1
|
Le Cunff Y, Chesneau L, Pastezeur S, Pinson X, Soler N, Fairbrass D, Mercat B, Rodriguez-Garcia R, Alayan Z, Abdouni A, de Neidhardt G, Costes V, Anjubault M, Bouvrais H, Héligon C, Pécréaux J. Unveiling inter-embryo variability in spindle length over time: Towards quantitative phenotype analysis. PLoS Comput Biol 2024; 20:e1012330. [PMID: 39236069 PMCID: PMC11376571 DOI: 10.1371/journal.pcbi.1012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
How can inter-individual variability be quantified? Measuring many features per experiment raises the question of choosing them to recapitulate high-dimensional data. Tackling this challenge on spindle elongation phenotypes, we showed that only three typical elongation patterns describe spindle elongation in C. elegans one-cell embryo. These archetypes, automatically extracted from the experimental data using principal component analysis (PCA), accounted for more than 95% of inter-individual variability of more than 1600 experiments across more than 100 different conditions. The two first archetypes were related to spindle average length and anaphasic elongation rate. The third archetype, accounting for 6% of the variability, was novel and corresponded to a transient spindle shortening in late metaphase, reminiscent of kinetochore function-defect phenotypes. Importantly, these three archetypes were robust to the choice of the dataset and were found even considering only non-treated conditions. Thus, the inter-individual differences between genetically perturbed embryos have the same underlying nature as natural inter-individual differences between wild-type embryos, independently of the temperatures. We thus propose that beyond the apparent complexity of the spindle, only three independent mechanisms account for spindle elongation, weighted differently in the various conditions. Interestingly, the spindle-length archetypes covered both metaphase and anaphase, suggesting that spindle elongation in late metaphase is sufficient to predict the late anaphase length. We validated this idea using a machine-learning approach. Finally, given amounts of these three archetypes could represent a quantitative phenotype. To take advantage of this, we set out to predict interacting genes from a seed based on the PCA coefficients. We exemplified this firstly on the role of tpxl-1 whose homolog tpx2 is involved in spindle microtubule branching, secondly the mechanism regulating metaphase length, and thirdly the central spindle players which set the length at anaphase. We found novel interactors not in public databases but supported by recent experimental publications.
Collapse
Affiliation(s)
- Yann Le Cunff
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Xavier Pinson
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Nina Soler
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Danielle Fairbrass
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Benjamin Mercat
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Zahraa Alayan
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Ahmed Abdouni
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Gary de Neidhardt
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Valentin Costes
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Mélodie Anjubault
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Hélène Bouvrais
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Christophe Héligon
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institut Genetics and Development of Rennes) - UMR 6290, Rennes, France
| |
Collapse
|
2
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biology in the 21st century: Natural selection is cognitive selection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:170-184. [PMID: 38740143 DOI: 10.1016/j.pbiomolbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
3
|
Ghazanfar AA, Gomez-Marin A. The central role of the individual in the history of brains. Neurosci Biobehav Rev 2024; 163:105744. [PMID: 38825259 PMCID: PMC11246226 DOI: 10.1016/j.neubiorev.2024.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Every species' brain, body and behavior is shaped by the contingencies of their evolutionary history; these exert pressures that change their developmental trajectories. There is, however, another set of contingencies that shape us and other animals: those that occur during a lifetime. In this perspective piece, we show how these two histories are intertwined by focusing on the individual. We suggest that organisms--their brains and behaviors--are not solely the developmental products of genes and neural circuitry but individual centers of action unfolding in time. To unpack this idea, we first emphasize the importance of variation and the central role of the individual in biology. We then go over "errors in time" that we often make when comparing development across species. Next, we reveal how an individual's development is a process rather than a product by presenting a set of case studies. These show developmental trajectories as emerging in the contexts of the "the actual now" and "the presence of the past". Our consideration reveals that individuals are slippery-they are never static; they are a set of on-going, creative activities. In light of this, it seems that taking individual development seriously is essential if we aspire to make meaningful comparisons of neural circuits and behavior within and across species.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Alex Gomez-Marin
- Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante 03550, Spain.
| |
Collapse
|
4
|
Jaeger J, Riedl A, Djedovic A, Vervaeke J, Walsh D. Naturalizing relevance realization: why agency and cognition are fundamentally not computational. Front Psychol 2024; 15:1362658. [PMID: 38984275 PMCID: PMC11231436 DOI: 10.3389/fpsyg.2024.1362658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
The way organismic agents come to know the world, and the way algorithms solve problems, are fundamentally different. The most sensible course of action for an organism does not simply follow from logical rules of inference. Before it can even use such rules, the organism must tackle the problem of relevance. It must turn ill-defined problems into well-defined ones, turn semantics into syntax. This ability to realize relevance is present in all organisms, from bacteria to humans. It lies at the root of organismic agency, cognition, and consciousness, arising from the particular autopoietic, anticipatory, and adaptive organization of living beings. In this article, we show that the process of relevance realization is beyond formalization. It cannot be captured completely by algorithmic approaches. This implies that organismic agency (and hence cognition as well as consciousness) are at heart not computational in nature. Instead, we show how the process of relevance is realized by an adaptive and emergent triadic dialectic (a trialectic), which manifests as a metabolic and ecological-evolutionary co-constructive dynamic. This results in a meliorative process that enables an agent to continuously keep a grip on its arena, its reality. To be alive means to make sense of one's world. This kind of embodied ecological rationality is a fundamental aspect of life, and a key characteristic that sets it apart from non-living matter.
Collapse
Affiliation(s)
- Johannes Jaeger
- Department of Philosophy, University of Vienna, Vienna, Austria
- Complexity Science Hub (CSH) Vienna, Vienna, Austria
- Ronin Institute, Essex, NJ, United States
| | - Anna Riedl
- Middle European Interdisciplinary Master's Program in Cognitive Science, University of Vienna, Vienna, Austria
| | - Alex Djedovic
- Cognitive Science Program, University of Toronto, Toronto, ON, Canada
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
| | - John Vervaeke
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Denis Walsh
- Institute for the History and Philosophy of Science and Technology, University of Toronto, Toronto, ON, Canada
- Department of Philosophy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Pérez-Escobar JA. Minimal logical teleology in artifacts and biology connects the two domains and frames mechanisms via epistemic circularity. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2024; 104:23-37. [PMID: 38430647 DOI: 10.1016/j.shpsa.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The understanding of artifacts and biological phenomena has often influenced each other. This work argues that at the core of these epistemic bridges there are shared teleological notions and explanations manifested in analogies between artifacts and biological phenomena. To this end, I first propose a focus on the logical structure of minimal teleological explanations, which renders said epistemic bridges more evident than an ontological or metaphysical approach to teleology, and which can be used to describe scientific practices in different areas by virtue of formal generality and minimalism (section 2). Second, I show how this approach highlights some epistemic features shared by the understanding of artifacts and biological phenomena, like a specific kind of epistemic circularity, and how functional analogies between artifacts and biological phenomena translate such epistemic circularity from one domain to the other (section 3). Third, I conduct a case study on the scientific practice around the brain's "compass", showing how the understanding of artifacts influences purpose ascription and measurement, and frames mechanisms in biology, especially in areas where purpose ascription is most difficult, like cognitive neuroscience (sections 4 and 5).
Collapse
Affiliation(s)
- José Antonio Pérez-Escobar
- Centre Cavaillès, UAR 3608 République des Savoirs, École Normale Supérieure, PSL University, 45 Rue d'Ulm, 75005, Paris, France; Chair of History and Philosophy of Mathematical Sciences, ETH Zurich, Clausiusstrasse 59, 8092, Zurich, Switzerland; Department of Personality, Evaluation and Psychological Treatment, University of Seville, calle Camilo José Cela S/N, 41018, Seville, Spain.
| |
Collapse
|
6
|
Montévil M. Mathematical Modeling in the Study of Organisms and Their Parts. Methods Mol Biol 2024; 2745:105-119. [PMID: 38060182 DOI: 10.1007/978-1-0716-3577-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Mathematical modeling is a very powerful tool to understand natural phenomena. Such a tool carries its own assumptions and should always be used critically. In this chapter we highlight the key ingredients and steps of modeling and focus on their biological interpretation. Particularly, we discuss the role of theoretical principles in writing models. We also highlight the meaning and interpretation of equations. The main aim of this chapter is to facilitate the interaction between biologists and mathematical modelers. We focus on the case of cell proliferation and motility in the context of multicellular organisms.
Collapse
Affiliation(s)
- Maël Montévil
- Centre Cavaillès, République des savoirs UAR 3608, ÉNS-PSL and CNRS, Paris, France
| |
Collapse
|
7
|
Schaeberle CM, Bouffard VA, Sonnenschein C, Soto AM. Modeling Mammary Organogenesis from Biological First Principles: A Systems Biology Approach. Methods Mol Biol 2024; 2745:177-188. [PMID: 38060186 DOI: 10.1007/978-1-0716-3577-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Stromal-epithelial interactions mediate mammary gland development and the formation and progression of breast cancer. To study these interactions in vitro, 3D models are essential. We have successfully developed novel 3D in vitro models that allow the formation of mammary gland structures closely resembling those found in vivo and that respond to the hormonal cues that regulate mammary gland morphogenesis and function. Due to their simplicity when compared to in vivo studies, and to their accessibility to visualization in real time, these models are well suited to conceptual and mathematical modeling.
Collapse
Affiliation(s)
| | | | | | - Ana M Soto
- Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Prescott TJ, Wilson SP. Understanding brain functional architecture through robotics. Sci Robot 2023; 8:eadg6014. [PMID: 37256968 DOI: 10.1126/scirobotics.adg6014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023]
Abstract
Robotics is increasingly seen as a useful test bed for computational models of the brain functional architecture underlying animal behavior. We provide an overview of past and current work, focusing on probabilistic and dynamical models, including approaches premised on the free energy principle, situating this endeavor in relation to evidence that the brain constitutes a layered control system. We argue that future neurorobotic models should integrate multiple neurobiological constraints and be hybrid in nature.
Collapse
Affiliation(s)
- Tony J Prescott
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Stuart P Wilson
- Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Boenke LT, Zeghbib A, Spiliopoulou M, Alais D, Ohl FW. Prestimulus α/β power in temporal-order judgments: individuals differ in direction of modulation but show consistency over auditory and visual tasks. Front Comput Neurosci 2023; 17:1145267. [PMID: 37303589 PMCID: PMC10248147 DOI: 10.3389/fncom.2023.1145267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
The processing of incoming sensory information can be differentially affected by varying levels of α-power in the electroencephalogram (EEG). A prominent hypothesis is that relatively low prestimulus α-power is associated with improved perceptual performance. However, there are studies in the literature that do not fit easily into this picture, and the reasons for this are poorly understood and rarely discussed. To evaluate the robustness of previous findings and to better understand the overall mixed results, we used a spatial TOJ task in which we presented auditory and visual stimulus pairs in random order while recording EEG. For veridical and non-veridical TOJs, we calculated the power spectral density (PSD) for 3 frequencies (5 Hz steps: 10, 15, and 20 Hz). We found on the group level: (1) Veridical auditory TOJs, relative to non-veridical, were associated with higher β-band (20 Hz) power over central electrodes. (2) Veridical visual TOJs showed higher β-band (10, 15 Hz) power over parieto-occipital electrodes (3) Electrode site interacted with TOJ condition in the β-band: For auditory TOJs, PSD over central electrodes was higher for veridical than non-veridical and over parieto-occipital electrodes was lower for veridical than non-veridical trials, while the latter pattern was reversed for visual TOJs. While our group-level result showed a clear direction of prestimulus modulation, the individual-level modulation pattern was variable and included activations opposite to the group mean. Interestingly, our results at the individual-level mirror the situation in the literature, where reports of group-level prestimulus modulation were found in either direction. Because the direction of individual activation of electrodes over auditory brain regions and parieto-occipital electrodes was always negatively correlated in the respective TOJ conditions, this activation opposite to the group mean cannot be easily dismissed as noise. The consistency of the individual-level data cautions against premature generalization of group-effects and suggests different strategies that participants initially adopted and then consistently followed. We discuss our results in light of probabilistic information processing and complex system properties, and suggest that a general description of brain activity must account for variability in modulation directions at both the group and individual levels.
Collapse
Affiliation(s)
- Lars T. Boenke
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Abdelhafid Zeghbib
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Department of Automatic Control and Systems Engineering (ACSE), University of Sheffield, Sheffield, United Kingdom
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
| | - Myra Spiliopoulou
- Research Lab Knowledge Management and Discovery, Faculty of Computer Science, Otto-von-Guericke University, Magdeburg, Germany
| | - David Alais
- School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Faculty of Science, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
10
|
Bizzarri M, Fedeli V, Piombarolo A, Angeloni A. Space Biomedicine: A Unique Opportunity to Rethink the Relationships between Physics and Biology. Biomedicines 2022; 10:biomedicines10102633. [PMID: 36289894 PMCID: PMC9599147 DOI: 10.3390/biomedicines10102633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Space biomedicine has provided significant technological breakthroughs by developing new medical devices, diagnostic tools, and health-supporting systems. Many of these products are currently in use onboard the International Space Station and have been successfully translated into clinical practice on Earth. However, biomedical research performed in space has disclosed exciting, new perspectives regarding the relationships between physics and medicine, thus fostering the rethinking of the theoretical basis of biology. In particular, these studies have stressed the critical role that biophysical forces play in shaping the function and pattern formation of living structures. The experimental models investigated under microgravity conditions allow us to appreciate the complexity of living organisms through a very different perspective. Indeed, biological entities should be conceived as a unique magnification of physical laws driven by local energy and order states overlaid by selection history and constraints, in which the source of the inheritance, variation, and process of selection has expanded from the classical Darwinian definition. The very specific nature of the field in which living organisms behave and evolve in a space environment can be exploited to decipher the underlying, basic processes and mechanisms that are not apparent on Earth. In turn, these findings can provide novel opportunities for testing pharmacological countermeasures that can be instrumental for managing a wide array of health problems and diseases on Earth.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
- Systems Biology Group Lab, Dip. “P.Valdoni”, University La Sapienza, 00161 Rome, Italy
- Correspondence:
| | - Valeria Fedeli
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
- Systems Biology Group Lab, Dip. “P.Valdoni”, University La Sapienza, 00161 Rome, Italy
| | - Aurora Piombarolo
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
- Systems Biology Group Lab, Dip. “P.Valdoni”, University La Sapienza, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| |
Collapse
|
11
|
Song Z, Zhang J, Liu B, Wang H, Bi L, Xu Q. Practical application of European biological variation combined with Westgard Sigma Rules in internal quality control. Clin Chem Lab Med 2022; 60:1729-1735. [PMID: 36036501 DOI: 10.1515/cclm-2022-0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Westgard Sigma Rules is a statistical tool available for quality control. Biological variation (BV) can be used to set analytical performance specifications (APS). The European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) regularly updates BV data. However, few studies have used robust BV data to determine quality goals and design a quality control strategy for tumor markers. The aim of this study was to derive APS for tumor markers from EFLM BV data and apply Westgard Sigma Rules to establish internal quality control (IQC) rules. METHODS Precision was calculated from IQC data, and bias was obtained from the relative deviation of the External quality assurance scheme (EQAS) group mean values and laboratory-measured values. Total allowable error (TEa) was derived using EFLM BV data. After calculating sigma metrics, the IQC strategy for each tumor marker was determined according to Westgard Sigma Rules. RESULTS Sigma metrics achieved for each analyte varied with the level of TEa. Most of these tumor markers except neuron-specific enolase reached 3σ or better based on TEamin. With TEades and TEaopt set as the quality goals, almost all analytes had sigma values below 3. Set TEamin as quality goal, each analyte matched IQC muti rules and numbers of control measurements according to sigma values. CONCLUSIONS Quality goals from the EFLM BV database and Westgard Sigma Rules can be used to develop IQC strategy for tumor markers.
Collapse
Affiliation(s)
- Zhenzhen Song
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P. R. China.,Zhengzhou Key Laboratory of Digestive System Tumor Marker Diagnosis, Zhengzhou, Henan, P. R. China
| | - Jiajia Zhang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P. R. China.,Zhengzhou Key Laboratory of Digestive System Tumor Marker Diagnosis, Zhengzhou, Henan, P. R. China
| | - Bing Liu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P. R. China.,Zhengzhou Key Laboratory of Digestive System Tumor Marker Diagnosis, Zhengzhou, Henan, P. R. China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P. R. China.,Zhengzhou Key Laboratory of Digestive System Tumor Marker Diagnosis, Zhengzhou, Henan, P. R. China
| | - Lijun Bi
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Qingxia Xu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, P. R. China.,Zhengzhou Key Laboratory of Digestive System Tumor Marker Diagnosis, Zhengzhou, Henan, P. R. China
| |
Collapse
|
12
|
Pontarotti G, Mossio M, Pocheville A. The genotype-phenotype distinction: from Mendelian genetics to 21st century biology. Genetica 2022; 150:223-234. [PMID: 35877054 DOI: 10.1007/s10709-022-00159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
The Genotype-Phenotype (G-P) distinction was proposed in the context of Mendelian genetics, in the wake of late nineteenth century studies about heredity. In this paper, we provide a conceptual analysis that highlights that the G-P distinction was grounded on three pillars: observability, transmissibility, and causality. Originally, the genotype is the non-observable and transmissible cause of its observable and non-transmissible effect, the phenotype. We argue that the current developments of biology have called the validity of such pillars into question. First, molecular biology has unveiled the putative material substrate of the genotype (qua DNA), making it an observable object. Second, numerous findings on non-genetic heredity suggest that some phenotypic traits can be directly transmitted. Third, recent organicist approaches to biological phenomena have emphasized the reciprocal causality between parts of a biological system, which notably applies to the relation between genotypes and phenotypes. As a consequence, we submit that the G-P distinction has lost its general validity, although it can still apply to specific situations. This calls for forging new frameworks and concepts to better describe heredity and development.
Collapse
Affiliation(s)
- Gaëlle Pontarotti
- Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS/Université Paris 1 Panthéon-Sorbonne, Paris, France.
| | - Matteo Mossio
- Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS/Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Arnaud Pocheville
- Université de Toulouse, Laboratoire Évolution et Diversité Biologique, UMR 5174, CNRS, IRD, UPS, Toulouse, France
| |
Collapse
|
13
|
Carvalho J. A computational model of organism development and carcinogenesis resulting from cells' bioelectric properties and communication. Sci Rep 2022; 12:9206. [PMID: 35654933 PMCID: PMC9163332 DOI: 10.1038/s41598-022-13281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
A sound theory of biological organization is clearly missing for a better interpretation of observational results and faster progress in understanding life complexity. The availability of such a theory represents a fundamental progress in explaining both normal and pathological organism development. The present work introduces a computational implementation of some principles of a theory of organism development, namely that the default state of cells is proliferation and motility, and includes the principle of variation and organization by closure of constraints. In the present model, the bioelectric context of cells and tissue is the field responsible for organization, as it regulates cell proliferation and the level of communication driving the system's evolution. Starting from a depolarized (proliferative) cell, the organism grows to a certain size, limited by the increasingly polarized state after successive proliferation events. The system reaches homeostasis, with a depolarized core (proliferative cells) surrounded by a rim of polarized cells (non-proliferative in this condition). This state is resilient to cell death (random or due to injure) and to limited depolarization (potentially carcinogenic) events. Carcinogenesis is introduced through a localized event (a spot of depolarized cells) or by random depolarization of cells in the tissue, which returns cells to their initial proliferative state. The normalization of the bioelectric condition can reverse this out-of-equilibrium state to a new homeostatic one. This simplified model of embryogenesis, tissue organization and carcinogenesis, based on non-excitable cells' bioelectric properties, can be made more realistic with the introduction of other components, like biochemical fields and mechanical interactions, which are fundamental for a more faithful representation of reality. However, even a simple model can give insight for new approaches in complex systems and suggest new experimental tests, focused in its predictions and interpreted under a new paradigm.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Bich L, Bechtel W. Organization needs organization: Understanding integrated control in living organisms. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 93:96-106. [PMID: 35366521 DOI: 10.1016/j.shpsa.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Organization figures centrally in the understanding of biological systems advanced by both new mechanists and proponents of the autonomy framework. The new mechanists focus on how components of mechanisms are organized to produce a phenomenon and emphasize productive continuity between these components. The autonomy framework focuses on how the components of a biological system are organized in such a way that they contribute to the maintenance of the organisms that produce them. In this paper we analyze and compare these two accounts of organization and argue that understanding biological organisms as cohesively integrated systems benefits from insights from both. To bring together the two accounts, we focus on the notions of control and regulation as bridge concepts. We start from a characterization of biological mechanisms in terms of constraints and focus on a specific type of mechanism, control mechanisms, that operate on other mechanisms on the basis of measurements of variables in the system and its environment. Control mechanisms are characterized by their own set of constraints that enable them to sense conditions, convey signals, and effect changes on constraints in the controlled mechanism. They thereby allow living organisms to adapt to internal and external variations and to coordinate their parts in such a manner as to maintain viability. Because living organisms contain a vast number of control mechanisms, a central challenge is to understand how they are themselves organized. With the support of examples from both unicellular and multicellular systems we argue that control mechanisms are organized heterarchically, and we discuss how this type of control architecture can, without invoking top-down and centralized forms of organizations, succeed in coordinating internal activities of organisms.
Collapse
Affiliation(s)
- Leonardo Bich
- IAS-Research Centre for Life, Mind and Society, Department of Philosophy, University of the Basque Country (UPV/EHU), Avenida de Tolosa 70, Donostia-San Sebastian, 20018, Spain; Center for Philosophy of Science, University of Pittsburgh, 1117 Cathedral of Learning, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| | - William Bechtel
- Department of Philosophy, University of California San Diego, La Jolla, CA, USA, 92093-0119
| |
Collapse
|
15
|
Biological action at a distance: Correlated pattern formation in adjacent tessellation domains without communication. PLoS Comput Biol 2022; 18:e1009963. [PMID: 35344536 PMCID: PMC8989308 DOI: 10.1371/journal.pcbi.1009963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/07/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Tessellations emerge in many natural systems, and the constituent domains often contain regular patterns, raising the intriguing possibility that pattern formation within adjacent domains might be correlated by the geometry, without the direct exchange of information between parts comprising either domain. We confirm this paradoxical effect, by simulating pattern formation via reaction-diffusion in domains whose boundary shapes tessellate, and showing that correlations between adjacent patterns are strong compared to controls that self-organize in domains with equivalent sizes but unrelated shapes. The effect holds in systems with linear and non-linear diffusive terms, and for boundary shapes derived from regular and irregular tessellations. Based on the prediction that correlations between adjacent patterns should be bimodally distributed, we develop methods for testing whether a given set of domain boundaries constrained pattern formation within those domains. We then confirm such a prediction by analysing the development of ‘subbarrel’ patterns, which are thought to emerge via reaction-diffusion, and whose enclosing borders form a Voronoi tessellation on the surface of the rodent somatosensory cortex. In more general terms, this result demonstrates how causal links can be established between the dynamical processes through which biological patterns emerge and the constraints that shape them. Patterns can form in biological systems as a net effect of dynamical interactions that are excitatory over short distances and inhibitory over larger distances. Patterns that form in this way are known to reflect the shape of the boundary conditions that contain them. But observing that a particular pattern is contained by a boundary is not enough to determine whether or not that boundary was a constraint on pattern formation. Here we develop a novel test for the influence of boundary shape on pattern formation, based on comparing patterns contained by boundaries whose shapes tessellate and thus are geometrically related. Applying this test to patterns of cell density measured in the developing neocortex confirms that cortical column boundaries constrain pattern formation during the first postnatal weeks. In more general terms, our analysis reveals that strong relationships between patterns that form in adjacent biological domains are to be expected based purely on geometrical effects, even if no information is exchanged between those domains during the process of pattern formation. Our analysis provides a means for testing current theories about the fundamental role that constraints play in organising biological systems.
Collapse
|
16
|
Wilson SP, Prescott TJ. Scaffolding layered control architectures through constraint closure: insights into brain evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200519. [PMID: 34957842 PMCID: PMC8710877 DOI: 10.1098/rstb.2020.0519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/05/2021] [Indexed: 12/26/2022] Open
Abstract
The functional organization of the mammalian brain can be considered to form a layered control architecture, but how this complex system has emerged through evolution and is constructed during development remains a puzzle. Here we consider brain organization through the framework of constraint closure, viewed as a general characteristic of living systems, that they are composed of multiple sub-systems that constrain each other at different timescales. We do so by developing a new formalism for constraint closure, inspired by a previous model showing how within-lifetime dynamics can constrain between-lifetime dynamics, and we demonstrate how this interaction can be generalized to multi-layered systems. Through this model, we consider brain organization in the context of two major examples of constraint closure-physiological regulation and visual orienting. Our analysis draws attention to the capacity of layered brain architectures to scaffold themselves across multiple timescales, including the ability of cortical processes to constrain the evolution of sub-cortical processes, and of the latter to constrain the space in which cortical systems self-organize and refine themselves. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Stuart P. Wilson
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Tony J. Prescott
- Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Soto AM, Sonnenschein C. The cancer puzzle: Welcome to organicism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:114-119. [PMID: 34271028 DOI: 10.1016/j.pbiomolbio.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
During the fifty years since President Nixon declared the "War on Cancer", those inside and outside the cancer community have witnessed the systematic moving of the goalposts attitude to accommodate evidence into an inadequate theory, that is, the Somatic Mutation Theory (SMT). This sorry state promoted a renewable yearly promise that at the end of the next 10-year period the promises uttered in 1971 would become reality. Each failure triggered calls to do more of the same research under the same theory, routinely using more and more sophisticated technology. Meanwhile, in the last few years, an unambiguous general consensus has emerged acknowledging that this overall long, intensive effort has failed, and that it is likely that the solution to the cancer problem resides elsewhere, namely, in alternative theoretical principles of biology. In this essay we concentrate, first, on the big picture, from the philosophical stance (reductionism versus organicism) to the need to adopt rigorous theories. From this novel perspective we conceptualize cancer as a disease of tissue organization akin to development gone awry. Finally, having identified both a promising stance and a useful theory, i.e., the tissue organization field theory (TOFT), we call for abandoning the SMT and for adopting the more promising TOFT.
Collapse
Affiliation(s)
- Ana M Soto
- Tufts University School of Medicine, Boston, Massachusetts, USA; Centre Cavaillès, République des Savoirs, École Normale Supérieure, Paris, France.
| | - Carlos Sonnenschein
- Tufts University School of Medicine, Boston, Massachusetts, USA; Centre Cavaillès, République des Savoirs, École Normale Supérieure, Paris, France.
| |
Collapse
|
18
|
|
19
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
20
|
|
21
|
Soto AM, Sonnenschein C. Information, programme, signal: dead metaphors that negate the agency of organisms. INTERDISCIPLINARY SCIENCE REVIEWS : ISR 2020; 45:331-343. [PMID: 33100483 PMCID: PMC7577589 DOI: 10.1080/03080188.2020.1794389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The metaphorical adoption of the concepts of information, program and signal introduced into biology the logic and implicit causal structure of the mathematical theories of information; this is inimical to biology. In turn, those metaphors have hindered the development of a theory of organisms by transferring the agency of organisms to natural selection and to DNA. Moreover, those metaphors introduced into biology the dualism software-hardware and a Laplacian causal structure. Instead, we propose to uphold the agency of the living by adopting three foundational principles for a theory of organisms: namely, 1) the principle of biological inertia (i.e., the default state of cells is proliferation and motility), 2) the principle of variation, and 3) the principle of organization.
Collapse
Affiliation(s)
- Ana M. Soto
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA 02111, USA
- Centre Cavaillès, École Normale Supérieure, 29, Rue d’Ulm, Paris 75005, France
| |
Collapse
|
22
|
Historicity at the heart of biology. Theory Biosci 2020; 141:165-173. [DOI: 10.1007/s12064-020-00320-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 06/01/2020] [Indexed: 01/04/2023]
|
23
|
Montévil M, Mossio M. The Identity of Organisms in Scientific Practice: Integrating Historical and Relational Conceptions. Front Physiol 2020; 11:611. [PMID: 32625111 PMCID: PMC7311753 DOI: 10.3389/fphys.2020.00611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
We address the identity of biological organisms at play in experimental and modeling practices. We first examine the central tenets of two general conceptions, and we assess their respective strengths and weaknesses. The historical conception, on the one hand, characterizes organisms' identity by looking at their past, and specifically at their genealogical connection with a common ancestor. The relational conception, on the other hand, interprets organisms' identity by referring to a set of distinctive relations between their parts, and between the organism and its environment. While the historical and relational conceptions are understood as opposed and conflicting, we submit that they are also fundamentally complementary. Accordingly, we put forward a hybrid conception, in which historical and relational (and more specifically, organizational) aspects of organisms' identity sustain and justify each other. Moreover, we argue that organisms' identity is not only hybrid but also bounded, insofar as the compliance with specific identity criteria tends to vanish as time passes, especially across generations. We spell out the core conceptual framework of this conception, and we outline an original formal representation. We contend that the hybrid and bounded conception of organisms' identity suits the epistemological needs of biological practices, particularly with regards to the generalization and reproducibility of experimental results, and the integration of mathematical models with experiments.
Collapse
Affiliation(s)
- Maël Montévil
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST, UMR 8590), Université Paris 1 et CNRS, Paris, France
- Centre Pompidou, Institut de Recherche et d'Innovation, Paris, France
| | - Matteo Mossio
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST, UMR 8590), Université Paris 1 et CNRS, Paris, France
| |
Collapse
|
24
|
Abstract
Biological systems are dynamic and display heterogeneity at all levels. Ubiquitous heterogeneity, here called for poikilosis, is an integral and important property of organisms and in molecules, systems and processes within them. Traditionally, heterogeneity in biology and experiments has been considered as unwanted noise, here poikilosis is shown to be the normal state. Acceptable variation ranges are called as lagom. Non-lagom, variations that are too extensive, have negative effects, which influence interconnected levels and once the variation is large enough cause a disease and can lead even to death. Poikilosis has numerous applications and consequences e.g. for how to design, analyze and report experiments, how to develop and apply prediction and modelling methods, and in diagnosis and treatment of diseases. Poikilosis-aware new and practical definitions are provided for life, death, senescence, disease, and lagom. Poikilosis is the first new unifying theory in biology since evolution and should be considered in every scientific study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| |
Collapse
|
25
|
Abstract
Biological systems are dynamic and display heterogeneity at all levels. Ubiquitous heterogeneity, here called for poikilosis, is an integral and important property of organisms and in molecules, systems and processes within them. Traditionally, heterogeneity in biology and experiments has been considered as unwanted noise, here poikilosis is shown to be the normal state. Acceptable variation ranges are called as lagom. Non-lagom, variations that are too extensive, have negative effects, which influence interconnected levels and once the variation is large enough cause a disease and can lead even to death. Poikilosis has numerous applications and consequences e.g. for how to design, analyze and report experiments, how to develop and apply prediction and modelling methods, and in diagnosis and treatment of diseases. Poikilosis-aware new and practical definitions are provided for life, death, senescence, disease, and lagom. Poikilosis is the first new unifying theory in biology since evolution and should be considered in every scientific study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, 22184, Sweden
| |
Collapse
|
26
|
Sonnenschein C, Soto AM. Over a century of cancer research: Inconvenient truths and promising leads. PLoS Biol 2020; 18:e3000670. [PMID: 32236102 PMCID: PMC7153880 DOI: 10.1371/journal.pbio.3000670] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Despite over a century of intensive efforts, the great gains promised by the War on Cancer nearly 50 years ago have not materialized. Since 1999, we have analyzed the lack of progress in explaining and "curing" cancer by examining the merits of the premises that determine how cancer is understood and treated. Our ongoing critical analyses have aimed at clarifying the sources of misunderstandings at the root of the cancer puzzle while providing a plausible and comprehensive biomedical perspective as well as a new theory of carcinogenesis that is compatible with evolutionary theory. In this essay, we explain how this new theory, the tissue organization field theory (TOFT), can help chart a path to progress for cancer researchers by explaining features of cancer that remain unexplainable from the perspective of the still hegemonic somatic mutation theory (SMT) and its variants. Of equal significance, the premises underlying the TOFT offer new perspectives on basic biological phenomena.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| | - Ana M. Soto
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Centre Cavaillès, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
27
|
Ilan Y. Order Through Disorder: The Characteristic Variability of Systems. Front Cell Dev Biol 2020; 8:186. [PMID: 32266266 PMCID: PMC7098948 DOI: 10.3389/fcell.2020.00186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Randomness characterizes many processes in nature, and therefore its importance cannot be overstated. In the present study, we investigate examples of randomness found in various fields, to underlie its fundamental processes. The fields we address include physics, chemistry, biology (biological systems from genes to whole organs), medicine, and environmental science. Through the chosen examples, we explore the seemingly paradoxical nature of life and demonstrate that randomness is preferred under specific conditions. Furthermore, under certain conditions, promoting or making use of variability-associated parameters may be necessary for improving the function of processes and systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
28
|
El-Haj M, Kanovitch D, Ilan Y. Personalized inherent randomness of the immune system is manifested by an individualized response to immune triggers and immunomodulatory therapies: a novel platform for designing personalized immunotherapies. Immunol Res 2019; 67:337-347. [DOI: 10.1007/s12026-019-09101-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Korenić A, Perović S, Ćirković MM, Miquel PA. Symmetry breaking and functional incompleteness in biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:1-12. [PMID: 30776381 DOI: 10.1016/j.pbiomolbio.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Symmetry-based explanations using symmetry breaking (SB) as the key explanatory tool have complemented and replaced traditional causal explanations in various domains of physics. The process of spontaneous SB is now a mainstay of contemporary explanatory accounts of large chunks of condensed-matter physics, quantum field theory, nonlinear dynamics, cosmology, and other disciplines. A wide range of empirical research into various phenomena related to symmetries and SB across biological scales has accumulated as well. Led by these results, we identify and explain some common features of the emergence, propagation, and cascading of SB-induced layers across the biosphere. These features are predicated on the thermodynamic openness and intrinsic functional incompleteness of the systems at stake and have not been systematically analyzed from a general philosophical and methodological perspective. We also consider possible continuity of SB across the physical and biological world and discuss the connection between Darwinism and SB-based analysis of the biosphere and its history.
Collapse
Affiliation(s)
- Andrej Korenić
- The Centre for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
31
|
Ellis GFR, Kopel J. The Dynamical Emergence of Biology From Physics: Branching Causation via Biomolecules. Front Physiol 2019; 9:1966. [PMID: 30740063 PMCID: PMC6355675 DOI: 10.3389/fphys.2018.01966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/31/2018] [Indexed: 01/30/2023] Open
Abstract
Biology differs fundamentally from the physics that underlies it. This paper proposes that the essential difference is that while physics at its fundamental level is Hamiltonian, in biology, once life has come into existence, causation of a contextual branching nature occurs at every level of the hierarchy of emergence at each time. The key feature allowing this to happen is the way biomolecules such as voltage-gated ion channels can act to enable branching logic to arise from the underlying physics, despite that physics per se being of a deterministic nature. Much randomness occurs at the molecular level, which enables higher level functions to select lower level outcomes according to higher level needs. Intelligent causation occurs when organisms engage in deduction, enabling prediction and planning. This is possible because ion channels enable action potentials to propagate in axons. The further key feature is that such branching biological behavior acts down to cause the underlying physical interactions to also exhibit a contextual branching behavior.
Collapse
Affiliation(s)
- George F. R. Ellis
- Mathematics Department, University of Cape Town, Cape Town, South Africa
| | - Jonathan Kopel
- Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, United States
| |
Collapse
|
32
|
Abstract
The firing rate of neuronal spiking in vitro and in vivo significantly varies over extended timescales, characterized by long-memory processes and complex statistics, and appears in spontaneous as well as evoked activity upon repeated stimulus presentation. These variations in response features and their statistics, in face of repeated instances of a given physical input, are ubiquitous in all levels of brain-behavior organization. They are expressed in single neuron and network response variability but even appear in variations of subjective percepts or psychophysical choices and have been described as stemming from history-dependent, stochastic, or rate-determined processes.But what are the sources underlying these temporally rich variations in firing rate? Are they determined by interactions of the nervous system as a whole, or do isolated, single neurons or neuronal networks already express these fluctuations independent of higher levels? These questions motivated the application of a method that allows for controlled and specific long-term activation of a single neuron or neuronal network, isolated from higher levels of cortical organization.This chapter highlights the research done in cultured cortical networks to study (1) the inherent non-stationarity of neuronal network activity, (2) single neuron response fluctuations and underlying processes, and (3) the interface layer between network and single cell, the non-stationary efficacy of the ensemble of synapses impinging onto the observed neuron.
Collapse
|
33
|
Abstract
Analysis of Rosen's theories with a focus on their mathematical content. Provides links of Rosen's work with most recent research into mathematical modelling. Possible implementations of ’closure to efficient causation’ in models are discussed. Critical analysis of Rosen's use of category theory.
The theoretical biologist Robert Rosen developed a highly original approach for investigating the question “What is life?”, the most fundamental problem of biology. Considering that Rosen made extensive use of mathematics it might seem surprising that his ideas have only rarely been implemented in mathematical models. On the one hand, Rosen propagates relational models that neglect underlying structural details of the components and focus on relationships between the elements of a biological system, according to the motto “throw away the physics, keep the organisation”. Rosen's strong rejection of mechanistic models that he implicitly associates with a strong form of reductionism might have deterred mathematical modellers from adopting his ideas for their own work. On the other hand Rosen's presentation of his modelling framework, (M, R) systems, is highly abstract which makes it hard to appreciate how this approach could be applied to concrete biological problems. In this article, both the mathematics as well as those aspects of Rosen's work are analysed that relate to his philosophical ideas. It is shown that Rosen's relational models are a particular type of mechanistic model with specific underlying assumptions rather than a fundamentally different approach that excludes mechanistic models. The strengths and weaknesses of relational models are investigated by comparison with current network biology literature. Finally, it is argued that Rosen's definition of life, “organisms are closed to efficient causation”, should be considered as a hypothesis to be tested and ideas how this postulate could be implemented in mathematical models are presented.
Collapse
|
34
|
Abstract
Mathematical modeling is a very powerful tool for understanding natural phenomena. Such a tool carries its own assumptions and should always be used critically. In this chapter, we highlight the key ingredients and steps of modeling and focus on their biological interpretation. In particular, we discuss the role of theoretical principles in writing models. We also highlight the meaning and interpretation of equations. The main aim of this chapter is to facilitate the interaction between biologists and mathematical modelers. We focus on the case of cell proliferation and motility in the context of multicellular organisms.
Collapse
Affiliation(s)
- Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris, 7 Diderot, 75205, Paris Cedex 13, France. .,Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), UMR 8590, Paris, France.
| |
Collapse
|
35
|
Bizzarri M, Masiello MG, Giuliani A, Cucina A. Gravity Constraints Drive Biological Systems Toward Specific Organization Patterns: Commitment of cell specification is constrained by physical cues. Bioessays 2017; 40. [PMID: 29134681 DOI: 10.1002/bies.201700138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/25/2017] [Indexed: 01/18/2023]
Abstract
Different cell lineages growing in microgravity undergo a spontaneous transition leading to the emergence of two distinct phenotypes. By returning these populations in a normal gravitational field, the two phenotypes collapse, recovering their original configuration. In this review, we hypothesize that, once the gravitational constraint is removed, the system freely explores its phenotypic space, while, when in a gravitational field, cells are "constrained" to adopt only one favored configuration. We suggest that the genome allows for a wide range of "possibilities" but it is unable per se to choose among them: the emergence of a specific phenotype is enabled by physical constraints that drive the system toward a preferred solution. These findings may help in understanding how cells and tissues behave in both development and cancer.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, Rome 00161, Italy
| | - Maria Grazia Masiello
- Department of Experimental Medicine Systems Biology Group, Sapienza University of Rome, viale Regina Elena 324, Rome 00161, Italy.,Department of Surgery "PietroValdoni", Sapienza University of Rome, via A. Scarpa 14, Rome 00161, Italy
| | - Alessandro Giuliani
- Environment and Health Department Istituto Superiore di Sanità, viale Regina Elena 299, Roma 00161, Italy
| | - Alessandra Cucina
- Department of Surgery "PietroValdoni", Sapienza University of Rome, via A. Scarpa 14, Rome 00161, Italy
| |
Collapse
|
36
|
Islami A, Longo G. Marriages of mathematics and physics: A challenge for biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 131:179-192. [PMID: 28887142 DOI: 10.1016/j.pbiomolbio.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 12/28/2022]
Abstract
The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of "geometric judgments" from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) "space" should be revisited for the purposes of life sciences.
Collapse
Affiliation(s)
| | - Giuseppe Longo
- Centre Cavaillès, CNRS - Ecole Normale Supérieure, Paris and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, USA.
| |
Collapse
|
37
|
Soto AM, Longo G, Montévil M, Sonnenschein C. The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:16-23. [PMID: 27381480 PMCID: PMC5659334 DOI: 10.1016/j.pbiomolbio.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 11/22/2022]
Abstract
The principle of inertia is central to the modern scientific revolution. By postulating this principle Galileo at once identified a pertinent physical observable (momentum) and a conservation law (momentum conservation). He then could scientifically analyze what modifies inertial movement: gravitation and friction. Inertia, the default state in mechanics, represented a major theoretical commitment: there is no need to explain uniform rectilinear motion, rather, there is a need to explain departures from it. By analogy, we propose a biological default state of proliferation with variation and motility. From this theoretical commitment, what requires explanation is proliferative quiescence, lack of variation, lack of movement. That proliferation is the default state is axiomatic for biologists studying unicellular organisms. Moreover, it is implied in Darwin's "descent with modification". Although a "default state" is a theoretical construct and a limit case that does not need to be instantiated, conditions that closely resemble unrestrained cell proliferation are readily obtained experimentally. We will illustrate theoretical and experimental consequences of applying and of ignoring this principle.
Collapse
Affiliation(s)
- Ana M Soto
- Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et Ecole Normale Supérieure, Paris, France; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Giuseppe Longo
- Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et Ecole Normale Supérieure, Paris, France; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205, Paris Cedex 13, France; Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), UMR 8590, 13, rue du Four, 75006, Paris, France.
| | - Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, Ecole Normale Supérieure, Paris, France; Institut d'Etudes Avancées de Nantes, France.
| |
Collapse
|
38
|
SOTO ANAM, LONGO GIUSEPPE, MIQUEL PAULANTOINE, MONTEVIL MAËL, MOSSIO MATTEO, PERRET NICOLE, POCHEVILLE ARNAUD, SONNENSCHEIN CARLOS. Toward a theory of organisms: Three founding principles in search of a useful integration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:77-82. [PMID: 27498204 PMCID: PMC5097676 DOI: 10.1016/j.pbiomolbio.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 01/09/2023]
Abstract
Organisms, be they uni- or multi-cellular, are agents capable of creating their own norms; they are continuously harmonizing their ability to create novelty and stability, that is, they combine plasticity with robustness. Here we articulate the three principles for a theory of organisms, namely: the default state of proliferation with variation and motility, the principle of variation and the principle of organization. These principles profoundly change both biological observables and their determination with respect to the theoretical framework of physical theories. This radical change opens up the possibility of anchoring mathematical modeling in biologically proper principles.
Collapse
Affiliation(s)
- ANA M. SOTO
- Centre Cavaillès, République des Savoirs, CNRS USR3608,, Collège de France et Ecole Normale Supérieure, Paris, France and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA USA
| | - GIUSEPPE LONGO
- Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et Ecole Normale Supérieure, Paris, France and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA USA,
| | - PAUL-ANTOINE MIQUEL
- Paul-Antoine Miquel, Université de Toulouse 2, , 5 Allée Antonio Machado 31058 TOULOUSE Cedex 9
| | - MAËL MONTEVIL
- Laboratoire “Matière et Systèmes Complexes” (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France And associated member of: Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST) - UMR 8590, 13, rue du Four, 75006 Paris, France,
| | - MATTEO MOSSIO
- IHPST (CNRS/Paris 1/ENS) 13, rue du four, 75006 Paris France,
| | - NICOLE PERRET
- Centre Cavaillès, République des Savoirs, CNRS USR3608,, Collège de France et Ecole Normale Supérieure, Paris, France
| | - ARNAUD POCHEVILLE
- Department of Philosophy and Charles Perkins Center, University of Sydney, Sydney, Australia
| | - CARLOS SONNENSCHEIN
- Centre Cavaillès, École Normale Supérieure, Paris, France, and Institut d'Etudes Avancees de Nantes, France. and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA USA.
| |
Collapse
|
39
|
Montévil M, Speroni L, Sonnenschein C, Soto AM. Modeling mammary organogenesis from biological first principles: Cells and their physical constraints. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:58-69. [PMID: 27544910 DOI: 10.1016/j.pbiomolbio.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 12/16/2022]
Abstract
In multicellular organisms, relations among parts and between parts and the whole are contextual and interdependent. These organisms and their cells are ontogenetically linked: an organism starts as a cell that divides producing non-identical cells, which organize in tri-dimensional patterns. These association patterns and cells types change as tissues and organs are formed. This contextuality and circularity makes it difficult to establish detailed cause and effect relationships. Here we propose an approach to overcome these intrinsic difficulties by combining the use of two models; 1) an experimental one that employs 3D culture technology to obtain the structures of the mammary gland, namely, ducts and acini, and 2) a mathematical model based on biological principles. The typical approach for mathematical modeling in biology is to apply mathematical tools and concepts developed originally in physics or computer sciences. Instead, we propose to construct a mathematical model based on proper biological principles. Specifically, we use principles identified as fundamental for the elaboration of a theory of organisms, namely i) the default state of cell proliferation with variation and motility and ii) the principle of organization by closure of constraints. This model has a biological component, the cells, and a physical component, a matrix which contains collagen fibers. Cells display agency and move and proliferate unless constrained; they exert mechanical forces that i) act on collagen fibers and ii) on other cells. As fibers organize, they constrain the cells on their ability to move and to proliferate. The model exhibits a circularity that can be interpreted in terms of closure of constraints. Implementing the mathematical model shows that constraints to the default state are sufficient to explain ductal and acinar formation, and points to a target of future research, namely, to inhibitors of cell proliferation and motility generated by the epithelial cells. The success of this model suggests a step-wise approach whereby additional constraints imposed by the tissue and the organism could be examined in silico and rigorously tested by in vitro and in vivo experiments, in accordance with the organicist perspective we embrace.
Collapse
Affiliation(s)
- Maël Montévil
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France; Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST) - UMR 8590, 13, rue du Four, 75006 Paris, France.
| | - Lucia Speroni
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, École Normale Supérieure, Paris, France; Institut d'Etudes Avancées de Nantes, France.
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et École Normale Supérieure, Paris, France.
| |
Collapse
|
40
|
Sonnenschein C, Soto AM. Carcinogenesis explained within the context of a theory of organisms. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:70-76. [PMID: 27498170 DOI: 10.1016/j.pbiomolbio.2016.07.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/28/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
For a century, the somatic mutation theory (SMT) has been the prevalent theory to explain carcinogenesis. According to the SMT, cancer is a cellular problem, and thus, the level of organization where it should be studied is the cellular level. Additionally, the SMT proposes that cancer is a problem of the control of cell proliferation and assumes that proliferative quiescence is the default state of cells in metazoa. In 1999, a competing theory, the tissue organization field theory (TOFT), was proposed. In contraposition to the SMT, the TOFT posits that cancer is a tissue-based disease whereby carcinogens (directly) and mutations in the germ-line (indirectly) alter the normal interactions between the diverse components of an organ, such as the stroma and its adjacent epithelium. The TOFT explicitly acknowledges that the default state of all cells is proliferation with variation and motility. When taking into consideration the principle of organization, we posit that carcinogenesis can be explained as a relational problem whereby release of the constraints created by cell interactions and the physical forces generated by cellular agency lead cells within a tissue to regain their default state of proliferation with variation and motility. Within this perspective, what matters both in morphogenesis and carcinogenesis is not only molecules, but also biophysical forces generated by cells and tissues. Herein, we describe how the principles for a theory of organisms apply to the TOFT and thus to the study of carcinogenesis.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Centre Cavaillès, École Normale Supérieure, Paris, France; Institut d'Etudes Avancees de Nantes, France; Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA.
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; Centre Cavaillès, République des Savoirs, CNRS USR3608, Collège de France et Ecole Normale Supérieure, Paris, France.
| |
Collapse
|