1
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biological mechanisms contradict AI consciousness: The spaces between the notes. Biosystems 2024; 247:105387. [PMID: 39736318 DOI: 10.1016/j.biosystems.2024.105387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
The presumption that experiential consciousness requires a nervous system and brain has been central to the debate on the possibility of developing a conscious form of artificial intelligence (AI). The likelihood of future AI consciousness or devising tools to assess its presence has focused on how AI might mimic brain-centered activities. Currently, dual general assumptions prevail: AI consciousness is primarily an issue of functional information density and integration, and no substantive technical barriers exist to prevent its achievement. When the cognitive process that underpins consciousness is stipulated as a cellular attribute, these premises are directly contradicted. The innate characteristics of biological information and how that information is managed by individual cells have no parallels within machine-based AI systems. Any assertion of computer-based AI consciousness represents a fundamental misapprehension of these crucial differences.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
2
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biology in the 21st century: Natural selection is cognitive selection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:170-184. [PMID: 38740143 DOI: 10.1016/j.pbiomolbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
3
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Why death and aging ? All memories are imperfect. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:21-35. [PMID: 38316274 DOI: 10.1016/j.pbiomolbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
4
|
Lingam M. Information Transmission via Molecular Communication in Astrobiological Environments. ASTROBIOLOGY 2024; 24:84-99. [PMID: 38109216 DOI: 10.1089/ast.2023.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The ubiquity of information transmission via molecular communication between cells is comprehensively documented on Earth; this phenomenon might even have played a vital role in the origin(s) and early evolution of life. Motivated by these considerations, a simple model for molecular communication entailing the diffusion of signaling molecules from transmitter to receiver is elucidated. The channel capacity C (maximal rate of information transmission) and an optimistic heuristic estimate of the actual information transmission rate ℐ are derived for this communication system; the two quantities, especially the latter, are demonstrated to be broadly consistent with laboratory experiments and more sophisticated theoretical models. The channel capacity exhibits a potentially weak dependence on environmental parameters, whereas the actual information transmission rate may scale with the intercellular distance d as ℐ ∝ d-4 and could vary substantially across settings. These two variables are roughly calculated for diverse astrobiological environments, ranging from Earth's upper oceans (C ∼ 3.1 × 103 bits/s; ℐ ∼ 4.7 × 10-2 bits/s) and deep sea hydrothermal vents (C ∼ 4.2 × 103 bits/s; ℐ ∼ 1.2 × 10-1 bits/s) to the hydrocarbon lakes and seas of Titan (C ∼ 3.8 × 103 bits/s; ℐ ∼ 2.6 × 10-1 bits/s).
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Johnson MW. Music, cells and the dimensionality of nature. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 186:57-64. [PMID: 38103652 DOI: 10.1016/j.pbiomolbio.2023.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
One of the foundational principles of recent developments in evolutionary biology has been the acknowledgement of homeostasis as an organising principle of cellular development from unicellular origins. Fundamentally, this concerns the balance between the inside of a biological entity and its environment. Given that the organ of balance is the ear, and that the evolutionary provenance of the vestibular system can be traced back to fish, music provides a rich foundation for evolutionary biological inquiry. This paper considers a specific dimensional relationship in sonic experience between noise, signal, redundancy and anticipation. Drawing on the physics of Bohm and more recent developments in Rowlands's nilpotent quantum mechanics, I argue that the relationship between these four parameters is not only that they represent aspects of sonic experience, but that they are dimensionally distinct, where noise can be considered to be scalar, a signal (or a note) is a vector (having magnitude and direction), redundancy is bi-vectorial (involving degrees of repetition of signals over time), and anticipation is tri-vectorial (involving reflexive consideration of different orders of redundancy). In outlining the dimensional distinction between these variables, an analysis is presented which considers the relationship between the Shannon entropy of different dimensions in music. This shows that the entropy of noise has a particular bearing on the entropy of the other dimensions. This dimensional relation is also reflected in biological evidence, where Torday has shown there to be a direct correlation between the effect of gravitational "noise" on cellular communication, and by extension the evolution of consciousness.
Collapse
|
6
|
Lingam M, Frank A, Balbi A. Planetary Scale Information Transmission in the Biosphere and Technosphere: Limits and Evolution. Life (Basel) 2023; 13:1850. [PMID: 37763254 PMCID: PMC10532900 DOI: 10.3390/life13091850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Information transmission via communication between agents is ubiquitous on Earth, and is a vital facet of living systems. In this paper, we aim to quantify this rate of information transmission associated with Earth's biosphere and technosphere (i.e., a measure of global information flow) by means of a heuristic order-of-magnitude model. By adopting ostensibly conservative values for the salient parameters, we estimate that the global information transmission rate for the biosphere might be ∼1024 bits/s, and that it may perhaps exceed the corresponding rate for the current technosphere by ∼9 orders of magnitude. However, under the equivocal assumption of sustained exponential growth, we find that information transmission in the technosphere can potentially surpass that of the biosphere ∼90 years in the future, reflecting its increasing dominance.
Collapse
Affiliation(s)
- Manasvi Lingam
- Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
- Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adam Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14620, USA
| | - Amedeo Balbi
- Dipartimento di Fisica, Università di Roma “Tor Vergata”, 00133 Roma, Italy
| |
Collapse
|
7
|
Miller WB, Baluška F, Reber AS. A revised central dogma for the 21st century:all biology is cognitive information processing. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00057-3. [PMID: 37268025 DOI: 10.1016/j.pbiomolbio.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Crick's Central Dogma has been a foundational aspect of 20th century biology, describing an implicit relationship governing the flow of information in biological systems in biomolecular terms. Accumulating scientific discoveries support the need for a revised Central Dogma to buttress evolutionary biology's still-fledgling migration from a Neodarwinian canon. A reformulated Central Dogma to meet contemporary biology is proposed: all biology is cognitive information processing. Central to this contention is the recognition that life is the self-referential state, instantiated within the cellular form. Self-referential cells act to sustain themselves and to do so, cells must be in consistent harmony with their environment. That consonance is achieved by the continuous assimilation of environmental cues and stresses as information to self-referential observers. All received cellular information must be analyzed to be deployed as cellular problem-solving to maintain homeorhetic equipoise. However, the effective implementation of information is definitively a function of orderly information management. Consequently, effective cellular problem-solving is information processing and management. The epicenter of that cellular information processing is its self-referential internal measurement. All further biological self-organization initiates from this obligate activity. As the internal measurement by cells of information is self-referential by definition, self-reference is biological self-organization, underpinning 21st century Cognition-Based Biology.
Collapse
Affiliation(s)
| | | | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Miller WB. A scale-free universal relational information matrix (N-space) reconciles the information problem: N-space as the fabric of reality. Commun Integr Biol 2023; 16:2193006. [PMID: 37188326 PMCID: PMC10177686 DOI: 10.1080/19420889.2023.2193006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023] Open
Abstract
Cellular measurement is a crucial faculty in living systems, and exaptations are acknowledged as a significant source of evolutionary innovation. However, the possibility that the origin of biological order is predicated on an exaptation of the measurement of information from the abiotic realm has not been previously explored. To support this hypothesis, the existence of a universal holographic relational information space-time matrix is proposed as a scale-free unification of abiotic and biotic information systems. In this framework, information is a universal property representing the interactions between matter and energy that can be subject to observation. Since observers are also universally distributed, information can be deemed the fundamental fabric of the universe. The novel concept of compartmentalizing this universal N-space information matrix into separate N-space partitions as nodes of informational density defined by Markov blankets and boundaries is introduced, permitting their applicability to both abiotic and biotic systems. Based on these N-space partitions, abiotic systems can derive meaningful information from the conditional settlement of quantum entanglement asymmetries and coherences between separately bounded quantum informational reference frames sufficient to be construed as a form of measurement. These conditional relationships are the precursor of the reiterating nested architecture of the N-space-derived information fields that characterize life and account for biological order. Accordingly, biotic measurement and biological N-space partitioning are exaptations of preexisting information processes within abiotic systems. Abiotic and biotic states thereby reconcile as differing forms of measurement of fundamental universal information. The essential difference between abiotic and biotic states lies within the attributes of the specific observer/detectors, thereby clarifying several contentious aspects of self-referential consciousness.
Collapse
|
9
|
Marshall P. The role of quantum mechanics in cognition based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:131-139. [PMID: 37142170 DOI: 10.1016/j.pbiomolbio.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
In 2021 I noted that in all information-based systems we understand, Cognition creates Code, which controls Chemical reactions. Known agents write software which controls hardware, and not the other way around. I proposed the same is true in all of biology. Though the textbook description of cause and effect in biology proposes the reverse, that Chemical reactions produce Code from which Cognition emerges, there are no examples in the literature demonstrating either step. A mathematical proof for the first step, cognition generating code, is based on Turing's halting problem. The second step, code controlling chemical reactions, is the role of the genetic code. Thus a central question in biology: What is the nature and source of cognition? In this paper I propose a relationship between biology and Quantum Mechanics (QM), hypothesizing that the same principle that enables an observer to collapse a wave function also grants biology its agency: the organism's ability to act on the world instead of merely being a passive recipient. Just as all living cells are cognitive (Shapiro 2021, 2007; McClintock 1984; Lyon 2015; Levin 2019, Pascal and Pross, 2022), I propose humans are quantum observers because we are made of cells and all cells are observers. This supports the century-old view that in QM, the observer does not merely record the event but plays a fundamental role in its outcome.The classical world is driven by laws, which are deductive; the quantum world is driven by choices, which are inductive. When the two are combined, they form the master feedback loop of perception and action for all biology. In this paper I apply basic definitions of induction, deduction and computation to known properties of QM to show that the organism altering itself (and its environment) is a whole shaping its parts. It is not merely parts comprising a whole. I propose that an observer collapsing the wave function is the physical mechanism for producing negentropy. The way forward in solving the information problem in biology is understanding the relationship between cognition and QM.
Collapse
Affiliation(s)
- Perry Marshall
- Evolution 2.0, 805 Lake Street #295, Oak Park, IL, 60301, USA.
| |
Collapse
|
10
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Mistriotis A. Mathematical and physical considerations indicating that the cell genome is a read-write memory. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:50-56. [PMID: 36736433 DOI: 10.1016/j.pbiomolbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The molecular mechanisms that govern biological evolution have not been fully elucidated so far. Recent studies indicate that regulatory proteins, acting as decision-making complex devices, can accelerate or retard the evolution of cells. Such biochemically controlled evolution may be considered as an optimization process of logical nature aimed at developing fitter species that can better survive in a specific environment. Therefore, we may assume that new genetic information can be stored in the cell memory (i.e., genome) by a sophisticated biomolecular process that resembles writing in computer memory. Such a hypothesis is theoretically supported by a recent work showing that logic is a necessary component of life, so living systems process information in the same way as computers. The current study summarizes existing evidence showing that cells can intentionally modify their stored data by biochemical processes resembling stochastic algorithms to avoid environmental stress and increase their chances of survival. Furthermore, the mathematical and physical considerations that render a read-write memory a necessary component of biological systems are presented.
Collapse
Affiliation(s)
- Antonis Mistriotis
- Agricultural University of Athens, Dept. of Natural Resources and Agricultural Engineering, Iera Odos 75, Athens, Greece.
| |
Collapse
|
12
|
Complexification of eukaryote phenotype: Adaptive immuno-cognitive systems as unique Gödelian block chain distributed ledger. Biosystems 2022; 220:104718. [PMID: 35803502 DOI: 10.1016/j.biosystems.2022.104718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022]
Abstract
The digitization of inheritable information in the genome has been called the 'algorithmic take-over of biology'. The McClintock discovery that viral software based transposable elements that conduct cut-paste (transposon) and copy-paste (retrotransposon) operations are needed for genomic evolvability underscores the truism that only software can change software and also that viral hacking by internal and external bio-malware is the Achilles heel of genomic digital systems. There was a paradigm shift in genomic information processing with the Adaptive Immune System (AIS) 500 mya followed by the Mirror Neuron System (MNS), latterly mostly in primate brains, which reaches its apogee in human social cognition. The AIS and MNS involve distinctive Gödelian features of self-reference (Self-Ref) and offline virtual self-representation (Self-Rep) for complex self-other interaction with prodigious open-ended capacity for anticipative malware detection and novelty production within a unique blockchain distributed ledger (BCDL). The role of self-referential information processing, often considered to be central to the sentient self with origins in the immune system 'Thymic self', is shown to be part of the Gödel logic behind a generator-selector framework at a molecular level, which exerts stringent selection criteria to maintain genomic BCDL. The latter manifests digital and decentralized record keeping where no internal or external bio-malware can compromise the immutability of the life's building blocks and no novel blocks can be added that is not consistent with extant blocks. This is demonstrated with regard to somatic hypermutation with novel anti-body production in the face of external non-self antigen attacks.
Collapse
|
13
|
Cellular sentience as the primary source of biological order and evolution. Biosystems 2022; 218:104694. [PMID: 35595194 DOI: 10.1016/j.biosystems.2022.104694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Abstract
All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.
Collapse
|
14
|
|
15
|
Marijuán PC, Navarro J. The biological information flow: From cell theory to a new evolutionary synthesis. Biosystems 2022; 213:104631. [DOI: 10.1016/j.biosystems.2022.104631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/19/2022]
|
16
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
17
|
Biophotons and Emergence of Quantum Coherence-A Diffusion Entropy Analysis. ENTROPY 2021; 23:e23050554. [PMID: 33947077 PMCID: PMC8146849 DOI: 10.3390/e23050554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022]
Abstract
We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence.
Collapse
|
18
|
Genomic Intelligence as Über Bio-Cybersecurity: The Gödel Sentence in Immuno-Cognitive Systems. ENTROPY 2021; 23:e23040405. [PMID: 33805411 PMCID: PMC8065710 DOI: 10.3390/e23040405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
This paper gives formal foundations and evidence from gene science in the post Barbara McClintock era that the Gödel Sentence, far from being an esoteric construction in mathematical logic, is ubiquitous in genomic intelligence that evolved with multi-cellular life. Conditions uniquely found in the Adaptive Immune System (AIS) and Mirror Neuron System (MNS), termed the genomic immuno-cognitive system, coincide with three building blocks in computation theory of Gödel, Turing and Post (G-T-P). (i) Biotic elements have unique digital identifiers with gene codes executing 3D self-assembly for morphology and regulation of the organism using the recursive operation of Self-Ref (Self-Reference) with the other being a self-referential projection of self. (ii) A parallel offline simulation meta/mirror environment in 1–1 relation to online machine executions of self-codes gives G-T-P Self-Rep (Self-Representation). (iii) This permits a digital biotic entity to self-report that it is under attack by a biotic malware or non-self antigen in the format of the Gödel sentence, resulting in the “smarts” for contextual novelty production. The proposed unitary G-T-P recursive machinery in AIS and in MNS for social cognition yields a new explanation that the Interferon Gamma factor, known for friend-foe identification in AIS, is also integral to social behaviors. New G-T-P bio-informatics of AIS and novel anti-body production is given with interesting testable implications for COVID-19 pathology.
Collapse
|
19
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
20
|
Miller WB. The First Minds: Caterpillars, Karyotes, and Consciousness. PHILOSOPHICAL PSYCHOLOGY 2020. [DOI: 10.1080/09515089.2020.1849599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Abstract
Humanity faces serious social and environmental problems, including climate change and biodiversity loss. Increasingly, scientists, global policy experts, and the general public conclude that incremental approaches to reduce risk are insufficient and transformative change is needed across all sectors of society. However, the meaning of transformation is still unsettled in the literature, as is the proper role of science in fostering it. This paper is the first in a three-part series that adds to the discussion by proposing a novel science-driven research-and-development program aimed at societal transformation. More than a proposal, it offers a perspective and conceptual framework from which societal transformation might be approached. As part of this, it advances a formal mechanics with which to model and understand self-organizing societies of individuals. While acknowledging the necessity of reform to existing societal systems (e.g., governance, economic, and financial systems), the focus of the series is on transformation understood as systems change or systems migration—the de novo development of and migration to new societal systems. The series provides definitions, aims, reasoning, worldview, and a theory of change, and discusses fitness metrics and design principles for new systems. This first paper proposes a worldview, built using ideas from evolutionary biology, complex systems science, cognitive sciences, and information theory, which is intended to serve as the foundation for the R&D program. Subsequent papers in the series build on the worldview to address fitness metrics, system design, and other topics.
Collapse
|
22
|
Miller WB, Baluška F, Torday JS. Cellular senomic measurements in Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:20-33. [PMID: 32738355 DOI: 10.1016/j.pbiomolbio.2020.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 07/04/2020] [Indexed: 12/27/2022]
Abstract
All living entities are cognitive and dependent on ambiguous information. Any assessment of that imprecision is necessarily a measuring function. Individual cells measure information to sustain self-referential homeostatic equipoise (self-identity) in juxtaposition to the external environment. The validity of that information is improved by its collective assessment. The reception of cellular information obliges thermodynamic reactions that initiate a self-reinforcing work channel. This expresses as natural cellular engineering and niche constructions which become the complex interrelated tissue ecologies of holobionts. Multicellularity is collaborative cellular information management directed towards the optimization of information quality through its collective measured assessment. Biology and its evolution can now be re-framed as the continuous process of self-referential cellular measurement in the perpetual defense of individual cellular self-identities through the collective form.
Collapse
Affiliation(s)
| | | | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| |
Collapse
|
23
|
Leitão AL, Costa MC, Gabriel AF, Enguita FJ. Interspecies Communication in Holobionts by Non-Coding RNA Exchange. Int J Mol Sci 2020; 21:ijms21072333. [PMID: 32230931 PMCID: PMC7177868 DOI: 10.3390/ijms21072333] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Complex organisms are associations of different cells that coexist and collaborate creating a living consortium, the holobiont. The relationships between the holobiont members are essential for proper homeostasis of the organisms, and they are founded on the establishment of complex inter-connections between all the cells. Non-coding RNAs are regulatory molecules that can also act as communication signals between cells, being involved in either homeostasis or dysbiosis of the holobionts. Eukaryotic and prokaryotic cells can transmit signals via non-coding RNAs while using specific extracellular conveyors that travel to the target cell and can be translated into a regulatory response by dedicated molecular machinery. Within holobionts, non-coding RNA regulatory signaling is involved in symbiotic and pathogenic relationships among the cells. This review analyzes current knowledge regarding the role of non-coding RNAs in cell-to-cell communication, with a special focus on the signaling between cells in multi-organism consortia.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
- MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (M.C.C.); (A.F.G.)
- Correspondence: ; Tel.: +351-217999480
| |
Collapse
|
24
|
An Integrative Dynamic Model of Colombian Population Distribution, Based on the Maximum Entropy Principle and Matter, Energy, and Information Flow. ENTROPY 2019. [PMCID: PMC7514517 DOI: 10.3390/e21121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human society has increased its capacity to exploit natural resources thanks to new technologies, which are one of the results of information exchange in the knowledge society. Many approaches to understanding the interactions between human society and natural systems have been developed in the last decades, and some have included considerations about information. However, none of them has considered information as an active variable or flowing entity in the human–natural/social-ecological system, or, moreover, even as a driving force of their interactions. This paper explores these interactions in socio-ecological systems by briefly introducing a conceptual frame focused on the exchange of information, matter, and energy. The human population is presented as a convergence variable of these three physical entities, and a population distribution model for Colombia is developed based on the maximum entropy principle to integrate the balances of related variables as macro-state restrictions. The selected variables were electrical consumption, water demand, and higher education rates (energy, matter, and information). The final model includes statistical moments for previous population distributions. It is shown how population distribution can be predicted yearly by combining these variables, allowing future dynamics exploration. The implications of this model can contribute to bridging information sciences and sustainability studies.
Collapse
|
25
|
Miller WB, Torday JS, Baluška F. The N-space Episenome unifies cellular information space-time within cognition-based evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:112-139. [PMID: 31415772 DOI: 10.1016/j.pbiomolbio.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Self-referential cellular homeostasis is maintained by the measured assessment of both internal status and external conditions based within an integrated cellular information field. This cellular field attachment to biologic information space-time coordinates environmental inputs by connecting the cellular senome, as the sum of the sensory experiences of the cell, with its genome and epigenome. In multicellular organisms, individual cellular information fields aggregate into a collective information architectural matrix, termed a N-space Episenome, that enables mutualized organism-wide information management. It is hypothesized that biological organization represents a dual heritable system constituted by both its biological materiality and a conjoining N-space Episenome. It is further proposed that morphogenesis derives from reciprocations between these inter-related facets to yield coordinated multicellular growth and development. The N-space Episenome is conceived as a whole cell informational projection that is heritable, transferable via cell division and essential for the synchronous integration of the diverse self-referential cells that constitute holobionts.
Collapse
Affiliation(s)
| | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| | | |
Collapse
|
26
|
Miller, Jr WB, Torday JS. Reappraising the exteriorization of the mammalian testes through evolutionary physiology. Commun Integr Biol 2019; 12:38-54. [PMID: 31143362 PMCID: PMC6527184 DOI: 10.1080/19420889.2019.1586047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
A number of theories have been proposed to explain the exteriorization of the testicles in most mammalian species. None of these provide a consistent account for the wide variety of testicular locations found across the animal kingdom. It is proposed that testicular location is the result of coordinate action of testicular tissue ecologies to sustain preferential states of homeostatic equipoise throughout evolutionary development in response to the advent of endothermy.
Collapse
Affiliation(s)
| | - John S. Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
27
|
Chatterjee S, Yadav S. The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the Evolution of Translation and the Genetic Code. Life (Basel) 2019; 9:E25. [PMID: 30832272 PMCID: PMC6463137 DOI: 10.3390/life9010025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Information is the currency of life, but the origin of prebiotic information remains a mystery. We propose transitional pathways from the cosmic building blocks of life to the complex prebiotic organic chemistry that led to the origin of information systems. The prebiotic information system, specifically the genetic code, is segregated, linear, and digital, and it appeared before the emergence of DNA. In the peptide/RNA world, lipid membranes randomly encapsulated amino acids, RNA, and peptide molecules, which are drawn from the prebiotic soup, to initiate a molecular symbiosis inside the protocells. This endosymbiosis led to the hierarchical emergence of several requisite components of the translation machine: transfer RNAs (tRNAs), aminoacyl-tRNA synthetase (aaRS), messenger RNAs (mRNAs), ribosomes, and various enzymes. When assembled in the right order, the translation machine created proteins, a process that transferred information from mRNAs to assemble amino acids into polypeptide chains. This was the beginning of the prebiotic information age. The origin of the genetic code is enigmatic; herein, we propose an evolutionary explanation: the demand for a wide range of protein enzymes over peptides in the prebiotic reactions was the main selective pressure for the origin of information-directed protein synthesis. The molecular basis of the genetic code manifests itself in the interaction of aaRS and their cognate tRNAs. In the beginning, aminoacylated ribozymes used amino acids as a cofactor with the help of bridge peptides as a process for selection between amino acids and their cognate codons/anticodons. This process selects amino acids and RNA species for the next steps. The ribozymes would give rise to pre-tRNA and the bridge peptides to pre-aaRS. Later, variants would appear and evolution would produce different but specific aaRS-tRNA-amino acid combinations. Pre-tRNA designed and built pre-mRNA for the storage of information regarding its cognate amino acid. Each pre-mRNA strand became the storage device for the genetic information that encoded the amino acid sequences in triplet nucleotides. As information appeared in the digital languages of the codon within pre-mRNA and mRNA, and the genetic code for protein synthesis evolved, the prebiotic chemistry then became more organized and directional with the emergence of the translation and genetic code. The genetic code developed in three stages that are coincident with the refinement of the translation machines: the GNC code that was developed by the pre-tRNA/pre-aaRS /pre-mRNA machine, SNS code by the tRNA/aaRS/mRNA machine, and finally the universal genetic code by the tRNA/aaRS/mRNA/ribosome machine. We suggest the coevolution of translation machines and the genetic code. The emergence of the translation machines was the beginning of the Darwinian evolution, an interplay between information and its supporting structure. Our hypothesis provides the logical and incremental steps for the origin of the programmed protein synthesis. In order to better understand the prebiotic information system, we converted letter codons into numerical codons in the Universal Genetic Code Table. We have developed a software, called CATI (Codon-Amino Acid-Translator-Imitator), to translate randomly chosen numerical codons into corresponding amino acids and vice versa. This conversion has granted us insight into how the genetic code might have evolved in the peptide/RNA world. There is great potential in the application of numerical codons to bioinformatics, such as barcoding, DNA mining, or DNA fingerprinting. We constructed the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. While using AnyLogic software, we were able to simulate and visualize the entire evolution of the translation machines, amino acids, and the genetic code.
Collapse
Affiliation(s)
- Sankar Chatterjee
- Department of Geosciences, Museum of Texas Tech University, Box 43191, 3301 4th Street, Lubbock, TX 79409, USA.
| | - Surya Yadav
- Rawls College of Business, Texas Tech University, Box 42101, 703 Flint Avenue, Lubbock, TX 79409, USA.
| |
Collapse
|
28
|
Biological evolution as defense of 'self'. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 142:54-74. [PMID: 30336184 DOI: 10.1016/j.pbiomolbio.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/27/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
Abstract
Although the origin of self-referential consciousness is unknown, it can be argued that the instantiation of self-reference was the commencement of the living state as phenomenal experientiality. As self-referential cognition is demonstrated by all living organisms, life can be equated with the sustenance of cellular homeostasis in the continuous defense of 'self'. It is proposed that the epicenter of 'self' is perpetually embodied within the basic cellular form in which it was instantiated. Cognition-Based Evolution argues that all of biological and evolutionary development represents the perpetual autopoietic defense of self-referential basal cellular states of homeostatic preference. The means by which these states are attained and maintained is through self-referential measurement of information and its communication. The multicellular forms, either as biofilms or holobionts, represent the cellular attempt to achieve maximum states of informational distinction and energy efficiency through individual and collective means. In this frame, consciousness, self-consciousness and intelligence can be identified as forms of collective cellular phenotype directed towards the defense of fundamental cellular self-reference.
Collapse
|
29
|
Abstract
Fascia is a cacophony of functions and information, a completely adaptable entropy complex. The fascial system has a solid and a liquid component, acting in a perfect symbiotic synchrony. Each cell communicates with the other cells by sending and receiving signals; this concept is a part of quantum physics and it is known as quantum entanglement: a physical system cannot be described individually, but only as a juxtaposition of multiple systems, where the measurement of a quantity determines the value for other systems. Fascial continuum serves as a target for different manual approaches, such as physiotherapy, osteopathy and chiropractic. Cellular behaviour and the inclusion of quantum physics background are hardly being considered to find out what happens between the operator and the patient during a manual physical contact. The article examines these topics. According to the authors' knowledge, this is the first scientific text to offer manual operators’ new perspectives to understand what happens during palpatory contact. A fascial cell has not only memory but also the awareness of the mechanometabolic information it feels, and it has the anticipatory predisposition in preparing itself for alteration of its natural environment.
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi / (IRCCS) Institute of Hospitalization and Care, Milano, ITA
| | - Marta Simonelli
- Osteopathy, (SOFI) School of French-Italian Osteopathy, Pisa, ITA
| |
Collapse
|
30
|
Baluška F, Miller, Jr WB. Senomic view of the cell: Senome versus Genome. Commun Integr Biol 2018; 11:1-9. [PMID: 30214674 PMCID: PMC6132427 DOI: 10.1080/19420889.2018.1489184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
In the legacy of Thomas Henry Huxley, and his 'epigenetic' philosophy of biology, cells are proposed to represent a trinity of three memory-storing media: Senome, Epigenome, and Genome that together comprise a cell-wide informational architecture. Our current preferential focus on the Genome needs to be complemented by a similar focus on the Epigenome and a here proposed Senome, representing the sum of all the sensory experiences of the cognitive cell and its sensing apparatus. Only then will biology be in a position to embrace the whole complexity of the eukaryotic cell, understanding its true nature which allows the communicative assembly of cells in the form of sentient multicellular organisms.
Collapse
|
31
|
Four domains: The fundamental unicell and Post-Darwinian Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:49-73. [PMID: 29685747 DOI: 10.1016/j.pbiomolbio.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Contemporary research supports the viewpoint that self-referential cognition is the proper definition of life. From that initiating platform, a cohesive alternative evolutionary narrative distinct from standard Neodarwinism can be presented. Cognition-Based Evolution contends that biological variation is a product of a self-reinforcing information cycle that derives from self-referential attachment to biological information space-time with its attendant ambiguities. That information cycle is embodied through obligatory linkages among energy, biological information, and communication. Successive reiterations of the information cycle enact the informational architectures of the basic unicellular forms. From that base, inter-domain and cell-cell communications enable genetic and cellular variations through self-referential natural informational engineering and cellular niche construction. Holobionts are the exclusive endpoints of that self-referential cellular engineering as obligatory multicellular combinations of the essential Four Domains: Prokaryota, Archaea, Eukaryota and the Virome. Therefore, it is advocated that these Four Domains represent the perpetual object of the living circumstance rather than the visible macroorganic forms. In consequence, biology and its evolutionary development can be appraised as the continual defense of instantiated cellular self-reference. As the survival of cells is as dependent upon limitations and boundaries as upon any freedom of action, it is proposed that selection represents only one of many forms of cellular constraint that sustain self-referential integrity.
Collapse
|