomy framework. The new mechanists focus on how components of mechanisms are organized to produce a phenomenon and emphasize productive continuity between these components. The autonomy framework focuses on how the components of a biological system are organized in such a way that they contribute to the maintenance of the organisms that produce them. In this paper we analyze and compare these two accounts of organization and argue that understanding biological organisms as cohesively integrated systems benefits from insights from both. To bring together the two accounts, we focus on the notions of control and regulation as bridge concepts. We start from a characterization of biological mechanisms in terms of constraints and focus on a specific type of mechanism, control mechanisms, that operate on other mechanisms on the basis of measurements of variables in the system and its environment. Control mechanisms are characterized by their own set of constraints that enable them to sense conditions, convey signals, and effect changes on constraints in the controlled mechanism. They thereby allow living organisms to adapt to internal and external variations and to coordinate their parts in such a manner as to maintain viability. Because living organisms contain a vast number of control mechanisms, a central challenge is to understand how they are themselves organized. With the support of examples from both unicellular and multicellular systems we argue that control mechanisms are organized heterarchically, and we discuss how this type of control architecture can, without invoking top-down and centralized forms of organizations, succeed in coordinating internal activities of organisms.
Collapse
Affiliation(s)
- Leonardo Bich
- IAS-Research Centre for Life, Mind and Society, Department of Philosophy, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian, 20018, Spain; Center for Philosophy of Science, University of Pittsburgh, 1117 Cathedral of Learning, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - William Bechtel
- Department of Philosophy, University of California San Diego, La Jolla, CA, USA, 92093-0119
| |
Collapse
|
8
|
Corti L. The 'Is' and the 'Ought' of the Animal Organism: Hegel's Account of Biological Normativity. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:17. [PMID: 35488068 PMCID: PMC9054894 DOI: 10.1007/s40656-022-00498-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This paper investigates Hegel's account of the animal organism as it is presented in the Philosophy of Nature, with a special focus on its normative implications. I argue that the notion of "organisation" is fundamental to Hegel's theory of animal normativity. The paper starts by showing how a Hegelian approach takes up the scientific image of organism and assigns a basic explanatory role to the notion of "organisation" in its understanding living beings. Moving from this premise, the paper turns to the group of accounts in contemporary theoretical biology known as "organisational accounts" (OA), which offer a widely debated strategy for naturalizing teleology and normativity in organisms. As recent scholarship recognizes, these accounts explicitly rely on insights from Kant and Post-Kantianism. I make the historical and conceptual argument that Hegel's view of the organism shares several basic commitments with OAs, especially regarding the notion of "organisational closure". I assess the account of normativity that such accounts advance and its implications for how we approach Hegel. Finally, I argue that the notion of "organisation" is more fundamental to Hegel's theory of animal normativity than the Aristotelian notion of "Gattung" or "species", which by contrast appears derivative - at least in the Philosophy of Nature and the Lectures - and does not play the central role in his account maintained by some scholars.
Collapse
Affiliation(s)
- Luca Corti
- University of Padua, Piazza Capitaniato 3, 35139, Padova, Italy.
| |
Collapse
|
9
|
Biological action at a distance: Correlated pattern formation in adjacent tessellation domains without communication. PLoS Comput Biol 2022; 18:e1009963. [PMID: 35344536 PMCID: PMC8989308 DOI: 10.1371/journal.pcbi.1009963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/07/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Tessellations emerge in many natural systems, and the constituent domains often contain regular patterns, raising the intriguing possibility that pattern formation within adjacent domains might be correlated by the geometry, without the direct exchange of information between parts comprising either domain. We confirm this paradoxical effect, by simulating pattern formation via reaction-diffusion in domains whose boundary shapes tessellate, and showing that correlations between adjacent patterns are strong compared to controls that self-organize in domains with equivalent sizes but unrelated shapes. The effect holds in systems with linear and non-linear diffusive terms, and for boundary shapes derived from regular and irregular tessellations. Based on the prediction that correlations between adjacent patterns should be bimodally distributed, we develop methods for testing whether a given set of domain boundaries constrained pattern formation within those domains. We then confirm such a prediction by analysing the development of ‘subbarrel’ patterns, which are thought to emerge via reaction-diffusion, and whose enclosing borders form a Voronoi tessellation on the surface of the rodent somatosensory cortex. In more general terms, this result demonstrates how causal links can be established between the dynamical processes through which biological patterns emerge and the constraints that shape them. Patterns can form in biological systems as a net effect of dynamical interactions that are excitatory over short distances and inhibitory over larger distances. Patterns that form in this way are known to reflect the shape of the boundary conditions that contain them. But observing that a particular pattern is contained by a boundary is not enough to determine whether or not that boundary was a constraint on pattern formation. Here we develop a novel test for the influence of boundary shape on pattern formation, based on comparing patterns contained by boundaries whose shapes tessellate and thus are geometrically related. Applying this test to patterns of cell density measured in the developing neocortex confirms that cortical column boundaries constrain pattern formation during the first postnatal weeks. In more general terms, our analysis reveals that strong relationships between patterns that form in adjacent biological domains are to be expected based purely on geometrical effects, even if no information is exchanged between those domains during the process of pattern formation. Our analysis provides a means for testing current theories about the fundamental role that constraints play in organising biological systems.
Collapse
|
10
|
Wilson SP, Prescott TJ. Scaffolding layered control architectures through constraint closure: insights into brain evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200519. [PMID: 34957842 PMCID: PMC8710877 DOI: 10.1098/rstb.2020.0519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The functional organization of the mammalian brain can be considered to form a layered control architecture, but how this complex system has emerged through evolution and is constructed during development remains a puzzle. Here we consider brain organization through the framework of constraint closure, viewed as a general characteristic of living systems, that they are composed of multiple sub-systems that constrain each other at different timescales. We do so by developing a new formalism for constraint closure, inspired by a previous model showing how within-lifetime dynamics can constrain between-lifetime dynamics, and we demonstrate how this interaction can be generalized to multi-layered systems. Through this model, we consider brain organization in the context of two major examples of constraint closure-physiological regulation and visual orienting. Our analysis draws attention to the capacity of layered brain architectures to scaffold themselves across multiple timescales, including the ability of cortical processes to constrain the evolution of sub-cortical processes, and of the latter to constrain the space in which cortical systems self-organize and refine themselves. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Stuart P. Wilson
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Tony J. Prescott
- Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Roli A, Jaeger J, Kauffman SA. How Organisms Come to Know the World: Fundamental Limits on Artificial General Intelligence. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.806283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial intelligence has made tremendous advances since its inception about seventy years ago. Self-driving cars, programs beating experts at complex games, and smart robots capable of assisting people that need care are just some among the successful examples of machine intelligence. This kind of progress might entice us to envision a society populated by autonomous robots capable of performing the same tasks humans do in the near future. This prospect seems limited only by the power and complexity of current computational devices, which is improving fast. However, there are several significant obstacles on this path. General intelligence involves situational reasoning, taking perspectives, choosing goals, and an ability to deal with ambiguous information. We observe that all of these characteristics are connected to the ability of identifying and exploiting new affordances—opportunities (or impediments) on the path of an agent to achieve its goals. A general example of an affordance is the use of an object in the hands of an agent. We show that it is impossible to predefine a list of such uses. Therefore, they cannot be treated algorithmically. This means that “AI agents” and organisms differ in their ability to leverage new affordances. Only organisms can do this. This implies that true AGI is not achievable in the current algorithmic frame of AI research. It also has important consequences for the theory of evolution. We argue that organismic agency is strictly required for truly open-ended evolution through radical emergence. We discuss the diverse ramifications of this argument, not only in AI research and evolution, but also for the philosophy of science.
Collapse
|
12
|
Saridakis E. The genetic informational network: how DNA conveys semantic information. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:112. [PMID: 34734317 DOI: 10.1007/s40656-021-00470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The question of whether "genetic information" is a merely causal factor in development or can be made sense of semantically, in a way analogous to a language or other type of representation, has generated a long debate in the philosophy of biology. It is intimately connected with another intense debate, concerning the limits of genetic determinism. In this paper I argue that widespread attempts to draw analogies between genetic information and information contained in books, blueprints or computer programs, are fundamentally inadequate. In development, gene exons are the central part of an intricate and densely ramified semantic Genetic Informational Network. DNA in the entire genome is in a state of continuous positive and negative feedback with itself and with its 'environment', and is 'read' and acted upon by the cell in various alternative and complementary ways. The linear combinatorial coding relation between codons and amino acids is but one aspect of semantic genetic information, which is, when considered in its entirety, a far wider and richer concept.
Collapse
Affiliation(s)
- Emmanuel Saridakis
- Laboratory of Structural and Supramolecular Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "DEMOKRITOS", 15310, Athens, Greece.
| |
Collapse
|
13
|
Soto AM, Sonnenschein C. The cancer puzzle: Welcome to organicism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:114-119. [PMID: 34271028 DOI: 10.1016/j.pbiomolbio.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
During the fifty years since President Nixon declared the "War on Cancer", those inside and outside the cancer community have witnessed the systematic moving of the goalposts attitude to accommodate evidence into an inadequate theory, that is, the Somatic Mutation Theory (SMT). This sorry state promoted a renewable yearly promise that at the end of the next 10-year period the promises uttered in 1971 would become reality. Each failure triggered calls to do more of the same research under the same theory, routinely using more and more sophisticated technology. Meanwhile, in the last few years, an unambiguous general consensus has emerged acknowledging that this overall long, intensive effort has failed, and that it is likely that the solution to the cancer problem resides elsewhere, namely, in alternative theoretical principles of biology. In this essay we concentrate, first, on the big picture, from the philosophical stance (reductionism versus organicism) to the need to adopt rigorous theories. From this novel perspective we conceptualize cancer as a disease of tissue organization akin to development gone awry. Finally, having identified both a promising stance and a useful theory, i.e., the tissue organization field theory (TOFT), we call for abandoning the SMT and for adopting the more promising TOFT.
Collapse
Affiliation(s)
- Ana M Soto
- Tufts University School of Medicine, Boston, Massachusetts, USA; Centre Cavaillès, République des Savoirs, École Normale Supérieure, Paris, France.
| | - Carlos Sonnenschein
- Tufts University School of Medicine, Boston, Massachusetts, USA; Centre Cavaillès, République des Savoirs, École Normale Supérieure, Paris, France.
| |
Collapse
|
14
|
|
15
|
Japyassú HF, Neco LC, Nunes-Neto N. Minimal Organizational Requirements for the Ascription of Animal Personality to Social Groups. Front Psychol 2021; 11:601937. [PMID: 33995158 PMCID: PMC8116521 DOI: 10.3389/fpsyg.2020.601937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Recently, psychological phenomena have been expanded to new domains, crisscrossing boundaries of organizational levels, with the emergence of areas such as social personality and ecosystem learning. In this contribution, we analyze the ascription of an individual-based concept (personality) to the social level. Although justified boundary crossings can boost new approaches and applications, the indiscriminate misuse of concepts refrains the growth of scientific areas. The concept of social personality is based mainly on the detection of repeated group differences across a population, in a direct transposition of personality concepts from the individual to the social level. We show that this direct transposition is problematic for avowing the nonsensical ascription of personality even to simple electronic devices. To go beyond a metaphoric use of social personality, we apply the organizational approach to a review of social insect communication networks. Our conceptual analysis shows that socially self-organized systems, such as isolated ant trails and bee's recruitment groups, are too simple to have social personality. The situation is more nuanced when measuring the collective choice between nest sites or foraging patches: some species show positive and negative feedbacks between two or more self-organized social structures so that these co-dependent structures are inter-related by second-order, social information systems, complying with a formal requirement for having social personality: the social closure of constraints. Other requirements include the decoupling between individual and social dynamics, and the self-regulation of collective decision processes. Social personality results to be sometimes a metaphorical transposition of a psychological concept to a social phenomenon. The application of this organizational approach to cases of learning ecosystems, or evolutionary learning, could help to ground theoretically the ascription of psychological properties to levels of analysis beyond the individual, up to meta-populations or ecological communities.
Collapse
Affiliation(s)
- Hilton F. Japyassú
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Federal University of Bahia, Salvador, Brazil
- Biology Institute, Federal University of Bahia, Salvador, Brazil
| | - Lucia C. Neco
- School of Humanities, University of Western Australia, Perth, WA, Australia
| | - Nei Nunes-Neto
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Federal University of Bahia, Salvador, Brazil
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
16
|
Bechtel W, Bich L. Grounding cognition: heterarchical control mechanisms in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190751. [PMID: 33487110 PMCID: PMC7934967 DOI: 10.1098/rstb.2019.0751] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We advance an account that grounds cognition, specifically decision-making, in an activity all organisms as autonomous systems must perform to keep themselves viable—controlling their production mechanisms. Production mechanisms, as we characterize them, perform activities such as procuring resources from their environment, putting these resources to use to construct and repair the organism's body and moving through the environment. Given the variable nature of the environment and the continual degradation of the organism, these production mechanisms must be regulated by control mechanisms that select when a production is required and how it should be carried out. To operate on production mechanisms, control mechanisms need to procure information through measurement processes and evaluate possible actions. They are making decisions. In all organisms, these decisions are made by multiple different control mechanisms that are organized not hierarchically but heterarchically. In many cases, they employ internal models of features of the environment with which the organism must deal. Cognition, in the form of decision-making, is thus fundamental to living systems which must control their production mechanisms. This article is part of the theme issue ‘Basal cognition: conceptual tools and the view from the single cell’.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society, Department of Philosophy, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian 20018, Spain
| |
Collapse
|
17
|
|
18
|
Soto AM, Sonnenschein C. Information, programme, signal: dead metaphors that negate the agency of organisms. INTERDISCIPLINARY SCIENCE REVIEWS : ISR 2020; 45:331-343. [PMID: 33100483 PMCID: PMC7577589 DOI: 10.1080/03080188.2020.1794389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The metaphorical adoption of the concepts of information, program and signal introduced into biology the logic and implicit causal structure of the mathematical theories of information; this is inimical to biology. In turn, those metaphors have hindered the development of a theory of organisms by transferring the agency of organisms to natural selection and to DNA. Moreover, those metaphors introduced into biology the dualism software-hardware and a Laplacian causal structure. Instead, we propose to uphold the agency of the living by adopting three foundational principles for a theory of organisms: namely, 1) the principle of biological inertia (i.e., the default state of cells is proliferation and motility), 2) the principle of variation, and 3) the principle of organization.
Collapse
Affiliation(s)
- Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| |
Collapse
|
19
|
Hoel E, Levin M. Emergence of informative higher scales in biological systems: a computational toolkit for optimal prediction and control. Commun Integr Biol 2020; 13:108-118. [PMID: 33014263 PMCID: PMC7518458 DOI: 10.1080/19420889.2020.1802914] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
The biological sciences span many spatial and temporal scales in attempts to understand the function and evolution of complex systems-level processes, such as embryogenesis. It is generally assumed that the most effective description of these processes is in terms of molecular interactions. However, recent developments in information theory and causal analysis now allow for the quantitative resolution of this question. In some cases, macro-scale models can minimize noise and increase the amount of information an experimenter or modeler has about "what does what." This result has numerous implications for evolution, pattern regulation, and biomedical strategies. Here, we provide an introduction to these quantitative techniques, and use them to show how informative macro-scales are common across biology. Our goal is to give biologists the tools to identify the maximally-informative scale at which to model, experiment on, predict, control, and understand complex biological systems.
Collapse
Affiliation(s)
- Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
20
|
Brash DE. Rethinking Causation for Data-intensive Biology: Constraints, Cancellations, and Quantized Organisms: Causality in complex organisms is sculpted by constraints rather than instigators, with outcomes perhaps better described by quantized patterns than rectilinear pathways. Bioessays 2020; 42:e1900135. [PMID: 32484248 PMCID: PMC7518294 DOI: 10.1002/bies.201900135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/19/2020] [Indexed: 12/22/2022]
Abstract
Complex organisms thwart the simple rectilinear causality paradigm of "necessary and sufficient," with its experimental strategy of "knock down and overexpress." This Essay organizes the eccentricities of biology into four categories that call for new mathematical approaches; recaps for the biologist the philosopher's recent refinements to the causation concept and the mathematician's computational tools that handle some but not all of the biological eccentricities; and describes overlooked insights that make causal properties of physical hierarchies such as emergence and downward causation straightforward. Reviewing and extrapolating from similar situations in physics, it is suggested that new mathematical tools for causation analysis incorporating feedback, signal cancellation, nonlinear dependencies, physical hierarchies, and fixed constraints rather than instigative changes will reveal unconventional biological behaviors. These include "eigenisms," organisms that are limited to quantized states; trajectories that steer a system such as an evolving species toward optimal states; and medical control via distributed "sheets" rather than single control points.
Collapse
Affiliation(s)
- Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520-8040, USA
| |
Collapse
|
21
|
Montévil M, Mossio M. The Identity of Organisms in Scientific Practice: Integrating Historical and Relational Conceptions. Front Physiol 2020; 11:611. [PMID: 32625111 PMCID: PMC7311753 DOI: 10.3389/fphys.2020.00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
We address the identity of biological organisms at play in experimental and modeling practices. We first examine the central tenets of two general conceptions, and we assess their respective strengths and weaknesses. The historical conception, on the one hand, characterizes organisms' identity by looking at their past, and specifically at their genealogical connection with a common ancestor. The relational conception, on the other hand, interprets organisms' identity by referring to a set of distinctive relations between their parts, and between the organism and its environment. While the historical and relational conceptions are understood as opposed and conflicting, we submit that they are also fundamentally complementary. Accordingly, we put forward a hybrid conception, in which historical and relational (and more specifically, organizational) aspects of organisms' identity sustain and justify each other. Moreover, we argue that organisms' identity is not only hybrid but also bounded, insofar as the compliance with specific identity criteria tends to vanish as time passes, especially across generations. We spell out the core conceptual framework of this conception, and we outline an original formal representation. We contend that the hybrid and bounded conception of organisms' identity suits the epistemological needs of biological practices, particularly with regards to the generalization and reproducibility of experimental results, and the integration of mathematical models with experiments.
Collapse
Affiliation(s)
- Maël Montévil
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST, UMR 8590), Université Paris 1 et CNRS, Paris, France
- Centre Pompidou, Institut de Recherche et d'Innovation, Paris, France
| | - Matteo Mossio
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST, UMR 8590), Université Paris 1 et CNRS, Paris, France
| |
Collapse
|
22
|
Sonnenschein C, Soto AM. Over a century of cancer research: Inconvenient truths and promising leads. PLoS Biol 2020; 18:e3000670. [PMID: 32236102 PMCID: PMC7153880 DOI: 10.1371/journal.pbio.3000670] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Despite over a century of intensive efforts, the great gains promised by the War on Cancer nearly 50 years ago have not materialized. Since 1999, we have analyzed the lack of progress in explaining and "curing" cancer by examining the merits of the premises that determine how cancer is understood and treated. Our ongoing critical analyses have aimed at clarifying the sources of misunderstandings at the root of the cancer puzzle while providing a plausible and comprehensive biomedical perspective as well as a new theory of carcinogenesis that is compatible with evolutionary theory. In this essay, we explain how this new theory, the tissue organization field theory (TOFT), can help chart a path to progress for cancer researchers by explaining features of cancer that remain unexplainable from the perspective of the still hegemonic somatic mutation theory (SMT) and its variants. Of equal significance, the premises underlying the TOFT offer new perspectives on basic biological phenomena.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Ana M. Soto
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
23
|
Individuation and the Organization in Complex Living Ecosystem: Recursive Integration and Self-assertion by Holon-Lymphocytes. Acta Biotheor 2020; 68:171-199. [PMID: 31541308 DOI: 10.1007/s10441-019-09364-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/04/2019] [Indexed: 01/22/2023]
Abstract
Individuation and organization in complex living multi-level ecosystem occurs as dynamical processes from early ontogeny. The notion of living "holon" displaying dynamic self-assertion and integration is used here to explain the ecosystems dynamic processes. The update of the living holon state according to the continuous change of the dynamic system allows for its viability. This is interpreted as adaptation, selection and organization by the human that observes the system a posteriori from its level. Our model concerns the complex dynamics of the adaptive immune system, integrating holon-lymphocytes that collectively preserve the identity and integrity of the organism. Each lymphocyte individualizes as a dynamic holon-lymphocyte, with somatic gene individuation leading to an individual, singular antigen immunoreceptor type, promoting the self-assertion. In turn, the "Immunoception" allows for perception of the environmental antigenic context, thus integration of the holon in its environment. The self-assertion/integration of holon-lymphocyte starts from fetal stages and is influenced by mother Lamarckian acquired historicity transmissions, a requisite for the integrity of the holobiont-organism. We propose a dynamic model of the perception by holon-lymphocyte, and at the supra-clonal level of the immune system functions that sustain the identity and integrity of the holon-holobiont organism.
Collapse
|
24
|
Hernández I, Vecchi D. The Interactive Construction of Biological Individuality Through Biotic Entrenchment. Front Psychol 2019; 10:2578. [PMID: 31849738 PMCID: PMC6900962 DOI: 10.3389/fpsyg.2019.02578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022] Open
Abstract
In this article, we propose to critically evaluate whether a closure of constraints interpretation can make sense of biotic entrenchment, the process of assimilation and functional integration of environmental elements of biotic origin in development and, eventually, evolution. In order to achieve the aims of our analysis, we shall focus on multi-species partnerships, biological systems characterised by ontogenetic dependencies of various strengths between the partners. Our main research question is to tackle the foundational problem posed by the dynamics of biotic entrenchment characterising multi-species partnerships for the closure of constraints interpretation, namely, to understand for which biological system (i.e., the partners taken individually or the partnership as the encompassing system) closure of constraints is realised. Through the analysis of significant illustrative examples, we shall progressively refine the closure thesis and articulate an answer to our main research question. We shall also propose that biotic entrenchment provides a chief example of the phenomenon of interactive and horizontal construction of biological individuality and inter-identity.
Collapse
Affiliation(s)
- Isaac Hernández
- Laboratoire de Recherche ERRAPHIS, Département de Philosophie, Université Toulouse Jean Jaurès, Toulouse, France
| | - Davide Vecchi
- Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
25
|
Using Network Pharmacology to Explore Potential Treatment Mechanism for Coronary Heart Disease Using Chuanxiong and Jiangxiang Essential Oils in Jingzhi Guanxin Prescriptions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7631365. [PMID: 31772600 PMCID: PMC6854988 DOI: 10.1155/2019/7631365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/14/2019] [Indexed: 01/06/2023]
Abstract
Background To predict the active components and potential targets of traditional Chinese medicine and to determine the mechanism behind the curative effect of traditional Chinese medicine, a multitargeted method was used. Jingzhi Guanxin prescriptions expressed a high efficacy for coronary heart disease (CHD) patients of which essential oils from Chuanxiong and Jiangxiang were confirmed to be the most important effective substance. However, the interaction between the active components and the targets for the treatment of CHD has not been clearly explained in previous studies. Materials and Methods Genes associated with the disease and the treatment strategy were searched from the electronic database and analyzed by Cytoscape (version 3.2.1). Protein-protein interaction network diagram of CHD with Jiangxiang and Chuanxiong essential oils was constructed by Cytoscape. Pathway functional enrichment analysis was executed by clusterProfiler package in R platform. Results 121 ingredients of Chuanxiong and Jiangxiang essential oils were analyzed, and 393 target genes of the compositions and 912 CHD-related genes were retrieved. 15 coexpression genes were selected, including UGT1A1, DPP4, RXRA, ADH1A, RXRG, UGT1A3, PPARA, TRPC3, CYP1A1, ABCC2, AHR, and ADRA2A. The crucial pathways of occurrence and treatment molecular mechanism of CHD were analyzed, including retinoic acid metabolic process, flavonoid metabolic process, response to xenobiotic stimulus, cellular response to xenobiotic stimulus, cellular response to steroid hormone stimulus, retinoid binding, retinoic acid binding, and monocarboxylic acid binding. Finally, we elucidate the underlying role and mechanism behind these genes in the pathogenesis and treatment of CHD. Conclusions Generally speaking, the nodes in subnetwork affect the pathological process of CHD, thus indicating the mechanism of Jingzhi Guanxin prescriptions containing Chuanxiong and Jiangxiang essential oils in the treatment of CHD.
Collapse
|
26
|
Dobrzyński L, Fornalski KW, Reszczyńska J, Janiak MK. Modeling Cell Reactions to Ionizing Radiation: From a Lesion to a Cancer. Dose Response 2019; 17:1559325819838434. [PMID: 31001068 PMCID: PMC6454661 DOI: 10.1177/1559325819838434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/15/2019] [Indexed: 01/19/2023] Open
Abstract
This article focuses on the analytic modeling of responses of cells in the body to ionizing radiation. The related mechanisms are consecutively taken into account and discussed. A model of the dose- and time-dependent adaptive response is considered for 2 exposure categories: acute and protracted. In case of the latter exposure, we demonstrate that the response plateaus are expected under the modelling assumptions made. The expected total number of cancer cells as a function of time turns out to be perfectly described by the Gompertz function. The transition from a collection of cancer cells into a tumor is discussed at length. Special emphasis is put on the fact that characterizing the growth of a tumor (ie, the increasing mass and volume), the use of differential equations cannot properly capture the key dynamics-formation of the tumor must exhibit properties of the phase transition, including self-organization and even self-organized criticality. As an example, a manageable percolation-type phase transition approach is used to address this problem. Nevertheless, general theory of tumor emergence is difficult to work out mathematically because experimental observations are limited to the relatively large tumors. Hence, determination of the conditions around the critical point is uncertain.
Collapse
Affiliation(s)
- L. Dobrzyński
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
| | - K. W. Fornalski
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
- Ex-Polon Laboratory, Łazy, Poland
| | - J. Reszczyńska
- National Centre for Nuclear Research (NCBJ), Otwock-Świerk,
Poland
| | - M. K. Janiak
- Department of Radiobiology and Radiation Protection, Military
Institute of Hygiene and Epidemiology (WIHE), Warszawa, Poland
| |
Collapse
|
27
|
Ellis GFR, Kopel J. The Dynamical Emergence of Biology From Physics: Branching Causation via Biomolecules. Front Physiol 2019; 9:1966. [PMID: 30740063 PMCID: PMC6355675 DOI: 10.3389/fphys.2018.01966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/31/2018] [Indexed: 01/30/2023] Open
Abstract
Biology differs fundamentally from the physics that underlies it. This paper proposes that the essential difference is that while physics at its fundamental level is Hamiltonian, in biology, once life has come into existence, causation of a contextual branching nature occurs at every level of the hierarchy of emergence at each time. The key feature allowing this to happen is the way biomolecules such as voltage-gated ion channels can act to enable branching logic to arise from the underlying physics, despite that physics per se being of a deterministic nature. Much randomness occurs at the molecular level, which enables higher level functions to select lower level outcomes according to higher level needs. Intelligent causation occurs when organisms engage in deduction, enabling prediction and planning. This is possible because ion channels enable action potentials to propagate in axons. The further key feature is that such branching biological behavior acts down to cause the underlying physical interactions to also exhibit a contextual branching behavior.
Collapse
Affiliation(s)
- George F. R. Ellis
- Mathematics Department, University of Cape Town, Cape Town, South Africa
| | - Jonathan Kopel
- Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, United States
| |
Collapse
|
28
|
Abstract
Analysis of Rosen's theories with a focus on their mathematical content. Provides links of Rosen's work with most recent research into mathematical modelling. Possible implementations of ’closure to efficient causation’ in models are discussed. Critical analysis of Rosen's use of category theory.
The theoretical biologist Robert Rosen developed a highly original approach for investigating the question “What is life?”, the most fundamental problem of biology. Considering that Rosen made extensive use of mathematics it might seem surprising that his ideas have only rarely been implemented in mathematical models. On the one hand, Rosen propagates relational models that neglect underlying structural details of the components and focus on relationships between the elements of a biological system, according to the motto “throw away the physics, keep the organisation”. Rosen's strong rejection of mechanistic models that he implicitly associates with a strong form of reductionism might have deterred mathematical modellers from adopting his ideas for their own work. On the other hand Rosen's presentation of his modelling framework, (M, R) systems, is highly abstract which makes it hard to appreciate how this approach could be applied to concrete biological problems. In this article, both the mathematics as well as those aspects of Rosen's work are analysed that relate to his philosophical ideas. It is shown that Rosen's relational models are a particular type of mechanistic model with specific underlying assumptions rather than a fundamentally different approach that excludes mechanistic models. The strengths and weaknesses of relational models are investigated by comparison with current network biology literature. Finally, it is argued that Rosen's definition of life, “organisms are closed to efficient causation”, should be considered as a hypothesis to be tested and ideas how this postulate could be implemented in mathematical models are presented.
Collapse
|
29
|
MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice. Molecules 2018; 23:molecules23030527. [PMID: 29495457 PMCID: PMC6017002 DOI: 10.3390/molecules23030527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 11/19/2022] Open
Abstract
The Rag2 knockout (KO) mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic) regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate) are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory) in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.
Collapse
|
30
|
Masiello MG, Verna R, Cucina A, Bizzarri M. Physical constraints in cell fate specification. A case in point: Microgravity and phenotypes differentiation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 134:55-67. [PMID: 29307754 DOI: 10.1016/j.pbiomolbio.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022]
Abstract
Data obtained by studying mammalian cells in absence of gravity strongly support the notion that cell fate specification cannot be understood according to the current molecular model. A paradigmatic case in point is provided by studying cell populations growing in absence of gravity. When the physical constraint (gravity) is 'experimentally removed', cells spontaneously allocate into two morphologically different phenotypes. Such phenomenon is likely enacted by the intrinsic stochasticity, which, in turn, is successively 'canalized' by a specific gene regulatory network. Both phenotypes are thermodynamically and functionally 'compatibles' with the new, modified environment. However, when the two cell subsets are reseeded into the 1g gravity field the two phenotypes collapse into one. Gravity constraints the system in adopting only one phenotype, not by selecting a pre-existing configuration, but more precisely shaping it de-novo through the modification of the cytoskeleton three-dimensional structure. Overall, those findings highlight how macro-scale features are irreducible to lower-scale explanations. The identification of macroscale control parameters - as those depending on the field (gravity, electromagnetic fields) or emerging from the cooperativity among the field's components (tissue stiffness, cell-to-cell connectivity) - are mandatory for assessing boundary conditions for models at lower scales, thus providing a concrete instantiation of top-down effects.
Collapse
Affiliation(s)
- Maria Grazia Masiello
- Department of Experimental Medicine, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy; Department of Surgery "PietroValdoni", Sapienza University of Rome, via A. Scarpa 14, 00161 Rome, Italy.
| | - Roberto Verna
- Department of Experimental Medicine, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| | - Alessandra Cucina
- Department of Surgery "PietroValdoni", Sapienza University of Rome, via A. Scarpa 14, 00161 Rome, Italy; Azienda Policlinico Umberto I, viale del Policlinico 155, 00161 Rome, Italy.
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
31
|
Abstract
Mathematical modeling is a very powerful tool for understanding natural phenomena. Such a tool carries its own assumptions and should always be used critically. In this chapter, we highlight the key ingredients and steps of modeling and focus on their biological interpretation. In particular, we discuss the role of theoretical principles in writing models. We also highlight the meaning and interpretation of equations. The main aim of this chapter is to facilitate the interaction between biologists and mathematical modelers. We focus on the case of cell proliferation and motility in the context of multicellular organisms.
Collapse
Affiliation(s)
- Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris, 7 Diderot, 75205, Paris Cedex 13, France. .,Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), UMR 8590, Paris, France.
| |
Collapse
|
32
|
Abstract
Over the last two decades, we have challenged the hegemony of the somatic mutation theory of carcinogenesis (SMT) based on the lack of theoretical coherence of the premises adopted by its followers. We offered instead a theoretical alternative, the tissue organization field theory (TOFT), that is based on the premises that cancer is a tissue-based disease and that proliferation and motility is the default state of all cells. We went on to use a theory-neutral experimental protocol that simultaneously tested the TOFT and the SMT. The results of this test favored adopting the TOFT and rejecting the SMT. Recently, an analysis of the differences between the Physics of the inanimate and that of the living matter has led us to propose principles for the construction of a much needed theory of organisms. The three biological principles are (a) a default state, (b) a principle of variation, and (c) one of organization. The TOFT, defined as "development gone awry," fits well within the principles that we propose for a theory of organisms. This radical conceptual change opened up the possibility of anchoring mathematical modeling on genuine biological principles. By identifying constraints to the default state, multilevel biomechanical explanations become as legitimate as the molecular ones on which other modelers that adopt the SMT rely. Expanding research based on the premises of our theory of organisms will enrich a comprehensive understanding of normal development and of the one that goes awry.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA, 02111, USA.
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA, 02111, USA.
| |
Collapse
|
33
|
Simeonov PL, Ehresmann AC. Some resonances between Eastern thought and Integral Biomathics in the framework of the WLIMES formalism for modeling living systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 131:193-212. [DOI: 10.1016/j.pbiomolbio.2017.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
|
34
|
Transcriptome Characterization of the Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook.) and Expression Analysis of Candidate Phosphate Transporter Genes. FORESTS 2017. [DOI: 10.3390/f8110420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Gu X, Kwok RT, Lam JW, Tang BZ. AIEgens for biological process monitoring and disease theranostics. Biomaterials 2017; 146:115-135. [DOI: 10.1016/j.biomaterials.2017.09.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
|
36
|
Reductionist perspectives and the notion of information. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:11-15. [DOI: 10.1016/j.pbiomolbio.2016.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/14/2016] [Accepted: 07/20/2016] [Indexed: 01/21/2023]
|
37
|
SOTO ANAM, LONGO GIUSEPPE, MIQUEL PAULANTOINE, MONTEVIL MAËL, MOSSIO MATTEO, PERRET NICOLE, POCHEVILLE ARNAUD, SONNENSCHEIN CARLOS. Toward a theory of organisms: Three founding principles in search of a useful integration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:77-82. [PMID: 27498204 PMCID: PMC5097676 DOI: 10.1016/j.pbiomolbio.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 01/09/2023]
Abstract
Organisms, be they uni- or multi-cellular, are agents capable of creating their own norms; they are continuously harmonizing their ability to create novelty and stability, that is, they combine plasticity with robustness. Here we articulate the three principles for a theory of organisms, namely: the default state of proliferation with variation and motility, the principle of variation and the principle of organization. These principles profoundly change both biological observables and their determination with respect to the theoretical framework of physical theories. This radical change opens up the possibility of anchoring mathematical modeling in biologically proper principles.
Collapse
Affiliation(s)
- ANA M. SOTO
- Centre Cavaillès, République des Savoirs, CNRS USR3608,, Collège de France et Ecole Normale Supérieure, Paris, France and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA USA
| | - GIUSEPPE LONGO
- Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et Ecole Normale Supérieure, Paris, France and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA USA,
| | - PAUL-ANTOINE MIQUEL
- Paul-Antoine Miquel, Université de Toulouse 2, , 5 Allée Antonio Machado 31058 TOULOUSE Cedex 9
| | - MAËL MONTEVIL
- Laboratoire “Matière et Systèmes Complexes” (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France And associated member of: Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST) - UMR 8590, 13, rue du Four, 75006 Paris, France,
| | - MATTEO MOSSIO
- IHPST (CNRS/Paris 1/ENS) 13, rue du four, 75006 Paris France,
| | - NICOLE PERRET
- Centre Cavaillès, République des Savoirs, CNRS USR3608,, Collège de France et Ecole Normale Supérieure, Paris, France
| | - ARNAUD POCHEVILLE
- Department of Philosophy and Charles Perkins Center, University of Sydney, Sydney, Australia
| | - CARLOS SONNENSCHEIN
- Centre Cavaillès, École Normale Supérieure, Paris, France, and Institut d'Etudes Avancees de Nantes, France. and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA USA.
| |
Collapse
|
38
|
Montévil M, Speroni L, Sonnenschein C, Soto AM. Modeling mammary organogenesis from biological first principles: Cells and their physical constraints. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:58-69. [PMID: 27544910 DOI: 10.1016/j.pbiomolbio.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
In multicellular organisms, relations among parts and between parts and the whole are contextual and interdependent. These organisms and their cells are ontogenetically linked: an organism starts as a cell that divides producing non-identical cells, which organize in tri-dimensional patterns. These association patterns and cells types change as tissues and organs are formed. This contextuality and circularity makes it difficult to establish detailed cause and effect relationships. Here we propose an approach to overcome these intrinsic difficulties by combining the use of two models; 1) an experimental one that employs 3D culture technology to obtain the structures of the mammary gland, namely, ducts and acini, and 2) a mathematical model based on biological principles. The typical approach for mathematical modeling in biology is to apply mathematical tools and concepts developed originally in physics or computer sciences. Instead, we propose to construct a mathematical model based on proper biological principles. Specifically, we use principles identified as fundamental for the elaboration of a theory of organisms, namely i) the default state of cell proliferation with variation and motility and ii) the principle of organization by closure of constraints. This model has a biological component, the cells, and a physical component, a matrix which contains collagen fibers. Cells display agency and move and proliferate unless constrained; they exert mechanical forces that i) act on collagen fibers and ii) on other cells. As fibers organize, they constrain the cells on their ability to move and to proliferate. The model exhibits a circularity that can be interpreted in terms of closure of constraints. Implementing the mathematical model shows that constraints to the default state are sufficient to explain ductal and acinar formation, and points to a target of future research, namely, to inhibitors of cell proliferation and motility generated by the epithelial cells. The success of this model suggests a step-wise approach whereby additional constraints imposed by the tissue and the organism could be examined in silico and rigorously tested by in vitro and in vivo experiments, in accordance with the organicist perspective we embrace.
Collapse
Affiliation(s)
- Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France; Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST) - UMR 8590, 13, rue du Four, 75006 Paris, France.
| | - Lucia Speroni
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, École Normale Supérieure, Paris, France; Institut d'Etudes Avancées de Nantes, France.
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et École Normale Supérieure, Paris, France.
| |
Collapse
|
39
|
Theoretical principles for biology: Variation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:36-50. [PMID: 27530930 DOI: 10.1016/j.pbiomolbio.2016.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Darwin introduced the concept that random variation generates new living forms. In this paper, we elaborate on Darwin's notion of random variation to propose that biological variation should be given the status of a fundamental theoretical principle in biology. We state that biological objects such as organisms are specific objects. Specific objects are special in that they are qualitatively different from each other. They can undergo unpredictable qualitative changes, some of which are not defined before they happen. We express the principle of variation in terms of symmetry changes, where symmetries underlie the theoretical determination of the object. We contrast the biological situation with the physical situation, where objects are generic (that is, different objects can be assumed to be identical) and evolve in well-defined state spaces. We derive several implications of the principle of variation, in particular, biological objects show randomness, historicity and contextuality. We elaborate on the articulation between this principle and the two other principles proposed in this special issue: the principle of default state and the principle of organization.
Collapse
|
40
|
Sonnenschein C, Soto AM. Carcinogenesis explained within the context of a theory of organisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:70-76. [PMID: 27498170 DOI: 10.1016/j.pbiomolbio.2016.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
For a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. According to the SMT, cancer is a cellular problem, and thus, the level of organization where it should be studied is the cellular level. Additionally, the SMT proposes that cancer is a problem of the control of cell proliferation and assumes that proliferative quiescence is the default state of cells in metazoa. In 1999, a competing theory, the tissue organization field theory (TOFT), was proposed. In contraposition to the SMT, the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) alter the normal interactions between the diverse components of an organ, such as the stroma and its adjacent epithelium. The TOFT explicitly acknowledges that the default state of all cells is proliferation with variation and motility. When taking into consideration the principle of organization, we posit that carcinogenesis can be explained as a relational problem whereby release of the constraints created by cell interactions and the physical forces generated by cellular agency lead cells within a tissue to regain their default state of proliferation with variation and motility. Within this perspective, what matters both in morphogenesis and carcinogenesis is not only molecules, but also biophysical forces generated by cells and tissues. Herein, we describe how the principles for a theory of organisms apply to the TOFT and thus to the study of carcinogenesis.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Centre Cavaillès, École Normale Supérieure, Paris, France; Institut d'Etudes Avancees de Nantes, France; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et Ecole Normale Supérieure, Paris, France.
| |
Collapse
|